Interface design: A semiotic paradigm®

MIHAI NADIN

Design principles are semiotic by nature. To design means to structure
systems of signs in such a way as to make possible the achievement of
human goals: communication (as a form of social interaction), engineer-
ing (as a form of applied technical rationality), business (as a form of
shared efficiency), architecture, art, education, etcetera. Design comes
about in an environment traditionally called culture, currently identified
as artificial (through a rather romantic distinction between natural and
artificial), and acts as a bridge between scientific and humanistic praxes.
Along this line of thinking, Simon (1982) stated, ‘Engineering, medicine,
business, architecture, and painting are concerned not with the necessary
but with the contingent — not with how things are but how things might
be — in short, with design’. The object of semiotics is sign systems and
their functioning within culture. For a long time (and for reasons whose
presentation is beyond the scope of this article), one type of sign — the
symbol — has been considered representative of all signs in human
culture: ‘for most of us ... the significant part of the environment consists
mostly of strings of artifacts called “symbols” that we receive through
eyes and ears in the form of written and spoken language and that we
pour out into the environment — as I am now doing — by mouth or
hand’ (Simon 1982). Actually, we perceive signs through all our senses,
and we generate signs that address the same. The fact that some of these
signs (visual, auditory) are more important should not prevent us from
considering any other sign that can be used for representation, communi-
cation, and communication functions. But before dealing with these basic
functions, we have to settle upon one of the many definitions of sign that
have been advanced in the field of semiotics, and then apply it as
consistently as possible. The definitions fall into two basic categories:

1. Adoption of one kind of sign — usually pertaining to verbal language
— as a paradigm, with the understanding that every other sign is struc-
turally equivalent. Artificial intelligence researchers are quite comfortable
with this model. The Swiss linguist Ferdinand de Saussure advanced

Semiotica 69-3/4 (1988), 269-302. 0037-1998/88/0069-0269 $2.00
© Mouton de Gruyter, Amsterdam

270 M. Nadin

the definition of signs as the unity between a signifier (the actual sign
embodied in some material form such as words, shapes) and the signified
(what the sign is supposed to mean).

2. Adoption of a logical structure, with the understanding that each type
of sign and each sign operation can be described within a pan-logical
system. The American scientist and logician Charles S. Peirce (1839-1914)
advanced the definition of sign as ‘something that stands to someone for
something in some respect or capacity’ (1931-1966). No matter which
definition is adopted, the question of semiotic laws governing sign
processes is necessarily raised. Remaining within the realm of sign as
symbol, Simon felt entitled to state, “The laws that govern these strings of
symbols, the laws that govern the occasions on which we emit and receive
them, the determinants of their content are all consequences of our
collective artifice’ (1982). Both Saussure and Peirce described the same
through the role of the social, a semantic equivalent of ‘collective artifice’.
Although Simon is mistaken in limiting the sign to the artifact — we can
and do interpret semiotically (that is, as a sign) natural occurrences, too —
he is correct in considering signs as having an air of contingency, as
natural phenomena having an air of necessity, in his opinion. For several
reasons, the pan-logical definition of the sign is more appropriate to the
subject approached here, not only because the underlying principles of
computers are themselves logical, but also because design activities are
not reducible to the model of verbal language (or of any other sign
system). On the basis of Peirce’s above-mentioned definition, this visual
representation (not the only one possible) can serve as an operational
model (Figure 1). Figure 1 should be read as saying that only the unity
between the three components represents a sign — that is, that signs are

R
Representamen
S
Sign
(o] | |
Object Interpretant knowledge

Figurel. Sign.S = S(O,R.I); Representation = that which represents; Object = that which is
represented; Interpretant = the process of interpretation

Figure 2. Semiotics. Semiotics as science of representation; semiotics as science of
expression; and semiotics as science of knowledge

Interface design 271

identified as such only through their representation, and that as soon as
we interpret a sign, we become part of it for the time of that interpreta-
tion. The functions of a sign are also evident in Figure 2.

Semiotic levels at which sign processes (semioses) take place, levels that
are undoubtedly familiar and important in computer science, can also be
depicted (see Figure 3).

Syntax Semantic Pragmatic

Figure 3. Semiotic levels of semioses. Syntax = the relation between signs, how signs are
constituted; Semantic = the relation between sign and object, what the signs are con-
veying; and Pragmatic = the relation between signs and the user, what signs are used for
(cf. Morris, 1938)

There is little trouble in understanding from this that no sign can be
considered independent of its relation(s) to other signs, whether similar
(such as words in a given language) or different (words, images, sensory
perceptions, etcetera). The interdisciplinarity of semiotics is a conse-
quence of the fact that sign processes are heterogeneous by their
condition, and that in order to understand how different kinds of signs
constitute interpretable strings or configurations, we have to become
acquainted with each different kind, as well as with the principles
governing human or machine interpretation of such strings or configura-
tions. Representation of an object, and the consequent interpretation of
such a representation, can take three different forms (Figure 4).

R R R
/ j Iconic /\ndexic t Symbolic
(o) | (0] 1 (0] 1

Figure 4. Representation. An object can be represented Iconically = representation based
on resemblance, likeness; Indexically =representation causally influenced by the object,
mark of the object; Symbolically = representation based on convention

272 M. Nadin

It should by now be clear why Simon’s concern with symbols alone
(which is also the concern of the field known as symbolic anthropology)
proves a serious limitation of his explanatory model. However, since
symbols are the dominant sign representation in human culture, and since
each symbol contains iconic or indexical elements, it is easy to reformu-
late some of Simon’s ideas in order more adequately to make use of the
semiotic principles governing those cognitive phenomena with which he is
concerned in the first place.

