
Language, Lambdas, and Logic∗

Reinhard Muskens

1 Introduction

In (van Benthem 1986) it was observed that the Curry-Howard correspon-
dence between proofs and λ-terms can be exploited to obtain a very elegant
and principled match between Lambek Categorial Grammar and Montague
Semantics. The correspondence associates each proof of the calculus with a
λ-term and Van Benthem shows how such terms can be used as a recipe for
obtaining the meaning of a complex expression in terms of the meanings of
its parts. The method is easily extended to various other forms of Lambek
calculi, including multimodal calculi (see (Moortgat 1997) and references
therein).

Van Benthem’s original work concerned the undirected Lambek Calculus,
for which the Curry-Howard correspondence is an isomorphism, but the use
of undirected calculi has not caught on. Superficially it seems that using
an undirected calculus entails that the permutations of any string that is
predicted to be grammatical are likewise predicted to be grammatical and
understandably categorial grammarians therefore have preferred directed
systems. However, from (Oehrle 1994, Oehrle 1995) it is apparent that the
permutation difficulty can be overcome by radicalising the approach. This
is done by using the Curry-Howard isomorphism not only for obtaining a
λ-term representing the semantics of an expression, but also for getting a
λ-term representing its syntax. As will be argued below, the permutation
problem then vanishes, for any effect of permutation on the semantic term
is reflected by a similar effect on the syntactic term and vice versa. Since
syntactic and semantic representations can only permute in tandem, they
will not be coupled in an undesirable way.

Letting grammatical representations consist of λ-terms for (at least) syn-
tax and semantics brings us into the realm of the ‘sign-based’ approaches

∗From: Geert-Jan Kruijff and Richard Oehrle, editors, Resource Sensitivity in Binding
and Anaphora, Studies in Linguistics and Philosophy. Kluwer, 2003, pp. 23–54.

1

to categorial grammar that have arisen in the last two decades ((Zeevat,
Klein and Calder 1986, Oehrle 1988, Moortgat 1991b, Morrill 1994, Moort-
gat 1997)). The basic data structures of the grammar are multidimensional
objects (‘signs’) in such a view; i.e. they are tuples 〈M1, . . . ,Mn〉, where
each Mi is a representation in some component of the grammar (e.g. syntax
or semantics) and n is the dimensionality of the grammar. The lexicon con-
sists of such signs and some set of rules tells how signs are to be combined
into more complex signs. If such a perspective is taken we are immediately
confronted with a series of questions concerning the further design of the
grammatical system.

1. In a sign 〈M1, . . . ,Mn〉, what is the nature of the representations Mi?
I will take a radical approach here and suggest that all Mi are λ-terms.

2. What is the logic underlying the combination of signs? For example,
if 〈M1, . . . ,Mn〉 and 〈N1, . . . , Nn〉 are grammatically derivable and the
terms in these sequences are appropriately typed, we may perhaps
expect 〈M1(N1), . . . ,Mn(Nn)〉 to also be derivable. What other prin-
ciples should be adopted?

3. What are the logics of the various dimensions? If Mi and Ni are both
from the i-th component of the grammar and are of the same type,
there may be an entailment holding between them. What logics govern
these entailment relations?

4. What part of the grammar is going to be responsible for any given
linguistic task we are confronted with? This is an overall question
whose answer will strongly affect answers to the previous ones.

That there is room for answering such questions in radically different ways
becomes apparent when multidimensional versions of the directed Lambek
Calculus, such as the ones in (Morrill 1994, Moortgat 1997), are compared
with Oehrle’s undirected version. The classical Lambek Calculus L deals
with two things simultaneously: 1) the combinatorics of language, and 2)
word order. Non-associative versions, such as NL, also deal with 3) con-
stituency. The modern versions of Morrill and Moortgat essentially inherit
this trait and the logic that combines signs also takes care of word order (and
possibly constituency) in these systems. Oehrle, on the other hand, allocates
the task of keeping track of word order (and constituency) to the syntactic
component exclusively and factors it out from the combining calculus, thus
arriving at an undirected system for the latter.

2

In this chapter I want to further pursue the intuition that it is really an
undirected system that models the basic combinatorics of language. Word
order and constituency should be dealt with on a separate level. I will discuss
a grammatical formalism (Lambda Grammars) that allows one to combine
signs that are sequences of λ-terms with the help of linear combinators (es-
sentially closed pure λ-terms in which each abstractor binds exactly one
variable). The grammar is a form of categorial grammar, but unlike stan-
dard categorial formalisms, such as Combinatory Categorial Grammar or
the Lambek Calculus, it is non-directional and does not, on the level that
deals with the basic combinatorics of language, need to make any use of
derivations. Thus, my answer to question 2 above is that signs are combined
with the help of linear combinators. It may be linguistically meaningful to
narrow down the class of possible combinators, but I will not consider such
refinements here.

The system has several virtues. One is simplification. Instead of the long,
often computer-generated, proofs that are considered in the usual Lambek
Categorial Grammars, the working linguist need only consider certain λ-
terms that sum up such proofs much more concisely. A second virtue is
greater modularity. As indicated above, the grammar distinguishes between
the logic behind the combination of signs and the logics that are associated
with the various dimensions of these signs. Each of these can be studied
independently. A third advantage is linguistic. As has often been noted (e.g.
in (Moortgat 1997)) and as will be explained below, the classical Lambek
Calculus suffers from a nasty ‘periphery problem’. The calculus can model
extraction with the help of hypothetical reasoning, but only if the extraction
site was on the periphery of a relevant subexpression. The reason behind
this, informally, is that expressions can only subcategorize for expressions
that lack material on their peripheries. This problem can be overcome in
various ways, but always at the price of complication in directional systems.
In undirected systems the ‘periphery problem’ does not arise. As will become
clear shortly, the periphery of expressions does not play any privileged role
in the present set-up.

The rest of this chapter is set up as follows. In the following section a
brief historical introduction to type logical grammars is given; it is shown
in more detail how directed versions suffer from a periphery problem and
undirected versions from a permutation problem; the idea of having λ-terms
in syntax is traced back to (Curry 1961); and we recap the Curry-Howard-
Van Benthem correspondence between proofs and terms. In section 3 the
essential idea behind Lambda Grammars is explained and the formalism is
compared with recent independent work by Philippe de Groote on ‘Abstract

3

Categorial Grammars’. Section 4 then continues with a closer look at pos-
sible ways to set up a particular Lambda Grammar, filling in some design
choices. In particular we will opt for a three dimensional grammar there; one
component will deal with dominance and precedence, one with semantics,
and one with syntactic features. These choices bring us in close contact with
the traditional architecture of Lexical-Functional Grammar (LFG, (Kaplan
and Bresnan 1982), for further connections with LFG see (Oehrle 1999) and
(Muskens 2001a), which is based upon the present system) and indeed the
LFG architecture inspires our answer to question 4 above. Section 4 also
works out the logics of the three grammatical components in some detail
and thus illustrates one possible set of answers to question 3. For the se-
mantic component we choose a standard type logic with possible worlds; for
the feature component a type logic over the first-order theory of features
((Johnson 1991)); and the multimodal approach to grammar that is found
in most modern versions of the Lambek Calculus (see (Moortgat 1997) and
references therein) will serve as a basis of the component dealing with dom-
inance and precedence. The multimodal approach is thus moved from the
general level of combing signs to one of the special dimensions of the gram-
mar, another illustration of the modularity of the set-up. The chapter ends
with a short conclusion.

2 Categorial Calculi

2.1 Directed and Undirected Calculi

Although categories in categorial grammar historically derive from Husserl’s
Bedeutungskategorien and Leśniewski’s semantic categories, and although
the order of words is commonly taken to be semantically irrelevant, tradi-
tionally most systems of categorial grammar distinguish between functors
that seek arguments to their left and those that want them on their right.
An exception to this rule is the system of (Ajdukiewicz 1935), in which
functors only seek arguments on their right, but which allows permuta-
tions of functors and arguments. Categories are represented as fractions
A/B1 · · ·Bn in this system and the basic simplification rule is given by
(A/B1 · · ·Bn)B1 · · ·Bn ; A, a rule familiar from elementary arithmetic.
Products commute (i.e. AB = BA), but are not associative. Using these
rules, it is easily shown that Ajdukiewicz’s example (1), with categorisation
as indicated and with the usual surface bracketing, as in (2), is connex and
obtains category s.

4

(1) Die Flieder duftet sehr stark und die Rose blüht

n
n n s

n

s
n
s
n
s
n
s
n

s
n
s
n

s
ss

n
n n s

n

(2) [[[Die Flieder][duftet [sehr stark]]] und [[die Rose] blüht]]

Unfortunately, as a consequence of the commutativity of the product in
Ajdukiewicz’s system, many ungrammatical permutations of (1) will also be
predicted to be connex.

The first bidirectional system of categorial grammar was defined in (Bar-
Hillel 1953). Bar-Hillel distinguishes between functor categories A/B, which
seek their argument B to the right, and categories B\A, which seek it to the
left.1 With the help of the rules (A/B)B ; A and B(B\A) ; A we find
that (3) (this and some of the following examples are taken from (Moortgat
1997)) is connex. Products now are associative, i.e. we have [AB]C = A[BC]
and bracketings such as in the previous example can be dispensed with. But
products are no longer commutative and permutations of expressions that
are connex are no longer predicted to be necessarily connex themselves.

