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Type-logical semantics studies linguistic meaning with the help of the theory
of types. The latter originated with Russell as an answer to the paradoxes,
but has the additional virtue that it is very close to ordinary language. In
fact, type theory is so much more similar to language than predicate logic is,
that adopting it as a vehicle of representation can overcome the mismatches
between grammatical form and predicate logical form that were observed by
Frege and Russell. The grammatical forms of ordinary language sentences
consequently may be taken to be much less misleading than logicians in the
first half of the 20th century often thought them to be. This was realized
by Richard Montague, who used the theory of types to translate fragments
of ordinary language into a logical language.

Semantics is commonly divided into lexical semantics, which studies
the meaning of words, and compositional semantics, which studies the way
in which complex phrases obtain a meaning from their constituents. The
strength of type-logical semantics lies with the latter, but type-logical theo-
ries can be combined with many competing hypotheses about lexical mean-
ing, provided these hypotheses are expressed using the language of type
theory.

1 Typing Words and Objects

Type-logical semantics is usually based on some variant of Alonzo Church’s
formulation of the simple theory of types (Church 1940) and it is impossible
to explain the application without also explaining the underlying theory. In
this entry we will start with giving a more or less informal account of the
formal underpinnings of the theory, moving to their linguistic application as
we proceed. For an exposition of the relation between the simple theory of
types and Russell’s so-called ramified theory, see the entry on Theory of
Types.

∗From: E. Craig, editor, Routledge Encyclopedia of Philosophy Online. Routledge,
2011. http://www.rep.routledge.com/article/U061
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Typing is allotting the objects in one’s ontology to separate categories.
Expressions are also categorized and receive the same types as the objects
they refer to. Truth-values, for example, should be distinguished from en-
tities of the cabbages and kings variety and these in their turn from, say,
possible worlds and other kinds of objects. Predicates should be distin-
guished from individuals; two-place predicates from one-place predicates;
and predicates of predicates (no student, for example, is often classified as a
predicate of predicates, as it combines with the predicate smokes to form a
sentence) should be distinguished from predicates of predicates of predicates.

Type theory provides the book-keeping system that allows one to keep
track of all these different categories. The idea is to first choose types for
the most basic ontological categories one wants to adopt—say t for truth-
values, e for entities, and s for worlds—and to then stipulate that if α
and β are types, (αβ) is also a type. The latter is meant to be the type
of functions that take objects of type α as their arguments and return a
value of type β. For example, (et) is the type of functions from entities to
truth values, the type of one-place predicates in a set-up of the theory that
abstracts from possible worlds. Other examples of types are (st), (e(st)),
and ((e(st))((e(st))(st))), but in order to facilitate reading two conventions
will be introduced. The first is that outer parentheses will always be omitted
and the second is that αβγ will abbreviate α(βγ). Thus (st) is written as
st, (e(st)) as est, and ((e(st))((e(st))(st))) as (est)(est)st. Association is to
the right when parentheses are restored.

This typing scheme gives a hierarchy of functions, not relations, but the
predicates and predicates of predicates just considered can be modeled by
functions. In fact, there are various ways to do this, depending on the on-
tology one wishes to adopt. The example that will be worked out here is
based on an ontology of possible worlds, but it should be kept in mind that
this choice is by no means forced upon us by type-theoretical considera-
tions. Type-theoretical systems also square well with completely different
assumptions about the ontological underpinnings of natural language.

A basic idea of possible worlds semantics is that the truth of a declarative
sentence should be evaluated relative to a possible world. The meaning of a
sentence therefore determines an object of type st, a function from worlds to
truth values; each choice of a world corresponding to a truth value, namely,
the truth value of the sentence at the world. Note that functions of this type
are identifiable with the set of those possible worlds for which they return
the value true, so that an object of type st can alternatively be taken to
be a set of possible worlds. Such sets are often called propositions and this
usage will be followed here.
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constant type

walk, talk, . . . est
man, woman, unicorn, . . . est
happy, bald, . . . est
love, hate, . . . eest
every, a, no, the (est)(est)st
john, mary, . . . (est)st
necessarily, possibly (st)st
believe, know, . . . (st)est
not (st)st
and, or ααα

Table 1: Some constants and their possible types.

Let us consider predicates such as walk, man, or unicorn. These can be
taken to combine with terms for entities to form sentences (terms denoting
propositions) and are therefore of type est. An example: walk of type est
combines with m (for Mary) of type e to produce walk m, the sentence
that Mary is walking, of type st. Functions of type est can also be viewed
as relations between entities and possible worlds. If the function denoted by
walk is applied to an entity, it returns a function that, when applied to a
world, returns a truth value. So any combination of an entity and a world
returns a truth value and the function denoted by walk can be identified
with the set of pairs 〈x, i〉 (with x an entity and i a world) for which the
function returns true. More generally, any function of a type α1α2 . . . αnt
can be identified with an n-ary relation taking objects of type αk as its k-th
argument.