Interface is the meeting place between two different entities that are
supposed to come in contact, to be brought together — that is, to
communicate (since communication means bringing together). It follows
that interface has the nature of a sign. Simon even introduced ‘the artifact
as interface’ (1982). While it is true that the concept of interface became
fashionable in the ‘computer age’, it is actually a product of human
culture as an artifact environment, and it is in this respect that Simon
regarded ‘The artifact as interface’ and ‘The environment as mold’ (1982).
Interface is also a problem of human-to-human relations, especially in the
context in which human contact and interinfluence become more and
more mediated. In defining the sign as a mediating entity and semiotics as
the theory and practice of mediation, I suggest that despite the diversity of
signs and sign processes, these all fulfill the basic function of intermediary,
go-between, medium between two or several distinct entities brought
together through human activity. The contingency of each mediation —
its likelihood, relative unpredictability, its dependency on and conditioning
by other factors (that is, the contingent nature of each interface) — is a
reflex of design’s double nature as science (in respect to the scientific
principles of design) and art (in respect to a particular, original way of
designing). Schneider and Thomas (1983) pose two questions that express
the feelings of the computer community: (1) Why isn’t the design of
computer interfaces more like science? and (2) Why can’t the people who
design interfaces be more like engineers? These concerns stem from the
recognition (late, but nevertheless a recognition) of the role interface plays
in the human use of computers. In the past, interfacing, although
important, was less critical. With computer technology expanding to
more segments of society, and in view of the diversity of utilizations of
this quasi-universal tool, interface issues are acquiring more and more
importance. If there is a science of interface (computer interface or any
other kind), then this science is semiotics, and the pan-logical semiotics
established by Peirce seems appropriate to interface. Once they accept this
affirmation, computer scientists and engineers should have no problem in
understanding the multifaceted nature of semiotics as science and art,
heuristics and hermeneutics, etcetera. Programming, while a very rigorous

Interface design 273

activity, allows for creative algorithms and creative interpretations of
algorithms. Two programs for the same activity can be as original and
innovative as their authors. The scientific nature of logic, reflected in the
scientific nature of the computer, implies the art of reasoning and allows
for an art of computing expressed in elegant, balanced, optimized codes.
Since the recognition of the fact that computers are basically sign
processing devices, not merely number crunchers, progress has been made
in freeing ourselves from the naive assumption that all we have to do in
order to achieve intelligent actions through devices is to duplicate the
structures of the human brain (the McCulloch—Pitts line of thought). The
functionalist (cognitive) paradigm states that essentially, software is to
hardware what mind is to brain. This implies that thinking processes are
sign processes. (A discussion of this presemiotic paradigm is beyond the
scope of this article.) All that we know, we know through the intermedi-
ary of signs and in signs; and all that we apply from our knowledge is
semiotic in nature.

Based on these elements, I shall introduce a generalized concept of
interface and then apply it to actual computer systems. First, I should
point out that interface, no matter what kind, specifies the optimal set of
signs for the interaction between two entities, whether animate or
inanimate. In a limited sense, user interface specifies the action the user is
supposed to take in order to access different parts of a system according
to the design of the conceptual model upon which that particular system
is based (see Figure 5).

System { user/market

Figure 5. Interface

Cars, radios, dishwashers, vending machines, etcetera all require inter-
facing in order to be optimally used. Each requires a certain sequence of
actions that allows for the pragmatics of using it. In the case of
computers, Meyrowitz and Van Dam (1982) ascertained that user inter-
face, together with the conceptual model, constitute the interactive editor.

274 M. Nadin

According to this conception, user interface comprises the input devices,
the output devices, and the interaction language. In what follows, this
view will be contradicted, since I consider the interactive editor itself an
interface. Moreover, every point of contact between the computer and the
user will be integrated in the extended model of user interface, from
product design to service (support, documentation, tutorials, seminars,
packaging, etcetera). By extension, a manufacturer of computers interacts
with the market through numerous constitutive interfaces or, as I shall
argue, through the language of the product and of everything participa-

ting in its marketing (see Figure 6).

The Computer
Corporation
and its products

AN

Corporate Language

interface

product design

/ service/support

-] advertising

documentation

tutorials

seminars

packaging

Figure 6. Generalized interface model

The Market:
users and
potential users

Interface design 275

What makes things a bit more complicated in comparison to the most
common social forms of interfacing through the intermediary of natural
language (the most complicated semiotic system that we are aware of) is
the fact that user interface is part of the computer system. As we know, it
participates in, and sometimes supports, process interfacing among
different components of the system. Top-level interaction with the user
through the formal programming language also falls within the sphere of
user interface activity. Accordingly, user interface should allow for the
personal user model to be formed while the user learns the language of the
interface. In the spirit of Chomsky’s generative grammars, we understand
language as a generative mechanism given in the form of a grammar to be
applied to a vocabulary. (A strict mathematical definition is not necessary
in this context.) Quite often, the personal user model differs from the
conceptual model upon which user interface is developed. Although
operationally different, the user model and the conceptual model should
remain logically consistent. This is accomplished — when it is accom-
plished — by the semiotic system of user interface.

In order to give an idea of how semiotic methodology can be applied, I
shall concentrate on a rather common example: the so-called office system
computer. First of all, in order to proceed with the design, we have to
identify the sign that constitutes the interface (or the language — see
Figure 7).

Representamen
That which represents
User interface and applications

Sign = (O,R, 1)

A considered computer

Object Interpretant
That which is represented The conditions for use and evaluation
Type of p y (functi values)
Examples: Office system

CAD system

Videotex system, etc.

Figure 7.

The premise for considering a computer’s interface from a semiotic
viewpoint is that it represents a complex sign system, a language. More
precisely, it represents a system we interpret as an emulation of the office.

