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ABSTRACT

Cognitive functions, motoric expression, and changes in phys-
iology are often studied separately, with little attention to
the relationships, or correlations, among these entities. In
this study, we implement an integrated approach by combin-
ing motion capture (action) and EMG (physiological) pa-
rameters as synchronized data streams resulting from the
action and associated physiological data. Our experiments
were designed to measure the preparatory movement capa-
bilities of the upper extremities. In particular, measurement
of changes in preparatory activity during the aging process
are of interest to us, as the attempt is to develop means to
compensate for loss of adaptive capabilities that aging en-
tails. To achieve this goal, it is necessary to quantify prepa-
ration phases (timing and intensity). We measured motion
capture and EMG parameters when subjects raised their
arms without constraint (condition one) and raised their
arms while holding a ball (second condition). Furthermore,
on comparing aging and young participants, we confirmed
that with aging the temporal relationships between actual
movement and the preceding EMG signal change.
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1. INTRODUCTION

Until recently, the dominant view was that aging was as-
sociated with irreversible cognitive and motor decline. Poor
performance on cognitive and motor tasks and subsequent
difficulty in performing goal-directed behavior are prevalent
among the elderly. As the upper extremity movements are
pervasive in our everyday lives, the impact of aging on them
is of special relevance. This pertains to successful actions
involving arm movements, as well as to the possibility of ac-
cidents (abrupt change of position can result in falls). Thus,
it becomes very important to capture and analyze the quan-
titative description of the motoric behavior of the upper ex-
tremity movements across various age groups.

However, evaluating the aging effect in upper extremity move-
ments has some strong challenges in form of variety, com-
plexity, and the range of motions [13]. Some researchers [14,
2, 7, 9] have studied upper extremity movements, but they
have evaluated the movements on a “coarse-grained” basis.
For capturing how aging affects movement, it is necessary to
get down into “fine-grained’ analysis and become sensitive
to specific and minor changes in motoric expression. The
reason being, through brain plasticity, we want to compen-
sate for the loss, and this has to be specific.

In this paper, we aim to quantitatively analyze the char-
acteristics of simple, upper extremity movement of raising
the arms with two different conditions across young and old
participants. To carry detailed and systematic analysis, we
incorporated the two sophisticated techniques such as:

e 3D motion capture that aid in mapping the complex
human motion in the three dimensional (3D) space.
Here, a participant wears special markers that can be
tracked by cameras in the 3D space.

o Electro-myograms that track the contractions of differ-
ent muscles causing the body joints to move. A surface



EMG sensor monitors muscle contraction during body
movements.

The integrated analyses of the body motions based on 3D
motion capture data and EMG helps in understanding the
correlation between different muscle actions and the corre-
sponding body joint movements across various age groups.
Also, such kind of database and the associated analyses stim-
ulate several applications including: (a) designing rehabili-
tation programs for patients with restricted movements (due
to accidents or illness, stroke, arthritis) and other neurologi-
cal populations including dementia, Parkinson’s disease, etc.
(b) developing adaptive neuro-prosthetic devices that im-
prove co-ordination and provide smoother and easier move-
ments.

However, integrated evaluation and analyses of 3D motion
capture data and the associated EMG’s pose several chal-
lenges as well. First is the variation in speed and trajectory
of the motions. Even though attempts can be made to con-
trol the duration of a task, motion speed can vary from
participant to participant, as well as for the same partici-
pant. These variations can cause wide fluctuations in the
3D motion capture data. Electro-myograms can also show
wide variations due to the differences in human physiological
characteristics.

Figure 1: The final posture of normal raise arm ac-
tivity.

2. RELATED WORK

When young individuals raise their arms, their leg mus-
cles contract to compensate for the change in center of grav-
ity to prevent loss of balance. In aging, this compensation
expected when a person raises his/her arms diminishes and
the individual loses his/her balance by raising the arms. Re-
search shows that the electromyography (EMG) signal oc-
curs before the action [1, 5]. Studies have also documented
the effects of age on anticipatory EMG activity during a va-
riety of motor tasks and postural adjustments [8] and general
decline of adaptive capabilities [10]. One study examined an-
ticipatory tripping behavior in young and old subjects and
found that slightly increased muscle activity was observed
in tibialis anterior and soleus muscles in older subjects [11].