Other words of English can also be typed. Transitive verbs such as love
can be modeled as functions of type eest, as they return a sentence when
fed two arguments. Determiners such as every, some, no and the can be
taken to be of the type (est)(est)st we met above, as they combine with
two terms of type est, such as man and walk or woman and talk, to
form a sentence, e.g. every man walk. Table 1 gives more words that
have been typed according to the principles used here: Proper names com-
bine with a predicate to form a sentence. They can therefore be viewed as
predicates of predicates (type (est)st). (Clearly, they can also be viewed
as individual constants. The two perspectives are equally valid and both
will be maintained here.) Sentential modifiers such as necessarily return
a sentence when applied to a sentence and therefore denote functions that
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return a proposition when applied to a proposition. Propositional attitude
verbs combine with a sentence and an entity (an agent), returning a sen-
tence. Negation goes from propositions to propositions (and from sentences
to sentences on the syntactic level). The coordinating elements and and or
can be associated with a whole family of types of the form ααα (where α
must ‘end in st’). (st)(st)st is of this form and this allows for the conjunction
and disjunction of propositions, but the more general typing will also make
direct translations of other coordinations possible: sing and dance or some
or all, for example, where in the former and has type (est)(est)est and in the
latter it has the rather complex type ((est)(est)st)((est)(est)st)(est)(est)st,
the type of functions that take two objects of type (est)(est)st and return
a third.

2 Terms

Type theory sports two term building operations: application and lambda
abstraction. They are defined as follows.

(Application) If M is a term of type αβ and N is a term of type α, then
(MN) is a term of type β.

(Lambda Abstraction) If M is a term of type β and X is a variable of
type α, then (λX.M) is a term of type αβ.

Standard notational conventions say that outer parentheses need not be
written, that MN1N2 may abbreviate (MN1)N2, and that λXλY.M , or even
just λXY.M , is short for λX.(λY.M). A similar convention holds for longer
sequences of lambda binders. We will not always use these conventions
here, as we want to emphasize the similarities between the structures of
certain lambda terms and linguistic structures. The standard abbreviatory
conventions sometimes obscure these similarities.

Let us illustrate the application and abstraction rules by forming some
terms. Given the typing in Table 1, the application rule allows the forma-
tion of (every man) of type (est)st. A second use of the rule will give
that ((every man)walk) is of type st. Another example, involving vari-
ables: Take the constant love of type eest, and let x and y be variables
of type e. Then ((lovex)y), or lovexy for short, is a term of type st by
the application rule (the distinction between constants and variables is ir-
relevant for typing). We will interpret it as expressing that y loves x, so
that its structure reflects the structure found in natural language, where
a transitive verb combines with its direct object before combining with its
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subject. The abstraction rule now allows the formation of (λx.lovexy) of
type est, so that (a woman)(λx.lovexy) is of type st, from which it follows
that (λy.(a woman)(λx.lovexy)) is of type est again. Reasoning further
along these lines, we find that (every man)(λy.(a woman)(λx.lovexy)) is
of type st. The latter may be taken to formalize that reading of the English
sentence every man loves a woman in which the indefinite noun phrase a
woman is in the scope of every man.

The semantic operation corresponding to the rule named application is
indeed function application. The denotation of a term (MN) is the result of
applying the function denoted by M to the object denoted by N . Lambda
abstraction provides a dual. If the type of X is α then (λX.M) denotes a
function with the set of all objects of type α as its domain such that, if the
function is applied to an object d, the value that is returned is that of M
with the variable X interpreted as d. For example, λx.lovexr, being loved
by Romeo, denotes the function that, when applied to Mary, returns the
proposition that Romeo loves Mary and, when applied to Juliet, returns the
proposition that Romeo loves Juliet.

Certain principles will become valid given these interpretations of the
term-building operations. Among these is renaming of bound variables (or
α-conversion), familiar from predicate logic. λy.(a woman)(λx.lovexy)
and λz.(a woman)(λu.loveuz), for example, will denote exactly the same
function (the function that, when applied to a person a, returns the propo-
sition that a loves a woman). Another rule which becomes valid, known as
the β rule, is formulated as follows.

(β) (λX.M)N = M [X := N ], provided N is substitutable for X in M .

Here M [X := N ] should be read as ‘the result of substituting N for all
free occurrences of X in M .’ The requirement that N be substitutable ba-
sically says that variables free in N should remain free in M [X := N ].
An example: Let j be a term of type e, denoting John perhaps. The
β rule allows one to conclude that (λy.(a woman)(λx.lovexy))j equals
(a woman)(λx.lovexj), i.e. the property of loving a woman can be predi-
cated of John if and only if John indeed loves a woman.