276 M. Nadin

The pragmatics results from the functions made available (word process-
ing, ledger, listing, etcetera). Everything used in this representation of the
office constitutes part of a repertory, while the rules of usage, as applied in
the process of interfacing, define the grammar of the interface language.
The final result that the designer and user look for, once the product
becomes available, is not the value of true or false, as in formal logic, but
meaning. This brings one more definition of semiotics to expression:
semiotics is the logic of meaning. As such, it approaches the laws of sign
processes meant to convey a certain meaning to an intended interpretant
(that is, the process of interpretation in which various users become
involved, the use of the system). In order to design the interface
(representamen = that which represents), the low-level protocol has to be
established. An office is the unity of the environment, tools, supplies, and
activities which make possible the execution of the pragmatics defining the
specifics of each particular office. There is no such thing as a universal
office. There are different types of offices, and when a computer is
identified as an office system (IBMs, DECs, Wangs), this identification
opens the door to interpretation and different uses. The list to follow, a
low-level protocol description, presents an office as our society considers
one to be (Table 1). Once a decision for specialization (insurance, financial
planning, law practice, etcetera) is made, under the assumption that the
production of a specialized computer is justified, the description becomes
more specific. In other contexts (the European market, Far Eastern office
activity, etcetera), the low-level protocol will look slightly different.

Sometimes, the way to proceed, especially when the visual component
is desired for the intended interface, is to consider a visual representation
of the office (see Figure 8). But an office is not a collection of files,
typewriters, calculators, and so forth — it is not a collection of hardware,
but essentially an environment where communication (exchange of docu-
ments, storage and retrieval of data, planning, etcetera) is possible and
necessary. This is very important and explains why office systems
successful in supporting individual office work but not communication
have never really made it in the market. Lisa®! is an example that comes
immediately to mind.

After defining the interface sign and specifying its elements with the aid
of low-level protocol description, the next step is to define the type of
representation (iconic, indexical, symbolic) and the type of command
(prefix, postfix, infix). The two aspects are interrelated. Until the Palo
Alto Research Center unveiled its then original iconic interface (the
Alto®? station), the main type of command was the prefix. Basically, a
prefix command specifies first the verb (operation) and then the object of
the operation. It requires a predicative language as its interface language.

Interface design 277

$9179s589 ode)
s1opuiq
S1apjoj a1y
a3e101s A|ddns

so|y
swed

51009
afqo AP o
SY0%

201fJo uv o uonvjuasaidat jpnsi4 g INJ1

2
%
2

o,
%
@
7

?ucosﬁm
soded o
soded WO

soded

3e3s [B150d

278 M. Nadin

Table 1. Low-level protocol description of an office
Environment Activities Tools Supplies
physical space typing furniture pencils
—architectural editing —desk(s) —black
—interior dictating —chair(s) —colored
space filled with formatting —shelving pens/markers
objects (rugs, accounting —storage cabinets —black
furniture, payrolling —supply cabinets —gray
plants, pictures, —employees —file cabinets —colors
tools ...) —sales —safe erasers
lighting —expenses machines liquid paper
—natural calculating —copy glue
—artificial financial modeling —dictation paper
human interactivity cutting/pasting —shredding —plain
—with personnel representing —binding —agraph
—with clients planning —typewriter —colored
communication tracking —<calculator —tracing
environment —inventory —paper cutter carbon paper
controlled —schedules stapler acetate sheets
environment analyzing scissors spread/ledger sheets
—with specified preparing tasks letter opener stationery
areas developing tasks rulers invoice forms
—with rules meeting straight edge billing forms
inside outside presenting protractor memo pads
—with rules for serving desk lamps telephone pads
legal entity informing clock labels
public environment communicating telephone stickers
answering questions trays file folders
telephoning —in/out binders/cases
advising —letters tape cassettes

controlling (quality)
filing

retrieving

listing

reporting
centralizing
keeping records
inventorizing
recording
performing
cheating

hiding

working in private
pretending
entertaining

living

rubber bands
clips/paper clips

waste basket
tape dispenser

file organizer tapes

desk organizer (clear/masking)
clipboard string

rolodex (open card

files)

business card file
hole puncher
light table
magnifying glass
postage scale
desk pad/blotter
calendar
telephone books
dictionaries
secretary’s handbook
thesaurus
copy stand
numbering/date stamp
rubber stamps
stamp pads/stamp ink
decorative pictures
objects

—plants

—rugs

Interface design 279

The postfix command does just the opposite, allowing first for the
selection of the object and then for the desired operation. It requires a
subject-oriented interface language; that is, it makes possible a visual
language. The infix command implies the existence of several operands,
each action being virtually connected to such operands. Since the
sequentiality of computer string processing is a structural given — and
natural language is sequential — the first attempts to design interfaces
accepted the sequential paradigm. The relation between the user and the
computer typically followed the pattern of typing in text strings (as close
to natural language as possible) for names (commands) and for operands.
To ensure a certain feedback, the strings were (and still are) echoed on the
output device (printer, screen) after being processed by the editor.
Enough has been said about the limitations of this interface methodology
and enough research has gone into improving it (function key, better
emulation of natural language, ‘intelligent’ editors, etcetera) that it is not
necessary to reopen the discussion here. The postfix command opened the
way for menu-oriented interfacing — that is, for multiple choice from a
number of strings and/or visual images (mainly iconic and representing
objects or actions). Less has been said and less is known in respect to the
limitations of such interfaces. For instance, in many actions and/or
objects required to perform an intended computation, the distinction
between object and action is not always clear-cut, response times some-
times increasing beyond the time of the operation itself. (A separate study
is necessary to deal with such limitations.) Semiotics applied to the
example of an office system allows for designing the set of primitives
(visual, verbal) that will constitute the interactive editor language.
Figure 10 displays a possible design strategy. What we see in Figure 9 is

Interactive
Language
|
[1
object action
I ! , file
print
storage tools edit
layout page
profile clock Zt';a”ge
diskette calculator :
folder clipboard
document stationery

