WAYNE C. MYRVOLD

THE DECISION PROBLEM FOR ENTANGLEMENT

1. A PROBLEM IN A DREAM

In March 1995, Abner Shimony attended a conference held in honor of the sixtieth
anniversary of the famous Einstein-Podolsky—Rosen paper at Technion University
in Haifa, Israel. Among the lecturers at the conference was Alain Aspect. In Paris
immediately after the conference, Abner had a dream in which Aspect, in a lecture
at the conference, posed the problem: is it algorithmically decidable whether a
given quantum-mechanical state is entangled or not? Upon returning to the United
States, Abner posed the question to me and added: ‘‘If not, can we effectively
decide whether or not a state is within ¢ of a product state?’’

The answer, as will be shown below, is that there is an algorithmic procedure
that, given a real number & and a Hilbert-space vector v, will return the answer
“‘yes”’ if there is a product state whose distance to i is less than g, the answer
“no’’ if all product states are a distance greater than ¢ from v, and return no
answer (fail to terminate) if the distance from ¥ to the nearest product state is
exactly &. There is no algorithm that answers correctly in all cases the question. “‘Is
there a product state whose distance from ¢ is less than or equal to £?’ In
particular, the question whether there is a product state whose distance to ¥ is zero
(that is, whether v is a product state) is not effectively decidable.

2. TERMINOLOGY

The problem occurs at the intersection of computability theory and the mathematics
of quantum mechanics. Since those who are familiar with the concepts and
terminology of one of these fields are often unfamiliar with the other field, I present
here basic concepts from both. Readers familiar with these concepts should skip
this section.

a) Concepts From Computability Theory

These concepts will be defined in a relatively informal manner (see Rogers (1967)
for a more rigorous treatment). I assume that the reader is familiar with the concept
of a recursive function on the natural numbers. Intuitively, a function £ N—N is
recursive (or computable; I will use the terms interchangeably) if and only if there
is a computer program, in one of the standard programming languages, that would
compute f for any value of n if time and memory restrictions were removed. A
partial function on the natural numbers is a function that is not necessarily defined
for every number; a partial function ¢ is a partial recursive function if and only if
there is a program that computes ¢(n) for every number » in the domain of ¢ and
fails to terminate when given numbers not in the domain of ¢. '
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It is possible to devise a system for assigning a unique code number to every
computer program (or, what amounts to the same thing, to every Turing Machine).
This coding gives rise to the best-known example of a problem that is not
effectively solvable: the Halting Problem. There is no algorithmic procedure that
determines, for every k, n, whether or not n is in the domain of the function
computed by program #k — that is, whether or not program #k terminates on input
n. There is not even an algorithmic procedure for solving the special case of
determining whether or not program #k halts on input k.

A set A € N is decidable, or recursive, if and only if there is a recursive function
¢4 such that:

cum) = 1,ifned
A =10, ifng 4

A set A C N is recursively enumerable if and only if A is the range of some
recursive function. Recursively enumerable sets are sometimes called semi-
recursive sets. It can be shown that a set is recursively enumerable if and only if it
is the domain of some partial recursive function.

In dealing with real numbers, we must use rational approximations as input and
output of our algorithms. Assume an effective coding of the rational numbers by
natural numbers; denote by Q(n) the rational number whose code-number is n. A
sequence {r,} of rational numbers is a computable sequence of rationals if and
only if there is a recursive function d(n) such that O(d(n)) = r, for every n; a
double sequence {r,} of rationals is a computable double sequence if and only if
there is a recursive function of two variables g(k,n) such that Q(g(k,n)) = ri,. An
effective method for calculating a real number x is a recursive procedure for
generating rational approximations to x: that is, a recursive function d(n) such that,
for all n, the number d(n) codes a rational number whose distance from x is less
than 27", A real number x is a computable real if and only if there is a computable
sequence of rationals {r,} such that |x — r,| < 27" for all n € N; a sequence of real
numbers {x;} is a computable sequence if and only if there is a computable double
sequence of rationals {ri,} such that |x; —ry,| < 27" forall k, n € N.