In addition to simple movements, older subjects make use
of additional (compensatory) limb movements to maintain
balance during actions such as walking, catching a ball or
raising arms and reflect a decline in maintenance of pos-
ture and stability. In [12], authors revealed the performance
differences between the three different age categories by ap-
plying univariate analysis of variance and principal compo-
nent analysis on the extracted parameters from a single joint
segment and muscle using synchronized motion capture and
EMG data. While this experiment provides data for a single
joint segment and muscle, it is likely that more information
will be generated by integrating data from multiple joints
and muscles. Over the years, many behavioral parameters
have been used to study decline in sensory-motor and cog-
nitive performance. The most commonly used measures in-
clude reaction time [3, 6, 15], movement time and velocity
of movement [4]. Many of these studies focus almost exclu-
sively on the kinematics and biophysical aspects of motion.
However, preparation of movement is an important compo-
nent that has been addressed in only a few aging studies.
Our study addresses this proactive component in aging in
the form of synchronized motion capture and EMG data
streams during the action of raising the arms.

3. MATERIAL AND METHODS
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Figure 2: (a), (c), (e): Raise arm activity with cor-
responding motion capture data for right wrist joint
and synchronous EMG activity in muscles biceps
and triceps, (b): Velocity curve for the wrist joint,
(d), (f): Post-processed EMG signals from biceps
and triceps respectively.

3.1 Subject selection

30 healthy participants were recruited for this study. The
age of the subjects ranged from 20-80 years. Data pre-
sented here was analyzed from 20 subjects due to technical
difficulties during the recording sessions (missing markers,
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Figure 3: The error-bars for extracted features of biceps and triceps across young and old for both experi-

ments.

synchronization difficulties, poor EMG signal/noise ratio).
The percentage of females in the study was 40%. None of
the participants had overt neurologic, psychiatric or cogni-
tive dysfunction (e.g., stroke, dementia, Parkinson’s disease,
etc). All measurements were recorded in the Motion Cap-
ture Lab at the University of Texas at Dallas. The study
was approved by the Institutional Review Board at the Uni-
versity of Texas at Dallas. Subjects signed a consent form
before the start of each session.

3.2 Motion capture acquisition and analysis

Motions were captured in the Motion Capture Lab equipped
with 16 cameras (Vicon Systems). A participant wore a
suit of non-reflective material and about 44 markers were
attached over the body covering each joint. Placement of
markers corresponded to the area of interest. The data from
the motion capture cameras were acquired in the form of
frames at a speed of 120 frames per second. A data station
(i.e., the PC with the motion capture software) combines
the data from all cameras into one matrix (per participant).
Each row in the matrix corresponds to 1 frame of data. For
a single human motion of, let us say 10 seconds, the ma-
trix consist of 1200 rows. Since human body has 19 major
segments (head, shoulder, hand, etc) and each segment has
translation (3 columns one for each dimension X, Y, and Z)
and rotation (3 columns for X, Y, and Z), we have a total
of 114 columns in the motion capture data matrix.

3.3 EMG acquisition and post-processing

EMG Ag-Cl electrodes were used to record muscle activ-
ity of himbs. From these signals, we extracted the time of
onset, peak latency, amplitude and other parameters from
12 muscles (6 on either side). On the upper extremities,
four electrodes were placed on biceps, triceps, and forearm
flexor and extensor muscles. On the lower extremity, two
electrodes were placed on the tibialis anterior and the gas-
trocnemius muscles respectively. The EMG signal was am-
plified and band-pass filtered (20-450 Hz) by the wireless

system (Delsys, Boston) with a sampling rate set to 1000
Hz. Further, the signal was full-wave rectified and filtered
using 4" order, 10Hz low-pass cutoff Butterworth filter.

3.4 Integrating motion capture and EMG data
streams

Motion capture and EMG data streams were synchro-
nized. MATLAB (Mathworks) served as the main controller
that sent a trigger to EMG and motion capture systems to
start simultaneous acquisitions via a ’trigger module’ and
communicated with MATLAB via the Data Acquisition Tool-
box (Mathworks). The processed EMG signal was down-
sampled to 120 Hz to make it uniform with the motion cap-
ture system which captures data at 120 samples per second.
Figure 2 (a), (¢), and (e) shows the synchronous 3D mo-
tion capture data for the right wrist joint and corresponding
EMG activity in muscles biceps and triceps for normal, raise
arm activity. Figure 2 (d), (f) are the post-processed biceps
and triceps muscular activity respectively (as discussed in
Section 3.3). Figure 2 (b) is the velocity curve for the right
wrist joint.