(3) Kazimierz talks to the mathematician
np (np\s)/pp pp/np np/n n

Word order is dealt with on the level of grammatical categories in Bar-Hillel’s
system and this property is retained in most modern versions of categorial
grammar. This solves the permutation problem, but the solution comes at
a price. Linguistically, one of the great attractions of categorial grammar is
the high degree in which the system is lexicalised. Grammatical properties
essentially are properties of words in the lexicalist’s view. They are located
in the lexicon, not in generative rules that form complex expressions out
of simpler ones. Categorial grammar conforms to this ideal to a very high
degree. Its rules of combination are few and simple and it is on the level of
words that things are really happening. But Bar-Hillel’s treatment of word
order by means of a directional calculus necessitates an exception to this
general scheme and requires special measures on the level of the calculus
itself. It is not sufficient to categorise, say, talks as an (np\s)/pp, signalling
that the word takes a PP to its right and an NP to its left. In order for
this to work we also need two dual rules of simplification, one for / and one
for \. This means that the treatment of word order is distributed over the

1This is the notation of (Lambek 1958). Bar-Hillel wrote A/[B] for A/B and A/(B)
for B\A, but later prefered Lambek’s notation.

5

lexicon and the rule system now, a situation not in strict agreement with
the lexicalist ideal.

Ajdukiewicz’s and Bar-Hillel’s rules of simplification resemble Modus Po-
nens, as well as the familiar arithmetical rule they were inspired by. The
great leap forward of defining a logical calculus for category combination was
made by (Lambek 1958), who defined a system partly shown in (4) (here in
a natural deduction presentation). The rules /E and \E in this calculus are
variants of the usual elimination rule for→ in the propositional calculus and
thus closely correspond to Modus Ponens. A main difference between Lam-
bek’s calculus and the usual calculus for intuitionistic propositional logic is
that there are no structural rules. In particular, permutations, contractions
and weakenings are not allowed in this system. The reader will have no dif-
ficulty in showing that np, (np\s)/pp, pp/np, np/n, n ⇒ s is provable from
axioms of the form A ⇒ A with the help of /E and \E alone. This then
gives a purely logical proof of the connexity of (3).

(4) [Ax]
A⇒ A

Γ, A⇒ B
[/I]

Γ⇒ B/A

Γ⇒ A/B ∆⇒ B
[/E]

Γ,∆⇒ A

A,Γ⇒ B
[\I]

Γ⇒ A\B
Γ⇒ B ∆⇒ B\A

[\E]
Γ,∆⇒ A

But Lambek’s calculus is not merely a purely logical reformulation of the
Ajdukiewicz–Bar-Hillel system. The presence of the introduction rules /I
and \I takes us from a grammar that can only handle local dependencies to
one in which long distance dependencies are also naturally dealt with. For
example, since np/n, n, (n\n)/(s/np), np, (np\s)/pp, pp/np ⇒ np is prov-
able, one also easily verifies that (5) is connex. Informally, since Kazimierz
talks to followed by any np is an s, we find by /I that this string itself is
an s/np, and further applications of the elimination rules give the desired
result. Since whom subcategorizes for a sentence missing a rightmost np
and Kazimierz talks to is such a sentence, the connexity is established.

(5) the man whom Kazimierz talks to
np/n n (n\n)/(s/np) np (np\s)/pp pp/np

This elegant and principled treatment of long distance dependencies un-
fortunately leaves something to be desired, as (Moortgat 1997) and others
have pointed out. Since words can only subcategorize for complements with

6

gaps on their periphery, the theory as it stands predicts that non-peripheral
gaps cannot occur. This is wrong of course. In (6), for example, the gap is
naturally situated between to and yesterday.

(6) the man whom Kazimierz talked to yesterday

Solutions to this problem have been offered within the categorial paradigm.
One way of dealing with it ((Morrill 1994, Moortgat 1997)) is by using some
multimodal variant of the original Lambek Calculus, allowing permutations
in certain controlled circumstances. But this solution requires certain com-
plications of the theory and it is worth noting that, while Lambek’s idea of
adding Conditionalisation to the system immediately leads to a principled
way of handling long distance phenomena, the calculus’ directionality essen-
tially spoils things. Without additional machinery, gaps are predicted to be
always peripheral.

The directional approach was criticized in (Curry 1961), who proposed
an interesting alternative. Curry considers functors, which are expressions
containing subscripted blanks, such as ‘—1 is between —2 and —3’ or ‘—1

were eaten by the children’. Functors can apply to arguments and arguments
are to be substituted for blanks in the order of the subscripts. Essentially
then, although Curry does not explicitly mention this, functors are λ-terms
over syntactic objects. For example, the first of the functors just mentioned
can also be written ‘λxλyλz. x is between y and z’. Curry defines a type
hierarchy of functors and also considers ‘what Harris and Chomsky call
transformations’ to be functors. Clearly, while the directional approach
restricts itself to functors with gaps on the periphery, this more general
approach is not so restricted.2 We shall come back to Curry’s proposal
below and adopt it as essentially right.

Evidence for the view that some form of non-directional combinatorics
plays an important role in grammar also comes from semantics. In Mon-
tague’s pivotal work ((Montague 1973)) it was already implicit that semantic
values of certain expressions were ‘shifted’ to values in higher types in order
to get the combinatorics of the system right. For example, since quantifying
noun phrases (in an extensional version of the theory) are treated as expres-
sions of type (et)t, proper names are also treated as being of this type and
the translation of John (say) is λP.P (john), not simply the constant john

2(Curry 1961): ‘A functor is any kind of linguistic device which operates on one or
more phrases (the argument(s)) to form another phrase. A functor may, conceivably, so
modify its arguments that even the notations involving blanks are inadequate to describe
it.’

7

of type e. In a similar vein, since transitive verbs need to be combinable
with noun phrases (type (et)t) in object position, they get type ((et)t)(et),
not simply e(et). Implicit, therefore, in Montague’s system there are shifts
e⇒ (et)t and e(et)⇒ ((et)t)(et).

These type raisings are ‘compiled in’ in Montague’s original set-up. Lex-
ical translations are simply given in the higher type, not in the simpler one.
This leads to a certain awkwardness of the translations, but that in itself
would perhaps be acceptable if the ‘compiling in’ strategy always worked,
i.e. if it were always possible to avoid type shifts during the combination
process by choosing high enough types in lexical entries (a strategy known
as ‘generalizing to the worst case’). That this is in fact not possible was
shown in (Rooth and Partee 1982, Partee and Rooth 1983) on the basis of
an argument taking Montague’s treatment of intensionality as its point of
departure, together with the widely held view that the words and and or
can function as intersection and union in all categories.

If type shifts need to enter into the combinatorial process, we need rules
for them, and Partee and Rooth give a simple rule system that was later gen-
eralised in (Hendriks 1988, Hendriks 1993). However, in a move reconnecting
Categorial Grammar with its semantic origins, Van Benthem observed ((van
Benthem 1986, van Benthem 1988, van Benthem 1991)) that the necessary
type shifts are available in a non-directional version of the Lambek Calcu-
lus. This version, called L*P, identical in fact to the implicational fragment
of Intuitionistic Linear Logic ((Girard 1987, Troelstra 1992)), is shown in
(7), again in the natural deduction formulation. The system contains an
introduction (I) and an elimination (E) rule for the type forming operator.
Again, sequents are provable if they can be derived from axioms of the form
A ⇒ A in the usual way. A main difference with the Lambek Calculus in
(4), however, is that left-hand sides of sequents are now taken to be bags
(multisets), i.e. they are invariant under permutations. The left-hand sides
of sequents are allowed to be empty here. If the restriction is made that the
left-hand sides of sequents should always be non-empty, the (more familiar)
system LP is arrived at.

(7) Ax
A⇒ A

Γ, A⇒ B
I

Γ⇒ (AB)

Γ⇒ (AB) ∆⇒ A
E

Γ,∆⇒ B

The motivation for these rules is very similar to the motivation for the
rules of the syntactic Lambek Calculus discussed above. The basic way of

8

combining typed λ-terms is by functional application when a term of type
AB (also written A → B or A (B) is combined with a term of type A,
forming a term of type B. Essentially, this is a form of Modus Ponens and,
in a natural deduction formulation, leads to the rule E. Complementing E
with a rule I is, with hindsight, an obvious thing to do from a logical point
of view, but is the essence of Lambek’s contribution and the motor behind
all type change. That left-hand sides of sequents are bags here, and that
consequently there is only one implication, reflects that there is no order in
semantics.

In (8) a proof is given for e, e(et), (et)t⇒ t in this calculus. The example
shows that the semantic values for the words in Kazimierz loves someone
combine to a logical sentence, if we take these semantic values to be of types
e, e(et), and (et)t respectively, i.e. if we assign each word its simplest and
most obvious translation. (For the question how translations combine, see
below.)

(8)

(et)t⇒ (et)t

e(et)⇒ e(et) e⇒ e
E

e(et), e⇒ et e⇒ e
E

e, e(et), e⇒ t
I

e, e(et)⇒ et
E

e, e(et), (et)t⇒ t

It is attractive to assume that some form of the Lambek Calculus not only
plays a role in syntax, but also in semantics. In syntax, the system can give
a very elegant treatment of filler-gap constructions such as in the wh-phrase
in (5). In semantics, it explains the type shifts that are needed to get the
combinatorics working. This all points to a common combinatorial engine
for syntax and semantics. But if the syntactic calculus is directed and the
semantic calculus is not, how are we to combine the two? One answer,
the answer that is essentially given in the multimodal approach, is to form
some hybrid. As was already discussed in the introduction, the answer
that will be pursued here is that the basic combinatorics of the grammar
is non-directional but that word order should not be treated in the basic
combinatorics. We will assume that all grammatical signs have a syntactic
dimension dealing with word order.