To extend the notion of computability to functions of a real variable, imagine a
computer program that computes a function F(x) as follows. The program operates
with rational approximations to both the arguments x and values F(x). The initial
input to the program consists of a number k, indicating that an output is required
that approximates the value of F(x) to within a precision of 2~k The program then
requests, and is provided with, a rational approximation to x within a certain degree
of precision, which it specifies. As the computation proceeds, it may request further
approximations to x. After a finite amount of time, the program must respond with
the desired rational approximation to F(x). The class of functions computed by
such programs is identical to a class of functions defined by A. Grzegorczyk (1955)
and is, therefore, known as the class of Grzegorczyk-computable functions. Note
that nothing has been said about how the rational approximations to x that are fed
into the program are obtained. Nothing in the way the program works requires the
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value of x for which the function F(x) is computed to be a computable number. As
far as the program is concemned, the source of inputs could be replaced by a
“magic box’’ that generates rational approximations to some non-computable
number. We thus obtain, by this scheme, a function F that is defined for all values
of the argument, not merely the computable ones.

A program for computing a function F must respond with a value of F(x) after
receiving only a finite approximation to the argument x, and so ‘‘knows’’ only that
x lies within a certain small interval. In doing so, it is, in effect, asserting that, for
all values of x within that interval, F(x) differs from its output by an amount less
than the degree of precision that its output was requested to have. This means that a
computable function is always continuous. Grzegorczyk showed that a function
F:R — R is Grzegorczyk-computable if, and only if:

i)  For any computable sequence {x;}, {F(x)} is a computable sequence.

if) F is effectively uniformly continuous with respect to rational segments. That is,
there is a recursive function g(n, m, k) such that foralln, m, k e Nand x, y €
[Q(), Qm)], if |x — y| < 278K then | F(x) — F(3)] < 27*.

The thesis that a function of a real variable must be continuous if it is
computable has struck some people as counterintuitive. John Earman (1986:119),
for example, has expressed the opinion that such a simple function as the step-
function:

01
H(x)=[1 i:g

ought to be classed as computable. This function, however, violates another
intuitively plausible principle about computable functions: a computable function
ought to map computable sequences of reals onto computable sequences. To see
this, suppose an effective coding of Turing machines has been given. Define a
computable double sequence of rationals {gx,} as follows: if Turing machine T}
does not halt, on input k, in n steps or fewer, gx, = 0; if T} does halt on input k in n
steps or fewer, let w be the number of steps taken by the machine before halting,
and take ggn = —27". Then {qg,} converges to a limit x; that is equal to 0 if T}
does not halt on input %, and is less than O if T} halts on input k. Moreover,
[gkn — x| < 27" for all k, n. {x} is, therefore, a recursive sequence of real
numbers, but:

_}0, if Ty halts on input k
Hx) = [ 1, if not

Thus, if there were a machine that calculated the step function, we could construct
a machine to solve the Halting Problem.

Thus far,.we have assumed we have been dealing with functions defined on the
entire real line; the definition may be extended to functions defined on subsets of
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the real line by not requiring the machine to produce an output for every value of
the input variable x. The functions so computed will be called partial computable
Junctions of a real variable. The modified step function:

a0 x<0
H(x)_{l, x>0

is a partial computable function on the domain R - {0}.
A subset A of the real line will be called recursive, or decidable, if and only if
there is a computable function C,4 such that:

1, ifxe4
C"(")_[o, if x¢ A

A subset A C R is called semi-recursive if and only if there is a partial computable
function C4 such that C4(x) is equal to 1, if x € A, and is undefined for x ¢ A.

Semi-recursive subsets of R are the analogs of recursively enumerable subsets of
N. Just as a subset A € N is recursive if and only if A and N — A are both
recursively enumerable, a subset A C R is recursive if and only if A and R — A are
both semi-recursive. An important difference lies in the following fact: the only
recursive subsets of R are R itself and the empty set @ (this follows from the
continuity of computable functions).