Figure 9. Model of interface language

280 M. Nadin

that the machine’s available computing capacity is supposed to support
the generation, modification (addition, deletion, editing, etcetera), stor-
age, retrieval, comparison, and so forth of texts, tables, diagrams, line art,
drawings, or other computer programs. Actually, the three basic sign
operations of substitution, insertion, and omission® cover the entire
gamut of operations the computer performs. (Simon gives a list: recoding,
storing, copying, moving, erasing, comparing symbols within these one-
thing-at-a-time systems.) What should be pointed out here is that the
design of interface is a matter of semiotic consistency — that is, of
uniformly using whatever means of representation are considered ade-
quate. For instance, choosing visual representations of objects (as icons)
and representations of actions through words (in pop-up menus) is a
decision that makes sense only if implemented consistently. Some of the
interfaces currently available lack this characteristic, exposing the user to
awkward and confusing conventions. Interpretation is the issue here.
Among the factors involved in the semiotic process of interpretation, the
amount and type of signs interpreted play an important role. Basically,
amount influences the zime required to process (thought processes), while
type affects the kind of processes. Several visual interfaces depict the
calculator, for example (a simplistic option, but nevertheless a good
example). The representation in Figure 10 visualizes the idea presented
above.

Recognizing that the squares on an icon called ‘calculator’ are ‘real’
buttons involves a thinking process far from the common thinking
adapted to the conventions accepted and culturally acknowledged in
using a computer. The LED-type of display and the numbers displayed
are a kind of convention-over-convention. The user is confronted with a
real calculator and a representation (iconic) of a pocket calculator. This is
a difficult semantic situation, similar to the one we would face if some of
our words were at the same time the objects they denote! The user, no
matter how willing to accept new conventions pertinent to the computing
environment, enters this environment with the cultural convention ac-
cording to which a sign is not the same as the object it represents.
Moreover, since the convention is not even uniformly applied (that is, the
other signs are not simultaneously representations and the objects they
represent), the pragmatics of such a user interface is affected. Type and
amount of interpretation are related to the kind of command used (prefix,
postfix, infix, cross-product, etcetera). A metaphoric explanation (I am
indebted to Leif Allmendinger for this metaphor) might serve us here. The
prefix command is ‘governed’ by a ‘regime’ that is very ‘repressive’. In
such a case, to specify lexemes means to remember the exact form of an
ever increasing (and sometimes changing) set of commands, or at least

Interface design 281

<@- pictographic €@ concrete abstract 9 Type
of Representation

T T

ooon

8200 ima| |NE

0000 BE

GDDD BEEE

== S E - iconic

12A+ 2
23x X 2 2

2852 tot "

4 indexical

v

- more optimal more 4
Amount of Interpretation

I
<
!

symbolic

Figure 10.

their abbreviations (so different from one system to another). Even if
prompts are provided when equivocal command abbreviations are used,
the built-in restrictions cannot be overcome. ‘Dissident’ use is prohibited.
Information or strings of signs typed in for processing, but ‘prefixed’ for
nonsupported action, disappear without trace (since saving is usually
possible after processing and before changing from one mode to another).
IBM’s CMS editor and DEC’s SOS editor are ofthand examples. Using
function keys or special keys in ‘shift’ saves typing, but the system’s
permissiveness is not increased. The only friendliness comes through the
error messages, sometimes so cute that the user becomes even more
frustrated. Still, most use of the system according to the rules of the mode
selected causes no interference in the user’s routine. This command
‘regime’ governs ‘brutally’, although the amount of ‘governing’ is rela-

282 M. Nadin

tively small. The semiotic distinction between type and amount of
interpretation thus extends from the repertory of signs used (language
messages, images, menus, etcetera) to the rules governing sign operations
in a given interface. The same holds true for the postfix command
(modeless computing environment). Along the line of the same metaphor,
one can say that this command is similar to a ‘benign regime’ that governs
broadly. There is no real ‘repression‘ in respect to choosing an object, yet
every user is bogged down in a relatively great amount of ‘red tape’ — for
instance, a long sequence of operations prescribed by the successive filters
that are part of the interface. The logical design is such that the editor
makes available only actions that may be taken at the system’s current
state. There are no mode-related error messages, since filters substitute
modes. The infix command does not require extra comment since it is a
cross between prefix and postfix. It is suggested especially when more than
one operand has to be considered. Computers such as Xerox Star®,
Intran®, and Lisa® added the interactive editor formatter to the postfix
command that is part of the interface language: “What you see is what you
get’. While this is a welcome quality, soon to be adopted by other
computer designers, it has the drawback which Brian Kernighan iden-
tified as “What you see is a// you’ve got’. It is uninformative and gives no
clues as to what influences a certain format, why some changes are not
possible, and why there is no consistency between the different formatting
capabilities or between the different applications used. The filtering
templates used in such an interactive editor formatter are as important as
the input messages in the prefix commands. On most available systems,
the semantics of the templates is confusing, not consistent with the visual
representation of the objects, locations, or the pop-up menus of actions
(based on an interface such as Smalltalk® and supported by a pointing
device connected to the cursor or current position independent manager).
Another limitation affecting the use of visual language results from the
aliasing conditon of raster graphics. It can be compensated either by
increasing the density of pixels (which results in higher costs in computer
memory) or by using multiple bits per pixel (grey-scale displays). This is
not only a hardware issue. The higher the quality of images, the better the
possibilities to generate a visual language for the interface and to support
high quality applications.