2.2 The Curry–Howard–Van Benthem Correspondence

Above we have seen how the Lambek–Van Benthem calculus L*P can com-
bine the types of translations of lexical expressions, but the really interesting

9

question from a semantical point of view of course is how these translations
themselves combine. We have associated the E rule with application and it
is only fitting then that the I rule should be associated with the dual of appli-
cation, λ-abstraction. In fact this conforms to the standard correspondence
in proof theory that goes back to work of Curry, Howard, and De Bruyn in
the 1960’s. For many logical systems, it is possible to define an isomorphism
between proofs and λ-terms, such that Modus Ponens is associated with ap-
plication, conditionalisation with abstraction, and conjunction introduction
with pairing (while proof normalization corresponds to β-conversion). An
essential contribution of (van Benthem 1986, van Benthem 1988, van Ben-
them 1991) consisted in the realisation that the Curry–Howard isomorphism
for L*P and other Lambek calculi provides a recipe for getting the meaning
of a complex expression in terms of the meanings of its parts.

The Curry–Howard isomorphism for L*P can be obtained by annotating
each type in a proof with a λ-term. Axioms are now of the form x:A⇒ x:A
(where the variable x is fresh to the proof and of type A), the introduction
rule corresponds to abstraction, and the elimination rule corresponds to
application. (9) gives the annotated rules.

(9)
x:A⇒ x:A

Γ, x:A⇒M :B
I

Γ⇒ λx.M : (AB)

Γ⇒M : (AB) ∆⇒ N :A
E

Γ,∆⇒M(N):B

By way of example, (10) shows the annotated form of the proof in (8). The
resulting endsequent x: e, R: e(et), Q: (et)t⇒ Q(λy.R(y)(x)): t can be used
as a meaning recipe in the following way. Suppose the translations of the
words in a certain sentence S are M1, M2, and M3, of types e, e(et), and
(et)t respectively. Then S itself translates as

Q(λy.R(y)(x))[x := M1, R := M2, Q := M3] ,

or,
M3(λy.M2(y)(M1)) .

For example, if Kazimierz translates as k, loves as λyλx.love(x, y), and
someone as λP∃x[person(x)∧P (x)] then the translation of Kazimierz loves
someone, after conversions, is ∃x[person(x) ∧ love(k, x)], as in (11).

10

(10)

Q: (et)t⇒ Q: (et)t

R: e(et)⇒ R: e(et) y: e⇒ y: e
E

R: e(et), y: e⇒ R(y): et x: e⇒ x: e
E

x: e, R: e(et), y: e⇒ R(y)(x): t
I

x: e, R: e(et)⇒ λy.R(y)(x): et
E

x: e, R: e(et), Q: (et)t⇒ Q(λy.R(y)(x)): t

(11) k: e, λyλx.love(x, y): e(et), λP∃x[person(x) ∧ P (x)]: (et)t⇒
∃x[person(x) ∧ love(k, x)]: t

Clearly, each permutation of Kazimierz loves someone (and in particular
someone loves Kazimierz) will obtain the same translation, which is obvi-
ously wrong. But below it will be explained how this closure under syntactic
permutation can be gotten rid of.

In order to get a more precise grip on the Curry–Howard isomorphism
we need some definitions. Firstly, let us define the notion of a pure linear
λ-term. The set fv(M) of the free variables of such a term M is defined
simultaneously.

i. If X is a variable of type A, X is a pure linear λ-term of type A and
fv(X) = {X};

ii. If M is a pure linear λ-term of type AB and N is a pure linear λ-term
of type A such that fv(M) ∩ fv(N) = ∅, then M(N) is a pure linear
λ-term of type B and fv(M(N)) = fv(M) ∪ fv(N);

iii. If M is a pure linear λ-term of type B, X is a variable of type A
and X ∈ fv(M), then λX.M is a pure linear λ-term of type AB and
fv(λX.M) = fv(M)− {X}.

In other words a simply typed λ-term M is a pure linear λ-term if it is built
up from variables using application and abstraction only and each abstractor
λx in M binds exactly one variable x in M , while each variable that is free
in M occurs only once in M .

A sequent x1:A1, . . . , xn:An ⇒ M :A will be called linear if each xi is
of type Ai while M is a pure linear λ-term of type A such that fv(M) =
{x1, . . . , xn}. It is easily seen that L*P provable sequents are linear. On the
other hand, a simple induction shows that for any linear sequent there is a
unique L*P proof. Since any linear pure λ-term M uniquely corresponds to
a linear sequent x1:A1, . . . , xn:An ⇒M :A, this establishes that the Curry–
Howard–Van Benthem correspondence is an isomorphism in the case of L*P:

11

the term M obtained in an endsequent is a shorthand for the whole proof.
The correspondence can clearly also be defined for Lambek’s original calculus
L, partly shown in (4), with the left rules corresponding to application and
the right rules to abstraction, but in this case no isomorphism is obtained.3

One advantage of having the Curry–Howard–Van Benthem isomorphism
at one’s disposal is of a practical rather than of a theoretical nature: It
allows the working linguist to dispense with derivations altogether. Since
linear sequents correspond to L*P proofs in a one-to-one fashion we can
do away with the proofs and retain the meaning recipes. Surely, it is much
easier to check the provability of x: e, R: e(et), Q: (et)t⇒ Q(λy.R(y)(x)): t
by checking its linearity than by unfolding the proof in (10). Similarly, it is
convenient that we can check at a glance that (12a) can be provided with
the semantic recipes in (12b) and (12c). Both obviously are linear. If the
usual translations for the sentence’s words are plugged in, its ∃∀ and ∀∃
readings are obtained. Compare this with the procedure that needs to be
followed in the case of the directional calculus L. Checking the provability
of (12d) and (12e) in a suitably annotated version of L seems to crucially
depend on actually unfolding the proof. At present there seems to be no
procedure for checking provability in L that requires less work than that.

(12) a. Every man loves a woman

b. D: (et)((et)t), P : et, R: e(et), D′: (et)((et)t), P ′: et ⇒
D(P)(λv.D′(P ′)(λv′R(v′)(v))): t

c. D: (et)((et)t), P : et, R: e(et), D′: (et)((et)t), P ′: et ⇒
D′(P ′)(λv′.D(P)(R(v′))): t

d. D: (s/(np\s))/n, P :n, R: (np\s)/np, D′: ((s/np)\s)/n,
P ′:n ⇒ D(P)(λv.D′(P ′)(λv′R(v′)(v))): s

e. D: (s/(np\s))/n, P :n, R: (np\s)/np, D′: ((s/np)\s)/n,
P ′:n ⇒ D′(P ′)(λv′.D(P)(R(v′))): s

f. D: (et)((et)t), P : et, R: e(et), D′: (et)((et)t), P ′: et ⇒
D(P ′)(λv.D′(P)(λv′R(v′)(v))): t

g. D: (et)((et)t), P : et, R: e(et), D′: (et)((et)t), P ′: et ⇒
D(P)(λv′.D′(P ′)(R(v′))): t

3It is possible to move to a variant of the standard lambda calculus with directed
notions of application and abstraction and thus retain the isomorphism. But the semantic
relevance of directed application and abstraction is unclear.

12

Of course it should be kept in mind that at this point there are also linear
sequents that do not correspond to acceptable translations of (12a) in the
way that (12b) and (12c) do; (12f) and (12g) are two examples and the
reader will have no difficulty in finding some others. This is the permutation
problem again, to which we will turn in the next section.

That (12d) and (12e) have proofs in L shows that the semantic ambi-
guity of (12a) can be accounted for within Lambek’s theory. This is very
fortunate, but it is contingent upon the fact that the two quantifying noun
phrases are peripheral in (12a). As soon as we turn to examples in which a
noun phrase semantically takes scope over a part it medially occurs in, the
relevant reading is not predicted in L. This is explained in (Moortgat 1997)
and (Hendriks 1993), who attributes the observation to Gosse Bouma. For
example, there will be no L proof for (13) that leads to a meaning recipe
which assigns some girl scope over thinks.

(13) Kazimierz thinks some girl likes Edmund

Clearly, this is a semantic variant of the periphery problem discussed in
the previous section. There have been two kinds of reaction in the litera-
ture. One is exemplified by the Flexible Montague Grammar of (Hendriks
1988, Hendriks 1993) and offers a set of rules that can either be described as
a generalization of Partee and Rooth’s type shifting calculus or as a weak-
ening of L*P. The rules are combined with a standard phrase structure
grammar on the syntactic side. The other reaction is exemplified by (Mor-
rill 1994), who uses a multimodal calculus to reconstruct the ‘in situ binder’
of (Moortgat 1988, Moortgat 1991a). The solution very cleverly uses a wrap-
ping mode which, in combination with two other modes, an associative and
a non-associative one, lets the medial quantifier ‘unwrap’ to a peripheral
position where it can be dealt with. In the no less clever solution of (Moort-
gat 1995) the quantifier travels to the periphery in a step by step fashion,
leaving pointers behind in the form of certain modal operators. When the
quantifier is dealt with on the periphery, a ‘trace’ results, which can find its
way back to the original position using the pointers.

All these systems are very precise, beautiful, and fun to work with. But
an adoption of Hendriks’ calculus, which needs a phrase structure grammar
as its syntactic component, amounts to giving up the hope that there is a
single combinatorial process driving syntax and semantics. The multimodal
solutions do postulate such a single process, but it should be noted that they
are much less falsifiable than the original directed and undirected approaches
were. The calculus L*P has a permutation problem when interpreted as a

13

syntactic calculus, while L is confronted with the periphery problem. We
can get rid of the latter by means of allowing permutations into the calculus
in a controlled way. This gets rid of the counterevidence at the price of
complication. But the possibility remains that the basic combinatorics of
language is insensitive to word order.