Let us spell out in detail how the β rule was applied in this last example.
First we deleted the initial λy from λy.(a woman)(λx.lovexy), obtaining
the term (a woman)(λx.lovexy), in which y now occurs free. We then
replaced this free occurrence of y by j, with (a woman)(λx.lovexj) as a
result. In general, conversion of (λX.M)N proceeds by stripping off the
initial binder λX from λX.M and by then substituting N for each free
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occurrence of X in the resulting M . More examples of the use of the β rule
will follow shortly. It plays a pivotal role in type-theoretic semantics.

3 Logical Form and Grammatical Form

The following are some terms of type st that can be formed with the help of
the type assignment in Table 1 and the term-building rules application and
abstraction.

(1) a. (every man)(λy.(a woman)(λx.lovexy))

b. (a woman)(λx.(every man)(λy.lovexy))

c. not((the king)bald)

d. (the king)(λx.(not(baldx)))

e. (mary)(believe((a unicorn)(and walk talk)))

f. (a unicorn)(λx.((mary)(believe((and walk talk)x))))

The terms in (1a) and (1b) are both meant to formalize the English sentence
every man loves a woman, but while (1a) gives it its universal-existential
reading, as discussed above, (1b) says that some woman has the property of
being loved by every man, a second possible way to interpret the sentence.
(1c) is a formalization of the king is not bald in the reading where the king
is bald is denied to be true, while (1d) ascribes the property of not being
bald to the king. The terms (1e) and (1f), lastly, both render the sentence
Mary believes some unicorn is walking and talking, but while (1e) gives the
de dicto reading of this statement, (1f) formalizes the de re reading, which
can be paraphrased as there is a unicorn Mary believes to be walking and
talking.

Note how close each of the terms in (1) is to the sentence it represents.
(1e), for example, is essentially isomorphic to the hierarchical structure that
most linguists would assign to the sentence it renders. And while other
terms are not directly akin to any surface syntactic structure, they can still
be regarded as syntactic structures in which certain noun phrases (such as
a woman or the king) have moved from their original positions. Word order
is ignored, though. The view that a level of structures very similar to the
ones described here are part of the human grammar is widely shared among
syntacticians (May 1985). This level is commonly called that of Logical
Form or LF, but from our perspective it might as well have been called the
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every = λP ′Pλi.∀x(P ′xi→ Pxi)
a = λP ′Pλi.∃x(P ′xi ∧ Pxi)

no = λP ′Pλi.∀x(P ′xi→ ¬Pxi)
the = λP ′Pλi.∃x(∀y(P ′yi↔ x = y) ∧ Pxi)

john = λP.P j

mary = λP.Pm

necessarily = λpλi.∀j(Rij → pj)
possibly = λpλi.∃j(Rij ∧ pj)
believe = λpλxλi.∀j(Bxij → pj)

know = λpλxλi.∀j(Kxij → pj)
not = λpλi.¬(pi)
and = λRR′λ~xλi.(R~xi ∧R′~xi)

or = λRR′λ~xλi.(R~xi ∨R′~xi)

Table 2: Meaning postulates.

level of Grammatical Form, as it is the proximity to natural language that
is striking.

By themselves the forms in (1) are not adequate as logical formalizations
of the English sentences they are rendering, as they do not give their correct
truth conditions or adequately capture entailments among them. What is
needed is a systematic association of such terms with more standard logical
forms and we shall proceed to define one.

We have described Church’s simple type theory as a pure lambda calcu-
lus, i.e. a lambda calculus without logical constants, and this is a perspective
on the theory that is often taken (for example in Hindley 1997), but Church
meant his theory to be a formalization of a version of Russell’s (1908) theory
of types, which is a higher order logic. He therefore added logical constants
to the theory, and we shall follow him in this by stipulating that ¬ is a
logical constant of type tt, that ∧, ∨, → and ↔ are of type ttt, and that
logical constants ∃ and ∀ in any type (αt)t are present, as are symbols = in
any type ααt. This will give that ∧ϕψ is a term of type t if ϕ and ψ are, but
such terms are more conveniently written as ϕ∧ψ and a similar convention
will hold for other connectives. We will also write ∃Xϕ instead of ∃(λX.ϕ),
∀Xϕ instead of ∀(λX.ϕ), M = N instead of =MN , and conform to logical
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usage generally. The resulting higher order logic is provided with a model
theory in Henkin (1950).

The equations in Table 2 provide the systematic correlation between
grammatical forms and truly logical forms we are after. The ‘logical’ words
of Table 1 are each equated with a term interpreting them and there are also
postulates that systematically relate proper names viewed as predicates of
predicates and proper names viewed as individual constants (e.g. john can
be predicated of a predicate just if that predicate can be predicated of j). A
typographic convention will rule the use of variables in the terms employed
here: P , with or without primes, is of type est (predicates), p of type st
(propositions), i and j are of type s (worlds or indices), and x, y and z are
of type e (entities).