Here, again, is a consequence of our definitions that may seem counterintuitive
(see Penrose, 1989: 124-129 for a discussion). It might seem, for example, that
such a simple set as the closed unit interval [0,1] ought to be classed as a decidable
set. The same argument used above to show that computability of the step function
implies solvability of the Halting Problem can be employed to show that
decidability of [0,1] implies the solvability of the Halting Problem.

If a number x lies in the open interval (0,1), then a sufficiently precise
approximation to x allows one to ascertain that fact; and similarly, if x lies outside
[0,1]. If, howeyver, x is equal to O or 1, then no mere approximation to x permits one
to determine whether or not x is in [0,1]. That is, although [0,1] is not a semi-
recursive set, its interior (0,1), and its exterior, which consists of all points not in
the interval [0,1], are both semi-recursive sets. The set [0,1], therefore, is ‘‘almost’’
decidable; we can effect a decision as long as the endpoints are avoided. There are
cases in analysis and physics in which the boundaries of a given region are of little
concemn and the regions of interest are the interior and the exterior of the set. It is,
therefore, useful to define the concept: a subset A C R is decidable, disregarding
boundaries if and only if the interior and exterior of A are both semi-recursive sets.

The kernel of our treatment of computability for the reals and for functions on
the reals was our ability to approximate any element of the uncountable set of real
numbers to arbitrary precision by an element of the set of rationals, which is a
countable set and therefore susceptible to being coded by the natural numbers. The
treatment, therefore, can be extended to any metric space with a countable dense
subset (that is, any separable metric space). Some examples: complex numbers can
be approximated to arbitrary degree of precision by ‘‘rational’’ complex numbers
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of the form a + bi, with a, b rational; points in R” can be approximated by points
of the form (qi, ..., g,) with all the g,’s rational; and if {;} is a basis of an
infinite-dimensional Hilbert space, then any vector in the space can be
approximated by a finite linear combination of these basis vectors with coefficients
that are ‘‘rational’’ complex numbers.

Let X be a separable metric space, and let p, be the distance function on X. Let
{Q(m)} be an enumeration of a countable dense subset of X. With respect to the
coding Q, an element x € X is said to be computable if and only if there is a
computable function d(n) such that px(x, Q(d(n)) < 27" for all n. Similarly, a
sequence {xx} is a computable sequence if and only if there is a computable
function g(k,n) such that py(xx, Q(g(k, n)) < 27" for all k, n.

Computability of functions F:X — Y, where X and Y are separable metric spaces,
is defined analogously to computability for functions from R to R. Let Qx(n) and
Qy(n) be enumerations of dense subsets of X and ¥, respectively. The initial input
to the program is, again, a number &, indicating that an approximation to F(x)
within a radius 2-% is desired. The program responds with some number m; it is
then provided with a number 7 such that px(x, Qx(n)) < 27™. As the computation
proceeds, the program may request closer approximations to x. Finally, it outputs a
number 7 such that py(F(x), Qy(r)) < 27%.

It can be shown that a function F:X— Y is computable in this sense if and only
if:

i)  For any computable sequence {x;} in X, { F(x;)} is a computable sequence in Y.
ii)  There is a recursive function g(n, k) such that, for all x € X and n, k € N, if
px(x, Qx(n)) < 275¢X) then py(F(x), F(Qy(n))) < 27*.

We define recursive and semi-recursive subsets of X in the same way that they
were defined for subsets of R. Two important facts about such sets are the
following:

Theorem 2.1.

a) Every semi-recursive set is open in the metric topology.

b) If X is a connected space in the metric topology, then the only decidable subsets
of X are X itself and the empty set .