3 Lambda Grammars

3.1 Lambda Terms for Word Order

When we compare the treatment of meaning in the Lambek Calculus with its
treatment of word order we are struck by the fact that the first is dealt with
on the level of terms, the second on the level of types. Why this asymmetry?
It seems that if we could treat word order on the level of terms as well, we
might get rid of the directionality of the type system and therefore of the
calculus as a whole. In fact, syntactic terms modelling linear precedence
(and often also dominance) have been around in the categorial literature for
a while, for various reasons. Their first appearance was in (Roorda 1991)
where they played a technical role (helping to check whether proof structures
are proof nets). They were drawn into the center of the system in (Moortgat
1991b), who turns the Lambek Calculus into a calculus of three-dimensional
signs of the form in (14).

(14) 〈directional type, semantic term, prosodic term〉

The calculus now deals with sequents Γ ⇒ S, where S is a sign and Γ is a
sequence of signs. This follows the Labelled Deduction format of (Gabbay
1996) and sets up the grammar in the multidimensional form advocated in
(Oehrle 1988). The set-up can be viewed as a modern version and general-
ization of (Saussure 1916), but also as a generalization of the ‘rule-to-rule’
form that we find in Montague Grammar. The format in (14) is also at
the heart of (Morrill 1994), who works out the theory in great detail, giving
careful treatments of many linguistic phenomena.

All this work essentially treats phrase structure terms as terms over some
algebra, not as λ-terms, i.e. (Curry 1961)’s functors. This contrasts with
(Oehrle 1995, Oehrle 1994), who employs (a variant of) λ-terms in the phrase
structure dimension. Oehrle’s signs have a form as exemplified in (15).

(15) λxλy. y · questioned · x : np→ (np→ s) : λxλy. question(x)(y)

14

The leftmost element of this triple is what Oehrle calls a ‘ϕ-term;’ essentially
a λ-term, but with a monoidal operator ‘·’ hard-wired into the logic and
with a series of conditions in the syntactic build-up of terms ensuring that
these are always linear. The second element is a (non-directional) type,
and the third element is a standard semantic term. Since word order is now
completely encoded in the phrase structure term, there is no longer any need
for a directionality of the calculus and signs are combined using a variant of
LP.

Since a non-directional calculus is what we are after too, we shall take
Oehrle’s work as our point of departure, making a few changes in the set-up,
some of which are important and some unimportant. Among the unimpor-
tant changes is that we will not make any use of the dedicated ‘ϕ-terms,’
but will use ordinary λ-terms instead, using axioms for any structural re-
quirements deemed necessary. But there are two important deviations from
Oehrle’s set-up. The first is that the phrase structure term associated with
a sentence will not directly denote a string, tree, or other syntactic resource
(type ν), but a set of these (type νt). This may seem a minor change, but,
as will be seen in section 4 below, it will in fact enable us to essentially play
the game of multimodal approaches to categorial grammar in the phrase
structure dimension.

The second important way in which we deviate from Oehrle’s set-up is
that, for the basic combinatorics of the grammar, there will be no calculus
at all. As was noticed before, a shift from the directed to the undirected
calculus completely obviates the need for finding derivations. We can simply
combine lexical signs using combinators. Let us see in more detail now how
this can be done.

3.2 Combining Signs

Since we have decided that the basic representations in our grammar will
be sequences 〈M1, . . . ,Mn〉 of λ-terms (where n is the dimensionality of the
grammar), it is a good idea to develop the basics of what could be called a
multi-dimensional type logic. Fortunately the multi-dimensional system we
are interested in inherits most of its traits from the usual one-dimensional
logic in a way that is mathematically trivial. Let us look at types first. The
terms Mi in a sign 〈M1, . . . ,Mn〉 will be typed, but it will be expedient to
also have abstract types for the n-dimensional signs themselves (by contrast,
we may call the types of the Mi concrete types). Abstract types are formed
as usual, starting with a set of basic types and letting AB be an abstract
type if A and B are. For each dimension d of the grammar (1 ≤ d ≤ n)

15

we will have a concretization operator cd sending abstract types to concrete
types. The values of the cd for basic abstract types can freely be chosen on
a per grammar basis; for complex types AB we let cd(AB) = cd(A)cd(B). A
sign 〈M1, . . . ,Mn〉 is said to have abstract type A if each Mi is of concrete
type ci(A). From now on we will only consider signs that are typed in this
way.

Suppose M = 〈M1, . . . ,Mn〉 has type AB and N = 〈N1, . . . , Nn〉 is of
type A. Then it makes sense to define the pointwise application of M to N
by setting

M(N) = 〈M1(N1), . . . ,Mn(Nn)〉 .

Note that the type of the resulting sign M(N) is B, as expected. It is
also possible to define pointwise abstraction. Assuming that the variables
of each concrete type come in some fixed ordering, let us call the sign X =
〈X1, . . . , Xn〉 the m-th multi-dimensional variable of type A if each of the Xi

is the m-th variable of type ci(A). Let X = 〈X1, . . . , Xn〉 be such a variable
of type A and let M = 〈M1, . . . ,Mn〉 be a sign of type B. Then we can
define

λX.M = 〈λX1.M1, . . . , λXn.Mn〉 ,

and the resulting term will be of type AB.
Pointwise application and abstraction will be used to combine elements

from a lexicon of signs L, the latter again given on a per grammar basis.
We will assume that for each 〈M1, . . . ,Mn〉 ∈ L, each Mi is a closed λ-term.
There are no further constraints on lexical elements (in particular, linearity
is not required here). The linear combinations from L are defined as follows.

i. Each M ∈ L is a [linear] combination from L and fv(M) = ∅;

ii. If X is a multi-dimensional variable of type A, X is a [linear] combi-
nation from L and fv(X) = {X};

iii. If M is a [linear] combination from L of type AB and N is a [linear]
combination from L of type A [such that fv(M) ∩ fv(N) = ∅], then
M(N) is a [linear] combination from L and fv(M(N)) = fv(M)∪fv(N);

iv. IfM is a [linear] combination from L of typeB, X is a multi-dimensional
variable of type A [and X ∈ fv(M)], then λX.M is a [linear] combina-
tion from L of type AB and fv(λX.M) = fv(M)− {X}.

For a definiton of the combinations from L just skip anything between square
brackets in the definition above. Suppose that M = 〈M1, . . . ,Mn〉 and

16

N = 〈N1, . . . , Nn〉 are signs and that N and the variable X = 〈X1, . . . , Xn〉
have the same type. Then it makes sense to define

[N/X]M = 〈[N1/X1]M1, . . . , [Nn/Xn]Mn〉 .

In this case N is said to be free for X in M if each Ni is free for Xi in Mi.
For combinations from some lexicon L we have

(α) λX.M = λY.[Y/X]M if Y is free for X in M ;

(β) (λX.M)(N) = [N/X]M if N is free for X in M ;

(η) λX.M(X) = M if X /∈ fv(M).

We are interested in linear combinations M from L that are closed, i.e. such
that fv(M) = ∅. These are said to be the signs generated from L.

It is time for an example. In the following we will consider a two-
dimensional grammar (i.e. n = 2) with dimensions for phrase structure
(d = 1) and semantics (d = 2). There will be three basic abstract types, np,
n and s. This means that np(np s) and (np s)s are examples of complex
abstract types. The concretization operators c1 and c2 send basic abstract
types to concrete types as suggested in Table 1 below (for the moment the
feature dimension considered there may be ignored) and as a result of this
we have e.g. that c1((np s)s) = ((νt)(νt))(νt) and c2((np s)s) = (e(st))(st).
(16) gives a mini-lexicon; three signs, of types (np s)s, (np s)s, and np(np s)
respectively.

(16) a. 〈λT.T (every •man), λPλi∀x[man(x, i)→ P (x)(i)]〉

b. 〈λT.T (a • woman), λPλi∃x[woman(x, i) ∧ P (x)(i)]〉

c. 〈λt1λt2.(t2 • (loves • t1)), λxλyλi.love(y, x, i)〉

That this typing is correct can be checked given the typographical conven-
tions for variables that are spelled out in Table 2 and given the following
information about the constants that are employed. • is of type (νt)((νt)νt)
and is always written between its νt arguments. The constants every, man,
a, etc. denote sets of resources (intuitively every denotes the set of resources
labelled every, etc.) and are therefore of type νt. In the semantic terms, the
constants man and woman are of type (e×s)t and love is of type (e×e×s)t.
As a consequence, the terms in (16a) are therefore of types ((νt)(νt))(νt)
and (e(st))(st) respectively, as are those in (16b), while the terms in (16c)
are of types (νt)((νt)νt) and e(e(st)).

17

In (17) four signs generated from this grammar are displayed. Here ζ
and ζ ′ are two-dimensional variables of type np.

(17) a. (16b)
(
λζ.[(16a)((16c)(ζ))]

)
b. (16a)

(
λζ ′.

[
(16b)

(
λζ.[(16c)(ζ)(ζ ′)]

)])
c. (16a)

(
λζ.[(16b)((16c)(ζ))]

)
d. (16b)

(
λζ ′.

[
(16a)

(
λζ.[(16c)(ζ)(ζ ′)]

)])
Let us work out (17a). Writing (16b)1 for the first element of (16b), (16b)2
for its second element, and similar for other signs, it is easily seen that (17a)
can be rewritten as (18). A series of λ-conversions in both dimensions of
this sign then takes us to (19a). The other items in (19) are obtained from
their counterparts in (17) in an entirely similar way.