3.5 Experimental design

Subjects were divided into 2 groups: Old (51-80), and
Young (20-50). Subjects performed upper extremity move-
ment, in which they have to raise the both arms up to shoul-
ders (approximately 90°) as shown in Figure 1 in response to
a visual cue displayed on the screen. For every trial, we have
a imitial baseline activity by displaying cue “Ready?” on the
screen where subject becomes idle and pays attention to the
screen, and then after a span of 2-3 seconds follows the vi-
sual cue “Raise!” where he/she starts activity of raising the
arms. We designed preparatory time frame, to have control
on subject’s activity and to make sure he/she doesn’t per-
form unnecessary movements that may give false positives.
For each subject we captured the raise arm activity with
two conditions. (1) Normal, free raise arm movement; (2)
Raise arms by holding an object (in our case, football (soc-
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Figure 4: The error-bars for extracted features of flexor and extensor across young and old for both experi-

ments.

cer) [Weight 410-450 gms])) with both hands. We chosen
soccer ball because of its familiarity and dimensions (cir-
cumference = 27-28 inches), which makes it comfortable to
raise. Moreover, its weight is ideal not only to handle by
any subject regardless of age, but also sufficient to put an
extra force on muscular activity as compared to just raise
We collected 10 trials each for both conditions from
every subject. So, as we are analyzing data from 20 subjects
(9 young + 11 old), we have total of 400 trials or motions
performed during our experiments.

arms.

3.6 Feature Selection and Extraction

For raise arm activity, we mainly focus on active, upper
extremity muscles such as biceps, triceps, flexor, extensor
along with the 3D-movement of the wrist joint. To quan-
tify the proactive components in the aging it is necessary to
identify the temporal inter-relationships between the syn-
chronous muscular and physical joint activities during the
preparatory phase of raising activity. Thus, we extracted
following quantitative features from each EMG muscle ac-
tivity with respect to the wrist joint for each trial of raising
the arms as follows:

1. Time lag between relative velocity of wrist movement
and EMG muscular activity.

2. Onset difference between EMG muscle and wrist joint
movement.

3. Energy of the EMG muscular activity.

4. Time difference between an onset of EMG muscle and
the time at peak velocity of wrist joint

5. Time difference between an onset of EMG muscle and
the time at first peak of EMG muscular activity.

6. Median Frequency of the muscular activity.

As the raising of arm activity is a functional movement, we
cannot control the local speed of the arms across different

subjects. The above first five parameters can be easily inter-
preted from the illustrated Figure 2 (b) and (d) for biceps
and velocity of wrist joint (i.e. hand). The last parameter is
the frequency-domain related parameter, which we can mea-
sure by applying Fast Fourier Transform (FFT) to the time
series of EMG activity. Along with temporal parameters, it
is important to study the effect of aging on both raise arm
conditions using frequency characteristic of the muscular ac-
tivity.

Figure 3 and 4 shows the error bars for the extracted features
from the EMG muscles biceps-triceps and flexor-extensor re-
spectively. The error bar for the each feature of the EMG
muscle indicate the mean and standard deviation for the
young and old participants across both raise arm conditions,
normal raise arm and raise arm with ball. As we have 9
young participants, in each group of “young raise arm” and
“young ratse arm with ball” we have 90 measurements for
the corresponding feature for each EMG muscle. Similarly,
for 11 old participants we have 110 measurements in each
group of “old raise arm”and “old raise arm with ball”.

4. DATA ANALYSIS

The acquisition of the raise-arm experiment with two con-
ditions on two subject categories (i.e. young and old) lead
us to four different kind of groups such as (1) Young doing
normal raise arm, (2) Old doing normal raise arm, (3) Young
doing raise arm with ball, (4) Old doing raise arm with ball.
Moreover, as seen from Section 3.6, for every trial of any
participant in any group, we have set of extracted features
that gives temporal relationships between different muscles
and movement of the joints.