Proof. A C X is semi-recursive if and only if there is a partial computable function
C4(x) such that:

1, ifxeAd
Calx) = { undefined, if x¢ 4
A program returns a verdict that C4(x) = 1 with only the information that x lies
close to some specified Q(n); therefore, for any x € A there is some neighborhood
of x consisting entirely of elements of A, and A is open. For part (b), recall that A is
decidable if and only if A and X — A are both semi-recursive. By (a), if A is
decidable then A and X — A are both open sets. Therefore, X is the union of two
disjoint open sets. This is the definition of a disconnected set. <«
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b) Concepts From Analysis and Physics

A metric space is a non-empty set X on which a two-place function p: X x X - R
is defined such that, for all x, y, z € X:

M1, p(x,y)=0.
M2. p(x,y)=0if and only if x = y.
M3. p(x,y) = p(y,x).

M4. p(x,2) < p(x,y) + p(»,2).

A subset E C X is open in the metric topology if and only if, for any x € E there
exists £ > 0 such that y € E for all y such that o(x, y) < &. A neighborhood of a
point x is any open set containing x. For subsets ¥ and Z C X, Y is dense in Z if and
only if every neighborhood of every point in Z contains elements of Y. A subset
Y C X is somewhere dense if and only if it is dense in some open set; otherwise; it
is nowhere dense. A point x lies in the interior of a set A if and only if there is a
neighborhood of x lying entirely in A. A point x lies in the exterior of A if and only
if there is a neighborhood of x that is disjoint from A.

A space X is disconnected if and only if it is the union of two disjoint, non-
empty open sets. X is connected if and only if it is not disconnected. The set of real
numbers, the set of complex numbers, and Hilbert spaces are all examples of
spaces that are connected in their respective metric topologies.

A metric space X is separable if and only if there is a countable subset of X that
is dense in X. A sequence {x,} of elements of a metric space X is a Cauchy
sequence if and only if:

(Vk € N)@N e N)(Vn,m e N)(n,m > N — p(xn, Xm) < 27%)
A Cauchy sequence {x,} converges to a limit y if and only if:

(Vk e N)@N e N)(¥n e N)(n > N = p(y, x,) <275)

A metric space X is complete if and only if every Cauchy sequence in X converges
to some limit in X.
A linear vector space is a non-empty set X on which an addition function + and
an operation of scalar multiplication have been defined, such that:
L1. X is an abelian group with group operation +. This means that:
a) forallx,y,zeX,x+Q0+2)=x+y)+z
b) forallx,yeX,x+y=y+x
c) thereis an element 0 € X such that x + 0 = x for all x € X;
d) for every x € X there is an element (~x) such that x + (—x) = 0.
12.Forall A, » € Cand x € X, M(uX) = (Au)X.
IL3.Forall A, peCandx € X,(A + w)X = AX 4+ puX.
14 1x =x.

A subspace of a linear vector space X is a subset of X that is closed under the
operations of addition and scalar multiplication.
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A normed linear space is a linear space X on which a norm |ix| is defined, such
that, forall x, y€e X and A € C:

N1. x| > 0.

N2. x| = 0 if and only if x = 0.

N3. [Ax] = [A[l].

N4. [x +yI < Ixl + Iyl

Every normed linear space is a metric space with metric p(x, y) = ||x + (=)l

A Banach space is a complete normed linear space.
A Hilbert space is a Banach space whose norm satisfies the parallelogram law:

Ix +p12 + Ix =y = 20x1? + 211
If 5 is a Hilbert space, we define the inner product (x, y) on 3 by.!

G ) ="allx + 1P — Ix — yP = i(kx + iy)? — |x — iy?)]
The inner product satisfies, for all x, y € o and A € C:

H1. (x,x) = |x|°.

H2. (x,y + 2) = (x,p) + (x,2).
H3. (x,Ay) = A(x,y).

H4. (x,y) = (y,x)*.