(18) 〈(16b)1(λt.(16a)1((16c)1(t))), (16b)2(λx.(16a)2((16c)2(x))〉

(19) a. 〈((every •man) • (loves • (a • woman))),
λi∃y[woman(y, i) ∧ ∀x[man(x, i)→ love(x, y, i)]]〉

b. 〈((every •man) • (loves • (a • woman))),
λi∀x[man(x, i)→ ∃y[woman(y, i) ∧ love(x, y, i)]]〉

c. 〈((a • woman) • (loves • (every •man))),
λi∀x[man(x, i)→ ∃y[woman(y, i) ∧ love(y, x, i)]]〉

d. 〈((a • woman) • (loves • (every •man))),
λi∃y[woman(y, i) ∧ ∀x[man(x, i)→ love(y, x, i)]]〉

Our λ-grammar gives us a mechanism to couple syntactic representations
and semantic representations in a way that seems essentially correct. How
easy is it to get incorrect couplings? Is it possible, for example, to get the
patently incorrect 〈(19a)1, (19d)2〉? Given that the generating mechanism
seems rather free, this might seem a reasonable worry. But a moment’s
reflection shows that such worries are groundless. In fact it is well-known
(see e.g. (van Benthem 1991, pp. 117–119)) that, up to βη-equivalence, there
are exactly four linear combinations of two quantifiers with one binary re-
lation such that quantifiers and relation symbol each occur exactly once.

18

This means that (17) and therefore (19) sum up all those possibilities. The
availability of syntactic λ-terms reins in the overgeneration of the traditional
undirected calculi.

This shows that the permutation problem discussed before has now been
overcome. What about the perifery problem? Is it possible to extract mate-
rial from non-peripheral positions? The following extension of the previous
example can be used to show that it is. (Here M :A means that M is of
abstract type A.)

(20) a. 〈book, λxλi.book(x, i)〉:n

b. 〈Bill, b〉:np

c. 〈Sue, s〉:np

d. 〈λt1λt2λt3.(t3 • ((gives • t1) • (to • t2))),
λxλyλzλi.give(z, x, y, i)〉:np(np(np s))

e. 〈λTλt.(t • (that • T (e))),
λP1λP2λxλi.[P2(x)(i) ∧ P1(x)(i)]〉: (np s)(n n)

The first element of (20e) here is a function taking functions from noun
phrases to sentences as its first argument. Note that this argument is applied
to a trace e (for more on traces see the next section). The net effect will be
substitution of this trace for the ‘missing’ noun phrase. An illustration is
given in (21), where we see that the generated sign (21a) reduces to (21b).
Essentially, since it is possible to abstract from any position it is also possible
to extract from any position.

(21) a. (20e)
(
λζ.[(20d)(ζ)((20b))((20c))]

)(
(20a)

)
b. 〈(book • (that • (Sue • ((gives • e) • (to • Bill))))),

λxλi.[book(x, i) ∧ give(s, x, b, i)]〉

The combinations defined above are closely related to the combinators of
(Curry and Feys 1958), which in a general context can be taken to be closed
pure linear λ-terms. Indeed, in our n-dimensional setting we can define com-
binators as combinations from the empty lexicon ∅ and linear combinators as
linear combinations from ∅. In view of the fact that β-conversion holds it is
easily seen that each generated sign M can be rewritten as an n-dimensional
term C(L1) · · · (Lm), where C is a linear combinator and L1, . . . , Lm ∈ L.

19

Generated signs can be obtained from lexical elements with the help of linear
combinators.

This clearly brings us close to Combinatory Categorial Grammar (CCG,
see e.g. (Ades and Steedman 1982, Szabolsci 1989, Steedman 1996, Jacobson
1999)) where all possible combinators are investigated for their linguistic
relevance. But CCG, like the Lambek Calculus, depends on directionality
and derivations and we want to do away with those.

The definitions given thus far define the notion of Lambda Grammars
that was also present in (Muskens 2001a, Muskens 2001b), but there is
an alternative perspective on the formalism that arises from independent
work by Philippe de Groote on Abstract Categorial Grammars ((de Groote
2001, de Groote 2002)). For a precise definition of Abstract Categorial
Grammars, or ACGs, the reader is referred to the works mentioned, but
the main idea is as follows. ACGs consist of an abstract vocabulary and a
concrete vocabulary. The former is essentially a collection of constants that
are assigned abstract types, as in (22a-c). Over such abstract vocabularies
linear λ-terms are considered, such as (22d), which should be compared with
(17a).

(22) a. every-man: (np s)s

b. a-woman: (np s)s

c. loves:np(np s)

d. a-woman
(
λζ.[every-man(loves(ζ))]

)
A concrete vocabulary, on the other hand, is a collection of constants with
concrete types. A type homomorphism sends abstract types to concrete
types (this type homomorphism is what we have called a concretization
operator) and there is also a λ-term homomorphism sending linear λ-terms
over the abstract vocabulary to λ-terms4 over the concrete vocabulary. The
function F1 in (23) is an example of such a λ-term homomorphism. Given
(23a-c), (23d) must be the case.

(23) a. F1(every-man) = λT.T (every •man)

b. F1(a-woman) = λT.T (a • woman)

4In fact de Groote requires the values of this λ-term homomorphism to also be linear
λ-terms. This means that e.g. λPλi∀x[man(x, i) → P (x)(i)] is not strictly a legitimate
value for F2 in (24) below. I have suppressed this issue from the main text for ease of
exposition.

20

c. F1(loves) = λt1λt2.(t2 • (loves • t1))

d. F1

(
a-woman

(
λζ.[every-man(loves(ζ))]

))
=

((every •man) • (loves • (a • woman)))

This sketches the set-up of one Abstract Categorial Grammar, but we could
have a second one with the same abstract vocabulary but with its concrete
vocabulary now drawn from the constants we have used in the semantic
component. A second λ-term homomorphism F2 could be defined by (24a-
c), so that (24d) would become true.

(24) a. F2(every-man) = λPλi∀x[man(x, i)→ P (x)(i)]

b. F2(a-woman) = λPλi∃x[woman(x, i) ∧ P (x)(i)]

c. F2(loves) = λxλyλi.love(y, x, i)

d. F2

(
a-woman

(
λζ.[every-man(loves(ζ))]

))
=

λi∃y[woman(y, i) ∧ ∀x[man(x, i)→ love(x, y, i)]]

These two abstract categorial grammars do what our lambda grammar with
lexicon (16) does, for clearly M = 〈M1,M2〉 is generated from that lexicon if
and only if there is a linear term N over the abstract vocabulary in (22) such
that F1(N) = M1 and F2(N) = M2. More in general, any n-dimensional
lambda grammar can be interpreted by a collection of n abstract categorial
grammars with the same abstract vocabulary.5

4 More Structure

In the previous section the main ideas behind Lambda Grammars were ex-
plained in some generality. Here we consider one possible way to make these
general ideas more concrete. In particular, we will look at an implementa-
tion with three dimensions, one for phrase structure, one for semantics, and
one for feature structures. Each of these dimensions will have its own logic.

5These statements hold modulo a minor adjustment of definitions. Either ACGs must
allow the images of constants from the abstract vocabulary under the λ-term homomor-
phism to be non-linear, or Lambda Grammars must disallow non-linearity in the λ-terms
that lexical signs consist of (see the previous note). The possibility of having non-linear
terms in lexical elements seems essential given linguistic phenomena such as reflexives
or anaphoric relations. A theory such as ours that treats all combination as linear must
treat such phenomena, that clearly involve the identification of argument places, as lexical.
Non-linearity also seems essential for semantic terms. See also the discussion in (de Groote
2001).

21

4.1 Phrase structure

For the logic of the phrase structure dimension we will borrow heavily from
fairly recent ‘multi-modal’ approaches to categorial grammar such as (Mor-
rill 1994, Moortgat 1997). The main difference with these approaches will be
that we will situate the logic entirely within the phrase structure dimension.

The basic idea behind the multi-modal approach is that syntax deals
with ‘resources’ (think of these as tree nodes or string positions, but the
general notion is more abstract) that can be combined in various ‘modes’.
The usual operation of taking two constituents and providing them with a
mother might be such a mode. Let us call it mode c, and let us associate
with it a ternary relation Rc such that Rc(k, k1, k2) is meant to express that
k is the mother of k1 and k2, while k1 precedes k2. This ternary relation
can now be interpreted as an accessibility relation and can be used to define
a product •, by writing A • B for λk.∃k1k2[Rc(k, k1, k2) ∧ A(k1) ∧ B(k2)].
Readers familiar with modal logic will recognize this as a generalization of
the usual interpretation of the operator 3. The term (john • (sees • mary))
is now shorthand for

λk∃k1k2[Rc(k, k1, k2) ∧ john(k1) ∧ ∃k3k4[Rc(k2, k3, k4) ∧
sees(k3) ∧mary(k4)]]

and many of the expressions used in section 3 can now also be taken to
abbreviate terms built up with the help of Rc.

More in general, whenever we want to assume that a certain mode of
combination m is present in the syntactic component of the language, com-
bining two resources into a third, we can model this by introducing a ternary
relation Rm (type (ν × ν × ν)t) and axiomatizing its basic properties, to-
gether with its relations to other modes of combination. Sets of resources
can then be combined into other sets of resources using the following binary
modality.

(25) λt1t2λk.∃k1k2[Rm(k, k1, k2) ∧ t1(k1) ∧ t2(k2)]

This modality will normally be written as an operator •m, in infix nota-
tion. The reader will recognize the standard semantics for products in the
multimodal Lambek Calculus.

We must provide the relation Rc considered above with some axioms,
for while terms like (john • (sees •mary)) very much look like the usual tree
structures, we have not in fact connected the relation Rc with any notion of
linear precedence. There is also no connection between nodes k that the term

22

(john•(sees•mary)) can be predicated of and the string john sees mary. As it
is the grammarian’s business to connect strings with their possible semantic
values, there is a gap to be filled here. We will consider two ways in which
this might be done.