To identify the differences between these different groups for
analyzing the aging effect in upper extremity movements, we
need to perform analysis of variance on the extracted fea-
tures across these four groups. And, as we have multiple
features for each trial, we form a multidimensional measure-
ment space in which each trial is represented as a feature



vector. Hence, we apply multivariate analysis of variance,
where extracted features become the dependent variables
and the groups become independent variables. The mul-
tivariate analysis of variance derives two terms in form of
matrices as follows:

e sums of squares and cross-products of deviation for
each trial’s feature vector from their respective group
mean, in short, within-groups sum of squares and cross-
products matrix (E).

e sums of squares and cross-products of deviation for
group mean from the grand mean, in short, between-
groups sum of squares and cross-products matrix (H).

These two matrices can be used to calculate Wilks’ lambda
(A) as a test statistic in multivariate analysis of variance
to investigate the differences between the means of groups
on a combination of extracted features. A is calculated as
follows,

|E]

Here, the determinant of the within-clusters sums of squares
and cross products matrix F is divided by the determi-
nant of the total sum of squares and cross products matrix
T = H + E. To investigate the data for multivariate dif-
ferences, the null hypothesis that indicates no differences in
the vector of mean features across groups is tested. If H is
large relative to F, then |H + E| will be large relative to
|E| and there is maximum separation between the groups
and minimum separation within the groups with respect to
the entire set of quantitative features. Thus, we could re-
ject the null hypothesis if A is small (close to zero) because
there is a significant difference between the set of means of
features among the groups. Also, in multivariate analysis of
variance, A statistic can be transformed approximately to
more familiar F-distribution which can represent the signif-
icance of difference between clusters by F-value and degree
of freedoms (df). The higher values of F' indicates greater
differences in the groups and rejection of null hypothesis.
Further, we derived a new set of variables called canonical
variables that are linear combinations of the original depen-
dent variables such that we can achieve maximum separa-
tion between the groups and minimum separation within
the groups. On eigen-decomposing the matrix HE ™" we get
coeflicients for the linear combinations of the original depen-
dent variables in form of eigen vectors. On projecting the
original features of trials on the eigenvectors of HE~! we ob-
tain canonical variables that represent the maximum sepa-
ration between groups. Thus, applying multivariate analysis
of variance on the extracted, quantitative features we could
evaluate the aging effect on the upper extremity movements
through varying conditional experiments.

Now, our next stage is to compare and analyze the re-
lationship between the extracted features for two different
condition of raise arm (normal and with ball). We combine
these two sets of features into a common structure called
“compromise space” which is then analyzed using principal
component analysis to reveal the common structure between
the young and old participants. Hence, for each raise arm
condition, we take the average measures of all extracted fea-
tures for every participant across corresponding trials. That
means, in both raise arm conditions, every participant is
represented in form of average vector of extracted features.

Wilks' lambda =

Thus, we form two condition matrices (Thormar and Tpanr)
for raise arm experiment, where in each matrix, rows rep-
resent the participants and column represents the average
value of extracted features (i.e. Tfjrfml and Tfjrfml, where
p = number of participants (young + old) and f = number
of features). Both matrices are post-processed by centering
and normalizing the column vectors as they may have het-
erogenous range of values, and analysis is carried further as
follows:

1. Each matrix Thormae: and Ty defines inherently a
structure for the performance of the young and old
participants with respect to the corresponding raise
arm condition, which can be derived by computing the
scalar products between participants. The correspond-
ing scalar product matrices are denoted as Syormar and
Stall Tespectively.

2. The weighted sum of both matrices gives compromise
matrix as follows,

MC =0.5x Snormal + 0.5 x Sball (2)

As we have only two conditions to analyze, we dis-
tribute the weight uniformly among the scalar product
matrices.

3. For analyzing the compromise matrix M¢, we use prin-
cipal component analysis that explores the overall per-
formance of the participant with respect both raise
arm conditions. Since, compromise matrix is also a
scalar product matrix, its PCA is given as,

Me=QAQ" (3)

The factor scores (i.e. the projection of the rows on
the principal components of the analysis of M¢) are
obtained as,

F=QA? (4)

In this matrix F', each row corresponds to the partici-
pant and each column corresponds to the component.
The compromise space is formed by first few principal
components of the factor score matrix that carry total
variance of 85 — 90%. And the factor scores for each
participant that are mapped in compromise space rep-
resent the overall performance of the participant with
respect to both raise arm conditions.