The field of human factors in computer systems, ‘an unruly mixture of
theoretical issues and practical problems’ (Schneider and Thomas 1983),
developed as a result of the difficulties computer scientists and engineers
face when considering the relation between the systems they build and
their potential users. Psychological concepts were brought into the picture
first, and previous observations on the interaction between humans and

Interface design 283

various tools and machines were applied (not unsuccessfully) to a
technology very different from any previous one. What was not con-
sidered was the fact that signs and sign processing represent the common
underlying principle of both human interaction with computers and of the
computer, ‘a member of an important family of artifacts called symbol
systems’ (Simon 1982). Since the technology upon and for which we build
interface changes very rapidly, pan-logical semiotic principles, in their
breadth and depth, provide a foundation for improved interface design
(user and process interfaces), for instance in the design of software and
hardware.

Since hardware issues are too often approached independently of future
software applications, and since the integration of software is not possible
without better adapted hardware design, I would like to deal with three
aspects pertaining to this: principles to be observed in selecting compo-
nents of interface language; aspects of man-machine communication (the
semiotic paradigm versus the information paradigm of communication);
and the ‘language’ of a computer and the various interfaces involved in
the pragmatic user-computer relation. One thing should be made clear:
while underlying principles are relatively independent of technology,
semiotic principles, as they refer to sign processing, become technologi-
cally dependent when applied. This reflects the law according to which the
pragmatics of the sign is context sensitive (Nadin 1981). There is no way
to avoid the consequences of this law. Efforts in the direction of better
programming (sometimes for the sake of programming) or higher tech-
nology (sometimes for the sake of technology) are quite impressive.
Programming and technology are interwoven, and what weaves them is
our use of signs, our de-sign (a spelling that emphasizes the intensive use
of signs in design activities). As mentioned above, interface issues are
issues of interpretation (pragmatics) as related to the various types of
signs used in interface. Recognition of the object represented is based on
two complementary processes: (1) recognizing parts of the object in
relation to each other and to the whole and arriving at some inference
based on their interrelationship; and (2) recognizing the whole and
inferring from the whole to the parts. We know that signs are constituted
of structural components in a limited number of ways. For instance,
major structural components of visual signs are shape, contour, color,
and texture. If an object is distinct enough, shape alone may be sufficient
for recognition (an observation that interface designers using visual
representations sometimes apply). I shall exemplify this by referring again
to the calculator (see Figure 11).

Pictographic representations are very concrete, almost so concrete that
if the context changes and the user is presented with a different pictogram

284 M. Nadin

Symbols may evolve from pictographic representations.
As the symbol becomes more abstract,
italso becomes more recognizable.

(===
579510) (12«] X
Oooo| |cooe| |ooo - x
Qo0ag oooo ooo —
0o0g oooa T —
0aon 0oo oog 11 =]
0] Ja .

pictographic —p» iconic sign —p- symbolic sign

representation

Figure 11. Evolution of a sign representation

(for instance, one of a solar battery calculator), he will have difficulties in
‘using’ the sign. The semiotic level is reached when the conventionality of
the sign becomes evident. (Convention means here as convened, agreed
upon, and accordingly shared in a given social context, in a culture). Once
the convention is recognized, the next step in interpretation is associating
sign and function. Only at this moment does the user integrate the
component of an interface’s repertory in what the designer intends the
language to become. There is no such thing as man—machine communica-
tion; this is a way of speaking, a way of anthropomorphizing machines.
Communication is the semiotic activity that brings user and designer
together. Once the user accepts a language, he will apply it according to
the rules the designer embedded in the interface, and their communica-
tion, mediated by a certain machine, will take place. Obviously, under-
standing what an icon represents, as opposed to what it pictures, is
essential for designing user interface language. (The diagrams in Figure 4
can be helpful in emphasizing what I have already explained about
different ways of representing an object with a sign.)

Once this is understood and consistently applied, we can decide on one
type of interface or another, or on a mixture of representations. Regardless
of our choice, what is important is understanding the different sign
processes (different ‘grammars’) that characterize the three fundamental
types of representation. The example of the calculator (Figure 10) can
again be helpful. Words can be used as well; and at the extreme of the
symbolic representation, one can add the word calculator or some
abbreviation.

The initial step in designing a user interface is to determine the
operations and the entities on which operations will be performed. If
template filters should be used, the identification must consider object/lo-
cation as opposed to action/structure. Editing filters are in fact devices
that perform the basic semiotic operations (substitution, insertion, omis-

Interface design 285

sion) according to specifications from the user or the system. The same
holds true for viewing filters (used to specify areas of a document to be
viewed and to generate viewing buffers). The editing and viewing filters
are semiotically equivalent; functionally, they are sometimes identical
(screen editors), disjoint, partially overlapping, or properly contained in
one another. This is part of the pragmatics of the interface, and
necessarily relies on hardware specifications. From a semiotic perspective,
which emphasizes the unity between function (interpretation, content,
use), syntax, and semantics, there is only one way to proceed in
approaching interface: as part of the system, not a delayed addition to it.
Despite its qualities, the Apple IIC (one among several possible examples)
shows what happens when an interface concept is adopted primarily for
marketing purposes. The design procedure is exactly the reverse of the
interpretive process the user goes through when dealing with user
interface language. Only after the appropriate functions are determined is
it useful to consider how those functions translate in computing content
and memory-related issues (such as semantics), and furthermore, how this
content will be represented. If the pragmatics of the system leads to the
conclusion that visual representations (for example, icons) are justified,
design should be considered only in the greater context of the language
system. I would insist that designed interface language be, in principle,
formal. This means that the language should function according to a
logical structure which the user can grasp and which, while adhering to
the spirit of computing logic, should not contradict so-called natural logic
(cultural background as the environment of human logic). Of course,
voice input devices — a subject impossible to ignore when predictions
present this alternative as almost available — do not make this task
easier. In the course of using a given interface, the user acquires a
progressively higher level of competence, and user performance improves
accordingly. In respect to this, a certain influence, quite often overlooked,
is exercised by the type of computing environment: stand-alone (becom-
ing more pervasive in the market), distributed, or time-sharing. The
constraints each type imposes on the design of the interface should also be
accounted for when the sign representing the system is constituted — not
after everything else has been defined. Many computers, especially stand-
alone units, are offered with all kinds of ‘cosmetic’ interface contraptions
added under marketing pressures. This quite often affects the user’s
performance and adds to the confusion already disseminated by the
rather chaotic computer market. No interface language is an entity in
itself, even if it enters the market with the backing of the largest
companies. In one form or another, they all refer to everyday language(s),
the so-called natural language, and to the languages of gestures, trade-