The first way provides the ν domain with binary relations �+ and ≺,
which stand for proper dominance and precedence and impose the necessary
structure on these by means of axioms (see also (Cornell 1994, Backofen,
Rogers and Vijay-Shankar 1995, Muskens 2001c)). Here we just adopt the
requirements in (26). The two relations are strict partial orders ((26a)), re-
lated by Inheritance ((26b,c)), and there is an immediate dominance relation
�, defined in terms of �+ ((26d)).

(26) a. �+ and ≺ are irreflexive and transitive

b. ∀k1k2k3 [[k1 �
+ k2 ∧ k1 ≺ k3]→ k2 ≺ k3]

c. ∀k1k2k3 [[k1 �
+ k2 ∧ k3 ≺ k1]→ k3 ≺ k2]

d. ∀k1k2 [k1 � k2 ↔ ∀k3 [k1 �
+ k3 �

+ k2 → [k3 = k1 ∨ k3 = k2]]]

These requirements in themselves do not suffice to axiomatize the notion of
linguistic tree. For instance, the usual requirement of Rootedness fails, as
does the requirement of Exhaustivity in (27).

(27) ∀k1k2 [k1 ≺ k2 ∨ k2 ≺ k1 ∨ k1 �+ k2 ∨ k2 �+ k1 ∨ k1 = k2]

But the axioms are sufficient for our purposes if we explicate Rc as the usual
mother-daughters relationship by the following definition.

(28) ∀kk1k2 [Rc(k, k1, k2)↔ k � k1 ∧ k � k2 ∧ k1 ≺ k2]

Suppose we have some νt term, t which is built up from νt terms like every,
man, a, etc. with the help of •. Then t(k) holds if and only if k is the top
node of the obvious tree. For example, (john• (sees•mary))(k) is true iff k is
the root of the linguistic tree for John sees Mary. In general, Exhaustivity
will hold for the nodes dominated by k, as the reader can easily verify.

While this first method connects our type νt terms with sets of linguistic
trees (without category labels, but see the section on feature information be-
low), the second method, which will be adopted here, more directly connects
them with sets of strings. In fact, we can take all resources to be strings
in the second approach, although Rc gives more structure than just string
concatenation.

Let us axiomatize string concatenation as in (29), where the ν(νν) func-
tion ‘·’ is stipulated to be monoidal (with 1 a constant of type ν).

23

(29) a. ∀k1k2k3 (k1 · k2) · k3 = k1 · (k2 · k3)

b. ∀k k · 1 = k = 1 · k

We introduce an associative modality •0, written ◦, by adopting (30a) as a
definition for the underlying relation R0 and we connect the new modality
with the old one by means of (30b).

(30) a. ∀kk2k3 [R0(k, k1, k2)↔ k = k1 · k2]

b. ∀kk2k3 [Rc(k, k1, k2)→ R0(k, k1, k2)]

These stipulations ensure, for example, that if (john• (sees•mary))(k) holds,
there are k1, k2, and k3, such that k = k1 · k2 · k3, john(k1), sees(k2), and
mary(k3). Moreover, we have john ◦ sees ◦ mary(k). But, clearly, ((john •
sees) • mary)(k) need not hold and the • modality provides a more fine-
grained structuring of the relevant domain than ◦ does.

The trace e that we had occasion to use in the previous section can be
defined in terms of the monoidal unity 1.

(31) e = λk.k = 1

Essentially, this will set e to the singleton {1} and it will hold that A ◦ e =
A = e ◦A for any A.

The reader familiar with multimodal categorial grammar has recognized
(30b) as the ‘frame condition’ corresponding to an inclusion postulate con-
necting the • and ◦modalities. Let us also formulate this inclusion postulate.
Writing A v B for ∀k [A(k) → B(k)] if A and B are νt terms, (32) readily
follows from (25) and the assumption in (30b).

(32) A •B v A ◦B

The fact that (john • (sees • mary)) v john ◦ sees ◦ mary can now also be
established directly on the level of the modalities, with the help of (32) and
the second of the following two monotonicity rules. These rules obviously
hold for all modalities •m formed with (25).

(33) A v A′
↑ mon

A •m B v A′ •m B

B v B′
mon ↑

A •m B v A •m B′

Other postulates can also be obtained by assumption of the relevant frame
conditions and the multimodal game can be played. By way of example we

24

shall introduce two more modalities and give interaction postulates. The
first of these is written as •w and models the right wrap that was discussed
in (Bach 1979, Bach 1984) and has been kicking around in the categorial
literature ever since. (34a) is the condition governing its interaction with •
and (34b) is the resulting interaction principle derivable from (34a).

(34) a. ∀k1k2k3k4[∃k[Rw(k1, k2, k) ∧Rc(k, k3, k4)]↔
[∃k[Rc(k1, k3, k) ∧Rc(k, k2, k3)]]

b. A •w (B • C) = B • (A • C)

The wrapping modality allows insertion of an element after the first element
of a structure.

The last modality we want to define provides an inverse to wrapping and
will be called unwrapping. It will be a unary modality, based on a binary
underlying accessibility relation. The general way to define unary modalities
3m from binary relations Rm, familiar from standard modal logic, is that
in (35).

(35) λtλk.∃k′[Rm(k, k′) ∧ t(k′)]

Our unwrapping modality 3u will be based on the interaction constraint in
(36a), from which (36b) is derivable. It essentially allows us to ‘raise’ the
second element of a structure to a frontal position (note that 3u(A • (B •
C)) = B • (A • C) via (34b)).

(36) a. ∀k1k2k3[∃k[Ru(k1, k) ∧Rw(k, k2, k3)]↔ R•(k1, k2, k3)]

b. 3u(A •w B) = A •B

The discussion makes it clear that the essentialities of the multimodal enter-
prise can be regained in the present set-up. But the multimodal game is best
played in the phrase structure dimension, and should, I think, be factored
out of the general combinatorics of language. With postulates such as (32),
(34b), (36b), and the monotonicity rules in (33) we do get a calculus, but
the calculus is simple. Even with more inclusion postulates and interaction
postulates added, it will be much simpler than the usual multimodal calculi.

In a set-up where all elements of type ν can be taken to be strings, there
is a special interest in νt terms that are built up from lexical νt terms with
the help of ◦ alone. Let us call the latter ◦-terms. Suppose 〈S1, S2, . . . , Sn〉
is a generated sign with phrase structure component S1 and that S1 v S′1

25

is derivable given some fixed set of axioms. Then we call 〈S′1, S2, . . . , Sn〉
a derivable sign. In general, if a sign is generated, then any resource that
belongs to the extension of the phrase structure component can have the
semantics component as its associated meaning. In a set-up in which all
resources are strings, the derivable signs with a ◦-term as phrase structure
element provide a direct connection between string and meaning.

4.2 Semantics

We will take a straightforward possible worlds approach in the semantics
dimension, essentially that of (Montague 1973), but streamlined in the way
of (Muskens 1995). The function sending categories to types in PTQ is
not strictly in agreement with our previous requirement that c2(AB) =
c2(A)c2(B), and this brings with it certain complications (but see (Hendriks
1993)). However, (Muskens 1995) shows that a slight reformulation of the
theory, which does conform to such a requirement, is in fact equivalent.
The reformulation uses a many-sorted classical type logic (compare (Gallin
1975)), not Montague’s IL.

It should be emphasized again that the constraint that c2(AB) = c2(A)c2(B)
leaves considerable freedom in the way the semantic dimension is imple-
mented. For example, a category-to-type function c2 that sends np to the
type π of discourse referents and s to s(st), in the way of (Muskens 1996),
can be used to combine categorial grammar with Discourse Representation
Theory (Kamp and Reyle 1993). See (Muskens 1994) for an elaboration of
this idea in the context of the Lambek Calculus. Many other variations are
possible.

4.3 Features

It is useful to have features as an extra dimension in our signs. We consider
the first-order axiomatisation of features given in (Johnson 1991). A fea-
ture structure consists of a collection of feature nodes connected by labeled
transitions, as in (37). Feature nodes will be assigned type ϕ; attributes
labelling transitions will have type α.

(37) subj •
agr

• 3sg

•
vform • pres

(38) λf∃f ′[arc(f, subj, f ′) ∧ arc(f ′, agr, 3sg) ∧ arc(f, vform, pres)]

26

That feature nodes are connected can be expressed using the three-place
relation symbol arc of type (ϕ × α × ϕ)t, with arc(f1, a, f2) saying that f1
and f2 are connected by an arc labeled a. This is illustrated in (38), a ϕt
term satisfied by leftmost node of (37). Here constants such as agr, subj,
vform, cat,. . . are of type α and denote attributes, while constants such as
3sg, −3sg, past, pres, V, N, +, −, . . . are of type ϕ. We typically use them
to denote graph nodes that have no successors and stand for atomic feature
values. The set of constants of type ϕ is called Cval.

The following three axioms are a direct adaptation from (Johnson 1991).
The first puts a functionality requirement on the transition relation. The
second embodies the constraint that atomic features have no further at-
tributes. And the third axiom schema gives constant-constant clashes by
requiring that past 6= 3sg, 3sg 6= −3sg, past 6= pres, V 6= N, etc.

(39) a. ∀a∀f1f2f3[[arc(f1, a, f2) ∧ arc(f1, a, f3)]→ f2 = f3]

b. ∀a∀f¬ arc(c, a, f), where c ∈ Cval

c. c 6= c′, for all syntactically distinct pairs c, c′ ∈ Cval

The first and third of these axioms work together to obtain the effect of
unification, with intersection doing all the work. For example, λf.(40a)(f)∧
(40b)(f), the intersection of (40a) and (40b), will be equivalent with (38),
given (39a).

(40) a. λf∃f ′[arc(f, subj, f ′) ∧ arc(f, vform, pres)]

b. λf∃f ′[arc(f, subj, f ′) ∧ arc(f ′, agr, 3sg)]

c. λf∃f ′[arc(f, subj, f ′) ∧ arc(f ′, agr,−3sg)]

The intersection of (38) and (40c), on the other hand, will not be satisfiable.
(39a) and (39c) ensure that it will denote the empty set in all models.