5. RESULTS AND DISCUSSIONS

In this paper, we are analyzing the aging effect on the
upper extremity movements by comparing raise arm exper-
iment performed by young (20-50) and old (51-80) partic-
ipants in two different conditions (normal and with ball).
In this section, we will present the results of two types of
analysis,

e multivariate analysis of variance - that expresses the
difference between two age groups across both condi-
tions of raise arm activity.

e factor analysis - that analyzes the factors that are re-
sponsible for distinguishing the two age groups.



Effect A F )

Age X Condition 0.11 ] 9.64 | < 0.01
Age (Young or old) 0.44 | 2.76 | < 0.01
Condition(normal or Ball) | 0.39 | 3.29 | < 0.01

Table 1: Result for multivariate analysis of variance
for differences between Age x Raise arm condition,
Age, and Raise arm Condition.

5.1 Multivariate analysis of variance

In Table 1, the first row indicates that there is a signifi-
cant interaction between the aging effect and the two raise
arm conditions with multivariate F-value = 9.64. This result
is well supported, when 2-way MANOVA was conducted on
the trials of all participants with both conditions. There was
a significant multivariate main effect for age (A = 0.44, F =
2.76) when both raise arm conditions were merged under age
effect. Also, there was significant difference existed within
the raise arm conditions for all the extracted features (A =
0.39, F = 3.29). These results suggests that, the behavior
of the EMG muscle associated with upper extremities have
reaction on aging.

In order to interpret the results of the multivariate analysis
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Figure 5: The projection of individual parameter
vector per trial for each participant across two ex-
periments in canonical space.

of variance on the extracted features across age and raise
arm conditions, we derive canonical variables as discussed
in Section 4, that represent each trial of the participant in
low-dimensional canonical space. Figure 5 shows the two
canonical variables for each trial across four groups with cor-
responding centroids. The virtual, approximate boundaries
indicating four groups shows that there is maximum discrim-
ination between the groups in defined canonical space. In
Figure 5, the first canonical variable differentiates between
the two raise-arm conditions (i.e. opposes the effect of the
normal raise arm and raise arm with ball). While, second
canonical variable differentiates according to age (i.e. op-
poses the effect of young and old). Thus, aging effect across
both raise- arm conditions can be easily interpreted in the
canonical space.

Also, to represent each individual participant in canonical
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Figure 6: The projection of mean parameter vec-
tor for each participant across two experiments in
canonical space.

space instead of each trial of every participant, we took the
means of all trials for every participant for every raise arm
condition and applied multi-variate analysis of variance with
four groups and each entry in the groups was representing
the vector of means of extracted features. Figure 6, shows
the four groups, with two canonical variables representing
each participant in four different groups. The canonical vari-
able 2 clearly discriminates the old (positive side) and young
(negative side) participants. The performance of the young
participants varies more across canonical variable 1 in two
raise arm conditions as compared to old participants.

5.2 Factor analysis

4r M Old Participants
ul6 (Age: 51 - 80)
< 3 B Young Participants
S m25 (Age: 20 - 50)
@ [ ]
5 2r 63 20 249
ot ]
s L ; m35
] 1 77 38
o ]
g o
S [ 36 2
o 1t 70 - [ ] 7.
g 62 50 | =
g .
£ -2r u
£ 56 o7 |60 ©2
2 -3
™~
-4 ; i i i i
-4 -2 0 2 4 6 8

1% Principal Component (42.2 %)

Figure 7: The projection of each participant in the
compromise space. (The numbers indicate ‘age’ of
the participants.)

The two condition matrices Tnormar and Tpqn contains the
average measures of all extracted features for each young
and old participants across respective trials. Figure 7 shows



the compromise space in first two principal component axes
that reveals the common structure between young and old
participants. Each point (i.e. factor score from Equation 4)
mapped in compromise space represents the combined per-
formance of the corresponding participant across two raise
arm conditions 1.e. normal raise arm and raise arm with
ball. As seen from Figure 7, second principal component
(that explains 17.9% of total variance) opposes most of the
young participants from the old participants. Due to real
data sets, some participants may show different behavior as
compared to other participants in the same group.