286 M. Nadin

marks, etcetera. In extensions of user interface (documentation, tutorials,
seminars, support, and so on), this aspect is even more obvious. While the
conceptual model of a system is the premise for the coherence of interface
language, there is actually nothing that guarantees such coherence.
Knowing that the user is actually represented by a divided cognitive
structure, in which sequence and configuration (that is, time-related and
space-related perceptions and activities) are not homogeneously supported
by the brain, we should be able to design interface in such a way as not to
affect the balance of these two basic cognitive modes.

Research in semiotics, within the general framework of the theory of
learning, has made quite clear that comprehension of a specific system of
signs means identification of the structure of that system. The ‘transpar-
ency’ of interface is not only a cognitive quality, but also an emotional
quality, a fact impossible to ignore as long as we have human beings in
mind when we talk about the user. In order to be made more apparent to
the user, interface language should use (1) concrete representations of
objects and storage, and (2) operation representations that relate directly
to actions. Concreteness and directness must be expressed as clearly as
possible. Sometimes the vehicle of language is better adapted to this
exigency; other times images or sounds are more effective. Of course, the
proof of adequacy is in the use as such. So-called integrated software
packages attempt to support various activities. More often than not, such
packages lack the ability to relate adequately programs which are good
when taken independently but fail when combined because they were not
conceived from an integrated semiotic perspective. Pseudo-integration
becomes obvious in different instances of running such programs. Error
and warning messages are examples of this unfortunate characteristic.
Usually, an alert file concentrates these messages, but it is the routine of
the alert manager designed to display them. Typically, an hour glass
suggests waiting, despite the fact that in our culture the hourglass is a
symbol for time, not for waiting. Error messages, usually anthropo-
morphized, reveal that each program was conceived independently, with-
out any integration goals in the designer’s mind. Confronted with a user
who naturally integrates all his activities, manufacturers discovered that it
is easier to ‘unbundle’ the ‘integrated’” package, then to ‘improve’ it (so they
promise), than it is to ‘redesign’ it (from scratch), as would be necessary.

User interface contains the so-called input and output devices and the
interaction language as it is developed from/with the conceptual model of
a given system plus extensions (documentation, tutorials, seminars,
support, etcetera). Obviously, the design of such components (keyboards,
tablets, light pens, painting devices, printers, and so forth) integrates
product design considerations, ergonomy, psychology, marketing, etcet-

Interface design 287

era. Once again, the unity of hardware-software and their reciprocal
influence become critical. Needless to say, no system available today, as
far as we know, was designed to integrate such diverse components.
Dealing with a pointing device — like the ‘mouse’ — as an independent
component (there are manufacturers that specialize in ‘mice’) means to
contradict the basic requirements that ensure the consistency and ade-
quacy of interface. There is nothing wrong with specialized manufacture
— of ‘mice’ (mouses?), hard disk units, or other interface components —
if a unifying and integrating design serves as premise. But this is rarely the
case. What usually distinguishes such components is merely the trade-
mark or, in better cases, the software used to interface them with the
system. User interface language, together with all other components, is
supposed to help in (1) pattern recognition (of one sign or a combination
of signs); (2) associating signs during use of the system according to the
designed syntax defined through the conceptual model; (3) expansion to
other applications provided by the computer manufacturer (IBM, Digital,
Data General, etcetera) or by independent software developers (which
frequently ride ‘piggyback’ on a successful system).

A method developed specifically for uniformly dealing with all compo-
nents and their interrelation is the semiotic matrix®* In this matrix, the
basic user-system relation can be represented in an interdisciplinary,
integrated way. The concept of interface is expanded to all those instances
of the mediating effect of using sign systems/language for problem
solving and/or communication. This expanded concept is not the mechan-
ical result of examining the matrix of components, but a design that
accounts for such components. A product’s look and functionality are a
continuation of user interface and are related to every other interface of
the system. For instance, input/output devices are quite often influenced
by product design. In the course of product design, either the formal or
the functional approach dominates, while semiotic considerations (re-
garding the semiotic unity of the interface) are ignored. User-friendliness
— usually more a marketing pitch than a verifiable quality — does not
automatically become user-friendliness in terms of physical and mental
aspects of working with a system, programming it, or simply using some
of its routines. While the problem of the user is central to the design of
user interface, the semiotic matrix tries to solve the problem of defining
the user (Figure 12). But we have to be more precise and consider all the
elements to which the user relates. This can be represented at the system’s
level (see Figure 13) or at the conceptual level (see Figure 14), in which
case it becomes obvious that each user will form his own model when
using a given computer. The model developed by each particular user
(influenced by manuals, guides, tutorials, etcetera) is the product of

288 M. Nadin

Figure 12.

Computer

User

Semiotic matrix defining the user

Conceptual
Model

Language

User interface User
Competence

User

[

User's Background:

Performance [Product

Figure 13.

comprehension

Computer Literacy

4

Shared Conceptual Model

User related elements at the systems level

User’s Conceptual Model |-

Conceptual Model
of Interface

User’s PREconceptions

Figure 14. User related elements at the conceptual level

Interface design 289

‘learning’ the system or being ‘taught’ how to use it. Generally speaking,
the user employs interface according to the semiotic interpretation given
to the interface. This interpretation is based on each user’s model.
Preconceptions influence this model; so do other semiotic contexts:
cognitive skills, emotional factors, esthetic components, and so on.