Defining the feature logic in this way will allow us to set up the feature
dimension of our signs much in the same way as the signifier and signified
dimensions were set up. We can consider lambda expressions over the feature
vocabulary and combine them using application. Combinators will now also
have concretizations in the feature dimension. Examples of how this works
can be found in the toy grammar below.

27

4.4 A Toy Grammar

In order to illustrate some of the possibilities of Lambda Grammars we give
a toy grammar for a fragment of English. The grammar is based on the
abstract types s, np and n. As before, concretizations of these types in each
dimension can be found in Table 1.

Defining a grammar essentially amounts to providing a lexicon. Let us
start with giving lexical items for some verbs. (41) lists entries for base forms
of the verbs laugh, kiss and think and additionally gives two inflected forms
of kiss. The entry for laugh takes a subject in order to form a sentence and
therefore is assigned the abstract type (np s). The forms of kiss have type
(np (np s)) and think has type (s (np s)). (We again refer the reader to
Table 2 for some of the typographical conventions used in the lexical items
of our toy grammar.)

(41) a. 〈λt.(t • laugh),
laughe(st),
λFλf.∃f1[F (f1) ∧ arc(f1, cat, N) ∧ arc(f, subj, f1) ∧
arc(f, vform, base)]〉

b. 〈λt1t2.(t2 • (kiss • t1)),
kisse(e(st)),
λF1F2λf.∃f1f2[F1(f1) ∧ F2(f2) ∧ arc(f, vform, base) ∧
arc(f1, cat, N) ∧ arc(f, obj, f1) ∧ arc(f2, cat, N) ∧ arc(f, subj, f2)]〉

c. 〈λt1t2.(t2 • (think • t1)),
believe(st)(e(st)),
λF1F2λf.∃f1f2[F1(f1) ∧ F2(f2) ∧ arc(f, vform, base) ∧
arc(f1, cat, S) ∧ arc(f, comp, f1) ∧ arc(f2, cat, N) ∧ arc(f, subj, f2)]〉

d. 〈λt1t2.(t2 • (kisses • t1)),
kiss,
λF1F2λf.∃f1f2[F1(f1) ∧ F2(f2) ∧ arc(f, vform, pres) ∧
arc(f1, cat, N) ∧ arc(f, obj, f1) ∧ arc(f2, cat, N) ∧ arc(f, subj, f2) ∧
arc(f2, agr, 3sg)]〉

e. 〈λt1t2.(t2 • (kissed • t1)),
kiss,
λF1F2λf.∃f1f2[F1(f1) ∧ F2(f2) ∧ arc(f, vform, past) ∧
arc(f1, cat, N) ∧ arc(f, obj, f1) ∧ arc(f2, cat, N) ∧ arc(f, subj, f2)]〉

28

abstract type phrase structure semantics features
(d = 1) (d = 2) (d = 3)

s νt st ϕt
np νt e ϕt
n νt e(st) ϕt

Table 1: Concretizations of abstract types.

The signs in (41) can be combined with arguments such as the simple np in
(42). This will lead to untensed sentences such as (43),6 which was obtained
by pointwise application of (41a) to (42).

(42) 〈Mary,mary, λf.arc(f, cat,N) ∧ arc(f, agr, 3sg)〉

(43) 〈(Mary • laugh),
laugh(mary),
λf.∃f1[arc(f1, cat, N) ∧ arc(f1, agr, 3sg) ∧ arc(f, subj, f1) ∧
arc(f, vform, base)]〉

Untensed forms have their use; (43), for example, could perhaps be used to
build John heard Mary laugh, but it is primarily tensed forms that we are
after. These can be obtained by combining an untensed sentence with one
of the (s s) items in (44).7 Among the items in (44) are some auxiliaries
(the first three items), but also the simple past and simple present. At first
blush it may seem that in forms such as (43) a place for an auxiliary is
no longer available, but here the multimodal set-up of the framework can
be used to make subjects ‘raise’ to their intended positions. We use the
wrapping modality to enforce raising of the subject over the auxiliary. An
illustration will follow shortly.

(44) a. 〈λt.will •w t,
λpλi∃j[i < j ∧ j ≈ i ∧ p(j)],
λFλf∃f1[F (f1) ∧ arc(f1, vform, base) ∧ arc(f, cat, S)]〉

6That (43) is untensed is here represented by the fact that it gets category V, not S. The
feature descriptions in (41) have not explicitly mentioned the category V, but we adopt the
following redundancy postulate for convenience: ∀f [∃f1arc(f, vform, f1)↔ arc(f, cat, V)].

7The notation i < j in (44a) and (44b) stands for ‘the time component of i precedes
the time component of j’ while i ≈ j should be interpreted as ‘i and j have the same
world components.’ Here the objects of type s are interpreted as world-time pairs. An
axiomatization of < and ≈ can be found in (Muskens 1995).

29

phrase structure semantics features

t: νt x, y, z: e f :ϕ
T : (νt)(νt) i, j: s F :ϕt

p: st F : (ϕt)(ϕt)
P : e(st)

Table 2: Typographical conventions used here. Var: Type means that Var
(with or without subscripts or superscripts) always has type Type.

b. 〈λt.didn’t •w t,
λpλi¬∃j[j < i ∧ j ≈ i ∧ p(j)],
λFλf∃f1[F (f1) ∧ arc(f1, vform, base) ∧ arc(f, cat, S)]〉

c. 〈λt.doesn’t •w t,
λpλi¬p(i),
λFλf∃f1f2[F (f1) ∧ arc(f1, vform, base) ∧ arc(f1, subj, f2) ∧
arc(f2, agr, 3sg) ∧ arc(f, cat, S)]〉

d. 〈λt.t,
λpλi∃j[j < i ∧ j ≈ i ∧ p(j)],
λFλf∃f1[F (f1) ∧ arc(f1, vform, past) ∧ arc(f, cat, S)]〉

e. 〈λt.t,
λp.p,
λFλf∃f1[F (f1) ∧ arc(f1, vform, pres) ∧ arc(f, cat, S)]〉

Suppose (44a) is applied to (43). Limiting attention to the phrase structure
dimension for the moment, we obtain (will •w (Mary • laugh). However, by
(34a), this term is equivalent to the νt term (Mary • (will • laugh)), as de-
sired. The procedure is somewhat reminiscent of the way in which subject
moves from Spec(VP) to Spec(IP) in contemporary generative grammar.
The multimodal approach lets us have our cake and eat it: We can have all
arguments available on the verb already in the lexicon (which seems neces-
sary for generating the preferred readings of sentences such as A linux box
doesn’t adorn every desktop). But the VP is still available as a syntactic unit
and can combine with tense and adjuncts with the help of various wrapping
operations modeling local movement.

In (45) the complete result of applying (44a) to (43) is given. This sign is
admissable in the sense that the generated feature expression is satisfiable.
Clearly, not all combinations lead to an outcome that is admissable in this
sense. For example, the inflected forms in (41) must combine with the right

30

tense. The feature description of the result will not be satisfiable otherwise.
Similarly (41c) selects for a sentential complement while both complements
of (41b) must be nominal; (41d) and (44c) require the relevant subject to
be third person singular, etc.

(45) 〈(Mary • (will • laugh)),
λi∃j[i < j ∧ j ≈ i ∧ laugh(mary)(j)],
λf∃f1f2[arc(f2, cat, N) ∧ arc(f2, agr, 3sg) ∧
arc(f1, subj, f2) ∧ arc(f1, vform, base) ∧ arc(f, cat, S)]〉

Most of the attributes and feature values used here were borrowed from
Lexical-Functional Grammar (Kaplan and Bresnan 1982). That this is so is
largely for convenience and choices other than the ones taken here can be
explored. But the general set-up of the present grammar is I think deeply
related to the set-up of LFG. The LFG levels of c-structure, f-structure and
semantic structure are clearly present here, but, more importantly, there
is also a convergence between our use of combinators and the LFG tech-
nique of reading off semantics from f-structure with the help of linear logic.
The −◦ fragment of intuitionistic linear logic is identical to the product-free
undirected Lambek Calculus and is therefore closely related to the class of
single-bind combinators we are using here.

We turn to quantifying expressions. The items for the determiners a
and every (type (n ((np s) s))) are given in (47), while (46) provides an
example of a common noun entry.

(46) 〈man,mane(st), λf.arc(f, cat,N) ∧ arc(f, agr, 3sg)〉

(47) a. 〈λtλT.T (a • t),
λP ′Pλi∃x[P ′(x)(i) ∧ P (x)(i)],
λFλF .F(λf.F (f) ∧ arc(f, cat,N) ∧ arc(f, agr, 3sg))〉

b. 〈λtλT.T (every • t),
λP ′Pλi∀x[P ′(x)(i)→ P (x)(i)],
λFλF .F(λf.F (f) ∧ arc(f, cat,N) ∧ arc(f, agr, 3sg))〉

We can apply determiners to nouns, getting signs for every man, a woman,
etc. Scope variations for, say, every man kisses a woman can be obtained
by taking (41d) and using the technique of (17) to get the quantifiers into
position, after which tense can be brought in. Here we get only two readings
since present tense was treated as the identity operator, in Montague’s way.

31

But if the tense or auxiliary does make a non-trivial semantic contribution,
more readings are obtained since we can quantify-in before or after the verb
is combined with its tense. For example, we obtain the ¬∀ reading of Every
man doesn’t laugh by applying the sign for every man to (41a) and then
applying (44b) to the result, as in (48a). The ∀¬ reading is obtained by
first composing (44b) and (41a) and applying the sign for every man to the
result, as in (48b).