In quantum mechanics, the state of a physical system is represented by a vector in a
Hilbert space associated with the system. If the system can be decomposed into two
subsystems, with which are associated the Hilbert spaces J#; and 5,
respectively, then the state of the composite system is represented by a vector in
the product space #\@# ,. For any u € 3y and v € 3, there is a corresponding
vector u®v in H#'1@¢,; this mapping satisfies:

Pl.Forallu € 1, v € >, and A € C, u®@(Av) = A)®v = AMu®v).
P2. a) For all u € 5#; and vy, v3 € #, u®@(¥) + 1) = u®v; + u®v,.
b) For all uy, u; € #1 and v € #3, (U1 + )@V = 1 @V + u, ® .
P3. For all uy, u; € 1 and w1, v2 € 32, (w1 @1, uz @ v2) = (u1, uz)(v1, ¥2).

A vector z in 3#1®3#; is a product vector (or product state) if and only if there
exist u € 3#1 and v € 5 such that z = u ® v. Product vectors are also said to be
factorizable. Vectors that are not factorizable are called entangled. The physical
significance of this is that, if a composite system is in a product state, then each
of its components has its own state and its own properties and propensities for
behaving in certain ways; a system in an entangled state is not decomposable
into independent subsystems. The EPR argument turns upon a system that,
though its components are spatially separated, nevertheless remains in an
entangled state; this allows for the possibility of the results of measurements
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performed on one component depending on the results of measurements on the
other component.

3. THE DECISION PROBLEM FOR ENTANGLEMENT

Let #, and - be (finite- or infinite-dimensional) Hilbert spaces, and let 512 be
the product space #1®#>. Let {x;} and {v;} be orthonormal bases for 51 and
', respectively. {u; ® v;} is then a basis for 5#15. Let € be the.set of entangled
vectors in the product space 12, and let & be the set of factorizable vectors.
Lemma 3.1. Let y be a vector in the product space 515:

=D cu®y
iLj

¥ is factorizable if and only if there exist sequences {o;} and {B;} such that
Cij = a,-ﬁj for all i, j ) '
The proof of Lemma 3.1 is trivial and will be omitted here. o
Lemma 3.2.  is factorizable if and only if ¢jjcpn = cinCmyj for all i, j, m, n.
Proof.= Xf  is factorizable, then c¢;icpm = (i} (0tmPBn) = («f;ﬂ,,)(amﬂj) = CinCm-
<. Suppose that ¢;jCmn = CinCmj for all i, j, m, n. If all the ¢;; ’s are zero, then v is
trivially factorizable, since ¥ = 0 = 0 ® 0. Suppose, then, that v is non-zero, and
choose M,N such that cysx # 0. Define a; = ¢;x/cmn, Bj = cu;. Then, for any i, j,
B: = ciNCai/CuN = CiiCun/cun = Cij- 4
%%orerixg.g]{lhziet o}] entaflgled statés is an open set that is dense in J#3.
Proof. To show that € is an open set, it suffices tf’ show that, for any entangle.d
state v, there is a neighborhood of ¥ consisting entirely of entangled states. Ify is
entangled, then there exist numbers /, J, N, M such that c;yeym -7 ciqenys # 0. Itis
clear that, if ¢}y —cul, ¢y — cvml, le7ar —crm| and |ciyy — cN{I are all
sufficiently small, then ¢/ ,¢ s — € 74s€ s Will also be non-zero. Thus, in order to
transform ¥ into a product state, at least one of ¢17, cnm, Crym, and cyy must be
transformed by a certain minimum amount &. If ¥ — ¢l <e¢&, then each of
Ity — curls e — enml, lcha — cinml and |¢’y; — cyy| must also be less than e.
Thetefore, if ||’ — ¥l < &, ¥’ is entangled. o
To show that € is dense in 21 ®3#3, observe that, if ¥ is non-zero, an arbitrarily
small change in only one of the ¢;'s suffices to produce an entz'mgled state: If
enm # 0, and cryenn — crmens = 0, then cpgenm — cmeny # 0 i ¢y # cu I
¥ = 0, then, since there are arbitrarily small entangled states, there are entangled
states in every neighborhood of .« .
Corollary 3.4. The set of factorizable states is a closed set that is nowhere dense.
Proof. This follows from the fact that €, the complement of &, is an open dense
;S;lt.e:rem 3.5. The set € of entangled states is semi-recursiv«_a b\'xt .not recursive.
Proof. By Theorem 3.2, ¥ is entangled if and only there exist i, j, m, n such that
CiiCmn — CinCmi 0. A “‘dovetailing’’ procedure yields a sequence {xx} such that
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each of ¢;j¢mn — Cincmy Occurs in this sequence infinitely often. Then ¥ is entangled
if and only if there exists k such that x; > 0. If there is some element of the
sequence that is non-zero, it can be found effectively by computing rational
approximations to x; within a precision 2%} for each k in turn.