Computers are basically used for problem solving, a fact that should be
considered carefully when communication issues are approached. As
opposed to other tools, the computer is almost a ‘universal’ problem
solver. This means that the tool can be adapted to various tasks through
its programs. There is no need to step down from the high-level language
of programming to low-level protocols dealing with the concrete problem.
Adaptation of the tool to the problem takes place through the intermedi-
ary of the different interfaces that are part of the system and that
simultaneously connect it with outer environments (the user, other
systems, communication networks, etcetera). Programs are abstract enti-
ties that obey formal rules. Editing a document, for instance, is a concrete
activity in which the user causes the abstract entity DOCUMENT,
approachable through interface, to have a concrete reality: it will receive a
name; it will consist of a text; it will be edited/formatted in a particular
way, etcetera. In short, using a computer means to make the abstract
concrete. Correspondence to the real world (an office, for example) is
ensured through the semiotic conventions of the interface and primarily
through the conventions of likeness/resemblance in the mind of the
intended user.

The common representation of the user distinguishes the novice from
the experienced user. This is a linear representation, very comfortable, but
not necessarily appropriate (see Figure 15). It implies that a novice will
sooner or later become an expert, a supposition that is far from
confirmed. It also implies that once initiation is over, the expert must
work with the limitations, inherent in the system, that made it approacha-
ble to the novice. A more complex model is necessary, one which at least
does not contradict the knowledge the user accumulates while working
with various computers. Although experience is important, a semiotic
property of computer-aided activity is that in order to understand and use
sign systems, a user has to bring into the activity comprehension gained
from culture and general education. The improved user model is supposed
to help the designer of interface evaluate his choice of signs (see
Figure 16). The two-dimensional matrix can be improved, first of all by

Naive Experienced

o

Figure 15. Simplified user model

290 M. Nadin

High
A
& competent expert
5
)
€
£
&
e
a
£
o
naive experienced
Low High
Experience

Figure 16. Improved user model

involving other qualities that have proved essential in computer use and
are acknowledged in computer culture. Imagination, to give just one
example, plays an important role in programming and in running
programs for some stereotype applications or adapting programs to new
functions (see Figure 17). The fuzzy nature of some elements also has to
be considered if we indeed intend to deal with a user as concretely
determined as possible. An interface that leads to a fast leveling of user
performance is the result of unacceptable simplifications in the designer’s
idea of the future user (the interpretant in the complex sign the system
represents). Perhaps the matrix should also deal with how we quantify the
cognitive modes of human thinking. Whether or not the distinction left-

High
(-3
2
(7]
c
o
<
2
g High
8 \Q\“'

_,b°°

&

5
« .

Lo Experience High

Figure 17. Suggested user model: a multidimensional matrix

Interface design 291

right hemispheres of the brain can be sustained — an issue very much on
the minds of psychologists and cognitive scientists — we cannot ignore
the semiotic observation that signs can be structured in sequence (arrays
of symbols) or configuration (for instance, visual constructions). The two
modes in which we perceive and organize information are reflected in the
characteristics of their interpretation. As far as we know, human beings
process symbolic information mainly sequentially. Computers function
the same way (Figure 18). Configurational systems of signs are processed
in a parallel way. In the first case, a predominantly analytical dimension is
apparent; in the second, a synthetic dimension. In sequential processing of
signs, there is a dominant attempt to differentiate; in configurational
processing, integration dominates. Time is related to sequence (our time
representations are sequential), while space is related to configuration.
The two modes are interrelated, interfere with, or try to suppress each
other; under certain circumstances, they enhance each other. To involve
the user in a homogeneous environment — that is, to avoid abrupt
switching from one mode to the other — is a minimal requirement almost
consistently ignored by interface designers. Even when the designer
provides a pointing device, such as a mouse, some users will rely on
emulating keys in order to avoid swift changes that have proven
exhausting. A second requirement, reflecting the fact that users are so
different, is to give the user a choice of dominant mode. Cooperation or
interference between the basic cognitive modes takes place through both
hardware and software. (See Figure 19.) Physical properties (of the
keyboard, display, printer, pointing device, etcetera) are but an extension

Sequence

/ e 0o 0
Output

Configuration

o084 D

)
Sy 1 Userinterface
Keyboard
/ o0 0
Input
\ Mouse
°
e o
Figure 18. Sequential processing of symbolic information. ...=sequence mode;

=configuration mode

292 M. Nadin

Operating System

Integrated Applications

——| Digital Userinterface

Y

Displa
Alpha Keyboard - By t Mouse
(alpha and graphic)

brain

left right
hemispheres

Semiotic/
Cognitive
Processes

Figure 19.

of the properties of the system in its entirety. While esthetic and
functional criteria are difficult to codify, they are part of the interface.
Actually, to provide a really user-friendly interface means to make
possible not everything, but only what is acceptable. Esthetic and
functional acceptability, as well as cultural adequacy, are becoming ever
more critical qualities. Only a superficial designer, one who targets the
lower level of the market, would think that cultural adequacy is reducible
to emulation of characters used in foreign languages. Unfortunately,
almost nothing is ever attempted beyond this. (IBM is a rare exception,
AT&T a promising challenger with impressive user interface accomplish-
ments). Typically, designers approaching interface issues, particularly
communication aspects, are obsessed with quantitative aspects or make
intuitive decisions. Neither can be ignored, but to reduce interface issues
to quantity or to some irrational ‘whispering’ into the ears of the ‘gifted
few’ is unacceptable. Knowing that communication is a semiotic activity,
we can rely on semiotic principles in order to improve the communication
functions of interfaces.

The information theory approach of Shannon and Weaver (1947), long
the dominant model in the theory of communication, identifies source,
encoder, channel, noise, decoder, and receiver (see Figure 20).