(48) a. (44b)
(

(47b)((46))((41a))
)

b. (47b)
(

(46)
)(
λζ.
[
(44b)

(
(41a)(ζ)

)])
5 Conclusion

We have defined Lambda Grammars, a form of multi-dimensional undirected
categorial grammar. Standard undirected grammars such as L*P have the
obvious difficulty that any permutation of a generated string will also be
generated, but Lambda Grammars repair this. Directed grammars, on the
other hand, have a difficulty with extraction from non-peripheral positions.
Such extractions are not possible without complication of these theories but
are possible in the grammars considered here (and in undirected systems in
general).

This means that Lambda Grammars have an empirical edge both over
directed systems and over the usual undirected ones. But what is more
important perhaps is that they embody a hypothesis of radical symmetry
between syntax and semantics. In the usual set-up of a grammar, semantic
values are assigned to syntactic objects. This is perhaps most clearly the
case when meanings are assigned to syntactic trees in a bottom-up compo-
sitional fashion, but it is also the case in Lambek categorial grammar where
meanings are assigned to proofs via the Curry-Howard correspondence. This
gives a logical priority of syntax over semantics that wholly disappears in
the current set-up, where syntactic and semantic terms are treated in a
completely symmetrical way.

Acknowledgments

I would like to thank Mary Dalrymple, Jan van Eijck, Philippe de Groote,
Ron Kaplan, Michael Moortgat, Dick Oehrle, and Willemijn Vermaat for
valuable feedback.

32

References

Ades, A. and Steedman, M. (1982). On the Order of Words, Linguistics and Phi-
losophy 4: 517–558.

Ajdukiewicz, K. (1935). Die syntaktische Konnexität, Studia Philosophica 1: 1–27.
English translation in Storrs McCall, ed., Polish Logic, 1920–1939, Oxford,
1967, 207–231.

Bach, E. (1979). Control in Montague Grammar, Linguistic Inquiry.

Bach, E. (1984). Some Generalizations of Categorial Grammars, in F. Landman
and F. Veltman (eds), Varieties of Formal Semantics, Foris, pp. 1–23.

Backofen, R., Rogers, J. and Vijay-Shankar, K. (1995). A First-Order Axiomatiza-
tion of the Theory of Finite Trees, Journal of Logic, Language and Information
4: 5–39.

Bar-Hillel, Y. (1953). A Quasi-arithmetical Notation for Syntactic Description,
Language 29: 47–58.

Benthem, J. v. (1986). Essays in Logical Semantics, Reidel, Dordrecht.

Benthem, J. v. (1988). The Semantics of Variety in Categorial Grammar, in
W. Buszkowski, W. Marciszewski and J. v. Benthem (eds), Categorial Gram-
mar, John Benjamins, Amsterdam, pp. 37–55.

Benthem, J. v. (1991). Language in Action, North-Holland, Amsterdam.

Cornell, T. (1994). On Determining the Consistency of Partial Descriptions of
Trees, Proceedings of ACL-94.

Curry, H. and Feys, R. (1958). Combinatory Logic, Vol. I, North-Holland, Amster-
dam.

Curry, H. B. (1961). Some Logical Aspects of Grammatical Structure, in R. O.
Jakobson (ed.), Structure of Language and its Mathematical Aspects, Vol. 12
of Symposia on Applied Mathematics, American Mathematical Society, Prov-
idence, pp. 56–68.

de Groote, P. (2001). Towards Abstract Categorial Grammars, Association for
Computational Linguistics, 39th Annual Meeting and 10th Conference of the
European Chapter, Proceedings of the Conference, ACL, Toulouse, France,
pp. 148–155.

de Groote, P. (2002). Tree-Adjoining Grammars as Abstract Categorial Grammars,
TAG+6, Proceedings of the Sixth International Workshop on Tree Adjoining
Grammars and Related Frameworks, pp. 145–150.

Gabbay, D. (1996). Labelled Deductive Systems, Clarendon Press, Oxford.

Gallin, D. (1975). Intensional and Higher-Order Modal Logic, North-Holland, Am-
sterdam.

33

Girard, J.-Y. (1987). Linear Logic, Theoretical Computer Science 50: 1–102.

Hendriks, H. (1988). Type Change in Semantics: the Scope of Quantification and
Coordination, in E. Klein and J. van Benthem (eds), Categories, Polymor-
phism, and Unification, Centre for Cognitive Science, Edinburgh.

Hendriks, H. (1993). Studied Flexibility: Categories and Types in Syntax and Se-
mantics, PhD thesis, University of Amsterdam.

Jacobson, P. (1999). Towards a Variable-free Semantics, Linguistics and Philoso-
phy.

Johnson, M. (1991). Logic and Feature Structures, Proceedings of the Twelfth
International Joint Conference on Artificial Intelligence, Sydney, Australia.

Kamp, H. and Reyle, U. (1993). From Discourse to Logic, Kluwer, Dordrecht.

Kaplan, R. and Bresnan, J. (1982). Lexical-Functional Grammar: a Formal System
for Grammatical Representation, in J. Bresnan (ed.), The Mental Representa-
tion of Grammatical Relations, The MIT Press, Cambridge, MA, pp. 173–281.

Lambek, J. (1958). The Mathematics of Sentence Structure, American Mathemat-
ical Monthly 65: 154–170.

Montague, R. (1973). The Proper Treatment of Quantification in Ordinary English,
Formal Philosophy, Yale University Press, New Haven, pp. 247–270.

Moortgat, M. (1988). Categorial Investigations: Logical and Linguistic Aspects of
the Lambek Calculus, PhD thesis, University of Amsterdam.

Moortgat, M. (1991a). Generalized Quantification and Discontinuous Type Con-
structors, in W. Sijtsma and A. v. Horck (eds), Discontinuous Constituency,
De Gruyter. To appear.

Moortgat, M. (1991b). Labelled Deductive Systems for Categorial Theorem Prov-
ing, in P. Dekker and M. Stokhof (eds), Proceedings of the Eighth Amsterdam
Colloquium, Amsterdam, pp. 403–423.

Moortgat, M. (1995). In Situ Binding: a Modal Analysis, in P. Dekker and
M. Stokhof (eds), Proceedings of the Tenth Amsterdam Colloquium, Amster-
dam, pp. 539–549.

Moortgat, M. (1997). Categorial Type Logics, in J. v. Benthem and A. t. Meulen
(eds), Handbook of Logic and Language, Elsevier, pp. 93–177.

Morrill, G. (1994). Type Logical Grammar: Categorial Logic of Signs, Kluwer,
Dordrecht.

Muskens, R. (1994). Categorial Grammar and Discourse Representation Theory,
Proceedings of COLING 94, Kyoto, pp. 508–514.

Muskens, R. (1995). Meaning and Partiality, CSLI, Stanford.

34

Muskens, R. (1996). Combining Montague Semantics and Discourse Representa-
tion, Linguistics and Philosophy 19: 143–186.

Muskens, R. (2001a). Categorial Grammar and Lexical-Functional Grammar,
in M. Butt and T. H. King (eds), Proceedings of the LFG01 Conference,
University of Hong Kong, CSLI Publications, Stanford CA, pp. 259–279.
http://cslipublications.stanford.edu/LFG/6/lfg01.html.

Muskens, R. (2001b). Lambda Grammars and the Syntax-Semantics Interface, in
R. van Rooy and M. Stokhof (eds), Proceedings of the Thirteenth Amsterdam
Colloquium, Amsterdam, pp. 150–155.

Muskens, R. (2001c). Talking about Trees and Truth-conditions, Journal of Logic,
Language and Information 10(4): 417–455.

Oehrle, R. (1988). Multi-Dimensional Compositional Functions as a Basis for Gram-
matical Analysis, in R. Oehrle, E. Bach and D. Wheeler (eds), Categorial
Grammars and Natural Language Structures, Reidel, Dordrecht, pp. 349–389.

Oehrle, R. (1994). Term-Labeled Categorial Type Systems, Linguistics and Philos-
ophy 17: 633–678.

Oehrle, R. (1995). Some 3-Dimensional Systems of Labelled Deduction, Bulletin of
the IGPL 3: 429–448.

Oehrle, R. (1999). LFG as Labeled Deduction, in M. Dalrymple (ed.), Seman-
tics and Syntax in Lexical Functional Grammar, MIT Press, Cambridge, MA,
chapter 9, pp. 319–357.

Partee, B. and Rooth, M. (1983). Generalized Conjunction and Type Ambiguity,
in R. Baüerle, C. Schwarze and A. von Stechow (eds), Meaning, Use and
Interpretation of Language, de Gruyter, Berlin.

Roorda, D. (1991). Resource Logics: Proof-theoretical Investigations, PhD thesis,
University of Amsterdam.

Rooth, M. and Partee, B. (1982). Conjunction, Type Ambiguity, and Wide Scope
“or”, in D. Flickinger, M. Macken and N. Wiegand (eds), Proceedings of the
1982 West Coast Conference on Formal Linguistics, Stanford Linguistics De-
partment, Stanford.

Saussure, F. d. (1916). Cours de Linguistique Générale.

Steedman, M. (1996). Surface Structure and Interpretation, MIT Press.

Szabolsci (1989). Bound Variables in Syntax (Are there any?), in R. Bartsch, J. van
Benthem and P. van Emde Boas (eds), Semantics and Contextual Expression.
Proceedings of the Sixth Amsterdam Colloquium, Foris, Dordrecht, pp. 295–
318.

Troelstra, A. (1992). Lectures on Linear Logic, CSLI, Stanford.

Zeevat, H., Klein, E. and Calder, J. (1986). Unification Categorial Grammar,
Manuscript.

35