To show that € is not recursive it suffices to observe that its complement, %, is
non-empty, and that Hilbert spaces are connected. By Theorem 2.1b, & is not
recursive. d

We note in passing that, since € is semi-recursive and its complement, &, has no
interior, ¥ is, trivially, decidable ignoring boundaries. This is perhaps not very
interesting, as ignoring the boundary of % means ignoring the whole of %.

This brings us to the second part of the question. Given an entangled state v, can
one determine whether or not v is within a distance & of some product state? For
€ > 0, define the set of vectors whose distance to some product state is less than &:

Fe={¥l3x € FYUv - xl < &)}
Theorem 3.6 (The Main Result). The function C: 12 X Rt—{0,1}, defined by:

1, if ¢ € &,
C(Y,e) = 0, if ¥ € Ext %,
undefined, otherwise

is a computable partial function.

It follows immediately from this that, whenever ¢ is a computable number, %, is
decidable disregarding boundaries.

To prove the main result, we first define the function () = the greatest lower

bound of {l|¢ — x| |x € #}.
Then:

1, if (¥) < ¢
C,e) = 0, if 8(¥) > ¢ €))
undefined if 6(¢) =¢

If § is a computable function, then C is a computable partial function. Theorem 3.6
is established by showing that § is, indeed, computable. We will consider first the
case in which #,®#, is a finite-dimensional product space, then show that the
infinite-dimensional case reduces to the finite-dimensional case.

The first step is to show that, for any vector ¥ in a finite-dimensional product
space, there is a closest product state — a product state that minimizes the distance
to Y among product states.

Theorem 3.7. Let 1@, be a finite-dimensional product space. For any v €
H1®3# 2, there exists x € & such that ¥ — xll = 6(¥).

Proof. Since 8(y) is the greatest lower bound of {llv— xll Ix € #}, there is a
sequence {x,} of product states such that:

(W) =Y — xul < 8(¥)+27" (2)
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The sequence {x,} is a bounded sequence in the ﬁnite-dimensiona'l Hilbert space
H1QH 3, it has, therefore, a convergent subsequence (see Friedman, 197.0:
Theorem 4.3.3). Let {x,} be one such convergent subsequence, and let x be its
limit. Since | — x,l = 8(¥) and X, —> x as n— oo, [y — xll = 8(}#).4‘
(Parenthetical note: Though the above proof depends on the fhmenswn of
o ,®3¢, being finite, the theorem holds also for infinite-dimensional product
spaces. We will make no use of this fact, so it will not be proven ht'arc.)

Let #; and ¥, be N- and M-dimensional Hilbert spaces, respectively, and let
{wli=1,...,N} and {vj|j =1,..., M} be orthonormal bases for M1 and .
Then any vector ¥ € #1®3¢, can be written in the form:

N M
Y= Z Z Cijui @) &)

i=1 j=1
Let x be a product state in 1@ ;:

N M N M
x=0O au)@Q_ ) =) cibui® @
i= =1 =1 j=1
1 ! N M ’
W—xl?=Y_) lej— bl ®

i=1 j=1

By Theorem 3.7, there exist {¢;} and {§;} that minimize {[¢ — x/I?. Moreover, the
quantity || — x> depends smoothly on the a;’s and g;’s. .We can, therefore, find
the minimum by differentiating ||y — ;(||2 by the real and imaginary parfs of each
o; and B; and setting these partial derivatives equal to zero. Doing so yields:

M
Zﬂ;(cij_aiﬂj)=0, i=1,...,N
= ©

N
Za?(cxy—aiﬂj) =0, j=1,....M
=1

or:

M M
Y Be—a) IBP=0, i=1,....N

Jj=1 j=1 (7)
N N

Yot - Y =0, j=1,...M

i=1 i=1

If x satisfies Equations (7), then, for each i

M M
S aprey =il Y18 ®
j=1

=
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and so:

N M

M
2D B =3 lai ) 1B = I ©

i=1 j=1 i=1 j=1
The quantity on the left-hand side of Equation (9) is equal to (x, ¥); therefore, for
any product state x that minimizes the distance to y» among product states:

v =0, X = Ix "2 (10)

Hence:

1 — xI? = 112 + 1 = (%, %) — G ) = I — IxI? (11)

Thus, if we know only the value of || x|l for some x satisfying Equations (7), we
know also the value of ||y — x]l.

Multiplying the first of Equations (7) by T|ax)? yields:

M N
D B O e —ailxP =0 (12)
j=1 k=1
But, from the second of Equations (7):
N N
B el = onchy (13)
k=1 k=1
Substituting this value in Equation (12) yields:
M N
D0 archiey = IxlPa (14)
Jj=1 k=1

Or, reversing the order of summation:

N M
DO ere)en = IxlPa (15)

k=1 j=1
Define the N x N matrix A by*:

M
A=) ey (16)
j=1
Then (15) becomes:
N
Y Awee = |xiPes a7
k=1

Thus, if x is a product state for which [|{ — || is a local minimum in the set of
product states, the vector (o, ..., ay) is an eigenvector of the Hermitian matrix A,
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with eigenvalue || xlI?. Conversely, if (e, ...,y) is an eigenvector of A and
(B1, - .., Bu) is defined by:
N x
B =————Z’,;‘ — (18)
2=t loul

then the sequences {c;} and {B;} satisfy Equations (7). Thus, the problem of finding
the value of || x]| where x minimizes the distance to Y among product states, reduces
to the problem of finding the maximum of the set of eigenvalues of A.

Setting the determinant of A — AI equal to zero yields a polynomial (the
characteristic polynomial of A) in A of degree N whose roots {41, ..., A ) are the
eigenvalues of A. The coefficients of the characteristic polynomial of A are
computable functions of the c;’s. The roots of this polynomial can be computed
using well-known approximation techniques. Therefore, the eigenvalues of A can
be effectively computed as a function of y. Moreover, the maximum of these
eigenvalues, Amax, can be computed effectively as a function of {A1,..., An}:to
compute Amax Within a tolerance of 27", compute rational approximations to each
of {A1,...,Ax} within a tolerance of 27", and take the largest of these rational
approximations (comparison of rationals, unlike comparison of reals, can be
performed effectively). The square-root function is a computable function on
[0, o0). Therefore:

5(¥) = VUV — Amax)

is a computable function of .
This completes the proof of the Main Result for the finite case.
A program computing a function of a vector ¥ in an infinite-dimensional Hilbert

space:

00

E c,-ju,-®vj
Jj=1

V=

M

1
-

works with finite-dimensional approximations to ¢ of the form:

N M
V=2_D cm®

i=1 j=1
where the ¢’s are rational complex numbers. The reduction of the infinite-
dimensional case to the finite-dimensional proceeds as follows. First, it is shown
that, if v/ lies in the finite dimensional subspace spanned by {u;i®vli=
1,....,N;j=1,..., M}, then the closest product state to Y/ lies in the same
subspace. Thus the procedure outlined above, for the finite-dimensional case,
suffices for the computation of 8(y’). Next it is shown that &(y’) uniformly
approximates 8(y) when y/ approximates y, and hence that 5(3) can be computed
with arbitrary precision by computing 8(3) for ¥/ sufficiently close to .
Theorem 3.8. Let T be the finite-dimensional subspace spanned by
{fui®vli=1,...,N;j= 1,..., M}. For any ¢/ €T, if x is a product state such
that ||/ — x|l = (), then x e T".
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Proof. Let P and P1, be the projection operators onto I" and 't respectively. Then
for any product state x and any ¥/ € I'; ' ’