In addition, we also need to interpret the behavior of the
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Figure 8: The projection of some participants along
with their projection of each performance in both
experiment in the compromise space.

every participant for each condition in the same space. This
can be achieved by projecting the scalar product matrices
Snormat and Sy for each raise arm condition onto the com-
promise space. Figure 8 shows the projection of two raise
arm conditions for six older and five younger participants in
the compromise space. The projection of the participant is
the centroid for the corresponding projections of two raise
arm conditions. To make it simple for interpretation, in Fig-
ure 8, we have drawn line linking the position of each par-
ticipant to it’s corresponding positions for both raise arm
conditions in the compromise space.

The original extracted features can be integrated into the
compromise analysis by computing loadings using the stan-
dard approach similar to PCA. The loadings are the corre-
lation between the original features and the factor scores.
Figure 9 and Figure 10 shows the circle of correlation ob-
tained for both raise arm conditions i.e. normal and with
ball respectively. For the sake of representation, in Figure
9 and Figure 10, we show the correlation of the extracted
features for individual muscles separately for the respective
raise arm conditions. The features numbered from 1 to 6
are in same order as mentioned in Section 3.6. Generally,
any correlation above 0.7 is considered significant, but as
we work on real-life EMG data set that is prone to noise,
we can lower the significance level to 0.4. Now in Figure
9, for biceps, we have energy of this muscle (3) negatively
correlated with second principal component. That means,
the participants having high biceps energy signals will lie to-

wards the negative direction of principal component axis 2
in compromise space. As seen from Figure 7, mainly the old
participants lie in this area. This result is consistent with
the observation that old participants put in lot of force for
the goal-directed, upper extremity movements as compared
to younger ones. Similarly, we can observe the correlations
of the different features for the both raise arm conditions to
the principal component axes. Using these correlations and
position of participants in the compromise space, we can in-
terpret the effect of aging on the corresponding features of

the EMG muscles.

: 1 \\B|ceps 2 1 ///\,,\:I\'\r|ceps
E é ,
505/ \ £05/ \
S | | 5 ] 1
O o K 9 o

© | [ © 1 I
g 1 / g | /
£ \ / £ \

F0.5r N\ 05 \\\ 3 ///
H H o
-1 51 .

3 3

g -1 -05 g -1 -05 0 05 1
8 Correlation w/ Prmmpal Component #1 8 Correlation w/ Principal Component # 1

N
i = Flexor § 1 - Extensor
£ 05 g o5 / \
; : "y \
i | | © | |
s : : |
g o | e |
£ £ \ /
3-05 £ o5\ /
c H /
el 5
s g -1
£ g
o T
O 0

0

-1.-08. 0 05
Correlatlon w/ Prlnupal Componem #1 Corre??atlon w]‘rannapaI Component1 #1

Figure 9: The circles of correlation for normal, raise-
arm experiment representing loadings for each hand
sensor.

6. CONCLUSION

In this paper, we evaluated the aging effect on upper ex-
tremity movements by conducting simple raise arm exper-
iments across young and aged participants under two dif-
ferent conditions, (a) normal raise arm, and (b) raise arm
with a football. We performed quantitative analysis on these
conditions by extracting the timing and intensity related fea-
tures from the synchronous data streams of motion capture
and electromyogram sensors. This integrated analysis of up-
per extremity movements based on 3D motion capture data
and EMG gave us the knowledge of interesting correlations
between different muscle actions and the corresponding body
joint movements related to upper extremity across young
and old age groups.

We tested the differences in terms of extracted features across
two age groups and also across two raise arm conditions
using multivariate analysis of variance. The results shown
that, there was a significant difference (p < 0.01) for all three
kinds of effects such as age, condition for raise arm, and
age X condition. We also performed canonical analysis, to
show the maximum discrimination between different groups
by achieving maximum separation between the groups and
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Figure 10: The circles of correlation for raise-arm
with ball experiment representing loadings for each
hand sensor.

minimum separation within the groups. Further, we an-
alyzed the factors that were responsible for distinguishing
between the groups using factor analysis. We measured the
factor scores for each participant that were represented in
the compromise space, which revealed the common structure
between young and aged participants. Also, we integrated
the original extracted features in compromise structure by
computing the correlations between the factor scores and
the features (i.e. loadings). Thus, using loadings, we inter-
preted the effect of aging on the features that were extracted
using EMG muscles and body joints associated with upper
extremity movements.

Along with aging applications, this gathered data, integrated
analysis, knowledgable correlations have several applications
including the design of rehabilitation and health care pro-
grams, developing adaptive neuro-prosthetic devices, and
sports medicines.
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