Let us see how Table 2 can be used to systematically translate terms such
as those in (1) to the kind of logical forms that logicians know and love; (1a)
will be used as an example. Table 2 states that a = λP ′Pλi.∃x(P ′xi∧Pxi),
a term that expects two predicates in order to form a proposition with them,
and we can conclude that a woman equals (λP ′Pλi.∃x(P ′xi∧Pxi))woman,
which reduces to λPλi.∃x(womanxi ∧ Pxi) by the β rule. (First strip off
the initial λP ′ from λP ′Pλi.∃x(P ′xi ∧ Pxi); then replace the P ′ in the
resulting λPλi.∃x(P ′xi ∧ Pxi), which has now become free, with woman.)
We now reason further with the subterm (a woman)(λx.lovexy) of (1a).

(a woman)(λx.lovexy) = (λPλi.∃x(womanxi ∧ Pxi))(λx.lovexy)
= λi.∃x(womanxi ∧ (λx.lovexy)xi)
= λi.∃x(womanxi ∧ lovexyi)

Each of the last two reductions is obtained by applications of the β rule, the
last one leading to replacement of the subterm (λx.lovexy)x by lovexy. In
general, because terms that are related by the β rule can be identified, β
reductions can be applied to subterms of any term under consideration.

Further reasoning gives the following equations.

(1a) = (λPλi.∀x(manxi→ Pxi))(λyλi.∃x(womanxi ∧ lovexyi))
= λi.∀x(manxi→ (λyλi.∃x(womanxi ∧ lovexyi))xi)
= λi.∀x(manxi→ (λyλi.∃z(woman zi ∧ love zyi))xi)
= λi.∀x(manxi→ ∃z(woman zi ∧ love zxi))

The first of these equations is obtained by observing that every man can
be replaced with λPλi.∀x(manxi → Pxi) on the basis of the entry for
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every in Table 2. The second is a β reduction. The third is an α con-
version and the fourth the result of two more β reductions. (Note that
the α conversion step was necessary to make the first of these two last
β reductions possible. Replacing (λyλi.∃x(womanxi ∧ lovexyi))x with
(λi.∃x(womanxi ∧ lovexxi)) would have been illegal because the free oc-
currence of x in the first term leads to a bound occurrence in the second.)

We have found that, given the meaning postulates in Table 2, (1a) is
identical to (2a), a proposition which is true in the actual world @ if and
only if ∀x(manx@ → ∃z(woman z@ ∧ love zx@)) is true. Very similar
considerations lead to the conclusion that each of the other items in (1)
equals the corresponding item in (2).

(2) a. λi.∀x(manxi→ ∃y(woman yi ∧ love yxi))

b. λi.∃x(womanxi ∧ ∀z(man zi→ lovexzi))

c. λi.¬∃x(∀y(king yi↔ x = y) ∧ baldxi)

d. λi.∃x(∀y(king yi↔ x = y) ∧ ¬baldxi)

e. λi.∀j(Bmij → ∃x(unicornxj ∧walkxj ∧ talkxj))

f. λi.∃x(unicornxi ∧ ∀j(Bmij → (walkxj ∧ talkxj)))

In (2e) and (2f), read Bmij as ‘in world i world j is a doxastic alternative
of m’, so that (2f) comes to express that there is a unicorn who walks and
talks in each of Mary’s doxastic alternatives (Hintikka 1962). A technical
detail: The and of (1e) is of type (est)(est)est, and so will translate as
λPP ′λxλi.(Pxi ∧ P ′xi). The interested reader is invited to check some of
the equivalences here and to experiment with some others.

The exposition thus far has been somewhat technical, but the conclusion
is not technical at all. It is that the perceived gap between the grammatical
form and the logical form of a sentence can be bridged. Philosophers during
the first half of the 20th century adhered to the view that grammatical form
was misleading and essentially different from logical form. Only the latter
was correct. The locus classicus of this view is Russell’s ‘On Denoting’
(Russell 1905), but the idea has found many able proponents in addition to
Russell. Considerations such as the ones above, however, pioneered in the
work of Richard Montague (Montague 1970a; Montague 1970b; Montague
1973) show that it is possible to have one’s cake and eat it. The grammatical
forms in (1) and the logical forms in (2) may look very different, but given
suitable meaning postulates, are extensionally identical. This means that
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the linguistic and the logical perspectives on form turn out to be compatible
and equally valid. It may be thought ironic that the essential ingredient in
this vindication of grammatical form and rejection of Russell’s ‘misleading
form thesis’ has been a version of Russell’s own Theory of Types.

Reinhard Muskens
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