¥ = xI? = 1¥ — Pxl> + | P*x? (19)

Since x is a product state so is Py. Moreover, if ||[Pty|| is non-zero
(X4 —‘Px" < II¥’ — xll. Therefore, for any product state not lying entirely in I
there is another product state in I' that is closer to V.«

Theorem 3.9 (Uniform Continuity of §). For any ¥, ¥ € #1QH:

[8() — (W) < Iy — ¥/| (20)
Proof. For all x € &
W)=Yy —xl <l ~¥I+I¥ —xl (21)
Therefore:
W)~ —vI=<Iy¥—xl (22)

for all ye #£. 5(1/{’) =l — ¢/|l is, therefore, a lower bound of the set
{l¥ — xlllx € #}. Since 8(y) is the greatest lower bound of this set:

8(¥) = 8(¥) — v — ¥/ (23)
The same argument with the roles of i and V' reversed yields:

8(¥) = 8(¥) — Iy — vl (24)
Combining the two gives:

S) — 1Y — ¥ < 8(¥) < 8) + Iy — VI 25

or:

18(4) — 8 < Iy — I (26)
Q.E.D.«

To compute 8(y) within an accurac - i
comy y of 27", request a finite rational
approximation ¥ such that |[¢ —¢/|| <2+, Then compute a rational
approximation @ to 8(y’), such that |Q ~ 8(y/)| < 2=@+D_ Then:

18(¥) = QI < 18(¥) = 8 +1Q = 8 < Iy — ¥l +1Q — 8(¥)| < 27" (27)

ms co‘rnpletes the proof that § is a computable function, whether ;, is finite- or
or infinite-dimensional, hence that C(y, ¢) is a computable partial function

Note that the computation of 5(y) does not require the computation of a .closest
product state‘ X, only its norm || x||. We may, therefore, ask in closing whether the
task (.)f finding a product state x that minimizes fl — x|l can be performed
effectively. That is, is there a computable function A:H;; — % such that
I — AN = 8(y) for all 4 € H;,? The answer is no.

Consider the family of states;
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Ye=/0 - DU ®vi+/trb®v, 0=<t=<1

If 0 < t <}, the nearest product state to ¥, is /(1 — Hu; ® v, and if § < £ < 1, the
nearest product state is \/fus ® v,. For t = %, any product state of the form:

715(cos 6w+ ¢ sin 6 ) @ (cos 9 vy + e sin 6 va)
suffices to minimize the distance to 3. Clearly, A cannot depend continuously on
¥, and so cannot be a computable function.

To sum up, the question: ‘‘Is there a product state within ¢ of ¢?** is almost
decidable — there is an algorithmic procedure that answers correctly in all but the
borderline cases, and for these cases fails to terminate. As we have seen (Theorem
2.1b), this is as good as can be expected for any but the most trivial of decision-
problems in a connected space. The function 8(3), which gives the minimum
distance from i to a product state, is a computable function of its argument, even
though there is no effective procedure that always produces a product state that
achieves this minimum.

6 Brook Street
Sherborn, MA 01770

NOTE

! Some authors define the inner product as the complex conjugate of the function here
defined. The convention adopted here is typical of mathematical physicists (e.g. Reed and
Simon, 1972); mathematicians usually adopt the opposite convention (e.g. Friedman, 1970).

Readers familiar with the standard proofs of the Schmidt Biorthogonal Decomposition
Theorem (von Neumann 1955, pp. 431-437) will recognize this matrix. There is a close
relationship between the Schmidt Theorem and the problem of finding the closest product
state; the terms of the biorthogonal decomposition of ¥ are the relative minima of [ — x|.
The closest product state to , is therefore, the largest term in the biorthogonal
decomposition of ¢
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