The observer can insert himself at each sequence, conveying his
observation in metalanguage. Parameters such as entropy or redundancy
(of the message), while pertinent to ‘messages’ moved back and forth
during computer use, are not the most important and do not begin to

Interface design 293

Source —*-> Channel —————| Receiver
' !
|
| Noise
|
|
L= Observer ————| Meta language

Figure 20. Information theory approach (after Shannon and Weaver 1947)

reflect the specific nature of interface activities. Even the semiotically
improved model is not adequate, although the role of the repertory of
signs used is in evidence (Figure 21). The overlapping of the repertory
(attached to the system or the user) is a necessary condition for
communication, but not a sufficient one. Reasons exist for seeking a more
specific model to deal with the sufficient conditions. Such a model should
take into account the fact that the communication to take place is not
homogeneous, and that mixed systems of signs, as well as different forms
of interpretation adapted to these different signs, occur. A first represen-
tation, again identifying a source and a receiver, introduces relations that
have remained unaccounted for in previous models. Here, the medium
(CRT display, printed output, sound, even voice input devices) is
important, as are the context and the set of codes applied (from natural
language codes, algorithms, and binary codes to codes of high-level
programming languages and so on). Figure 23 — inspired mainly by

Noise

1

Emitter |— Encoder p— Channel Decoder [— Receiver

Repertory
Emitter

Repertory
Receiver

Figure 21. Semiotic information theory approach

294 M. Nadin

Code

-Medium Medium
Addresser M Addressee

T

Context

Figure 22.

Biihler’s (1933) study of social communication and based on Jakobson’s
(1960) understanding of linguistic processes — makes possible both an
integrative (how the whole works) and a differential (part-by-part)
approach. Several partial functions can be identified:

1. The function of communication — actually the function of maintain-
ing communication, identified as the phatic function.

2. The expressive function — relating addresser and the message.

3. The metalinguistic function — dealing with the functioning of the
code(s) used (expressing both the addresser—code and addressee—code
relations).

4. The pragmatic function — dealing with the context and the way it
influences communication (relation between addresser, addressee, and
context).

5. The connative function — representing the attitude of the addressee
toward the message (imperative messages are quite different from op-
tional or query messages).

6. The design function — reflecting the way the addresser and addressee
(in particular) relate to the medium.

7. The referential (or cognitive) function — dealing with the meaning of
the message.

8. The formal (poetic) function — pertaining to the message’s formal
qualities (syntax errors, for instance, are but an indication of this
function).

Calude and Marcus (1981) offer a simplified version of this table of
functions. Looking at a symmetrical communication structure, we have to
consider 8 x3 specific situations related to the threc basic segments
identified in order to obtain optimal design: user—computer, computer—
computer, and computer—user. In the spirit of Shannon, further distinc-
tions should be accounted for. The transmitter formally changes the
messages by adapting it to the medium (encoding). Once the electric signal
arrives at the intended destination, decoding — that is, reconstitution of
the message in a form adequate to the computer layer addressed

296 M. Nadin

Program
and Data

Process ‘ User
Interface Interface
f————| User

Computable
Function

f

Operational
System

Comp

Figure 24.

proach because while the computer is a Boolean machine, the relation
between the concrete problem and the computable function can be
described in modal, not binary logic. The expressive function, influenced
by the same two-valued logic, reflects the state of the art in deterministic
thinking, hopefully to be improved by the use of fuzzy logic or of the logic
of vagueness (see Zadeh 1984). Looking from the computer to the user,
we see a slightly different picture (Figure 24). Obviously, the referential
function of this segment is the same as the metalinguistic function of the
user-computer segment. Two interesting aspects relate to the expressive
function:

1. As a Turing machine, the computer can deal with the computable
function step by step (one thing at a time); that is, no evaluation of the
entire function is possible.

2. Moreover, the computer evaluates only a limited part of the generally
infinite function, which brings into discussion the so-called approxima-
tion of the infinite by the finite (in computer terms, the evaluation of
algorithms by machines).

Recently, artificial intelligence concepts (Reichman-Adar 1987) have
suggested ways to improve this function. The problem to be approached
in this respect is the presentation of a computable function in machine
language. Operationally satisfactory definitions for computable functions
are far from being a trivial issue. The designer of interface (process
interface in this case) should be aware of the semiotic implications of this
issue. We can refer to compiler-related aspects as a particular case
pertaining to the same segment of communication (Figure 25). Very
relevant here is the metalinguistic function, since what actually goes on is
‘transition’ (from programming language to machine language). We refer
to three semiotic aspects of such translations: Is it faithful? How complex
is it? How efficient is it? Although the user is not distinctly referred to in
this segment, the formal (poetic) function is very important. The pro-
gramming language influences the way the search for syntactic errors

Interface design 295

(processor, memory) — takes place. If we add here the semiotic distinc-
tion of the three interdependent levels of the sign (syntax, semantics,
pragmatics), we have a more adequate image, but one that is complex and
not easy to handle in the design of a computer system.

Let us attempt a short description of the three segments mentioned by
Calude and Marcus (1981) which constitute the user—computer interrela-
tion called, for the sake of simplicity, communication (Figure 23).

Algorithm
User l Process
Interface Interface
User | Problem | Computer
Computable
Function

Figure 23. The user-computer interrelation

The message is the problem to be solved with the computer’s help; the
context and the code are represented by the computable function which
describes the problem and by the program as based on some known or
newly developed algorithm. A minimal requirement is that communica-
tion be maintained (the phatic function). This minimum proves quite
complex (ever heard of computer crashing?) and involves the relations
among user—computable function, computable function—program, pro-
gram—computer, and user-computer. Some computable functions describe
a given problem better than others, but not all are equally computable,
and if in principle they are computable, then some limitations in the
hardware may affect the response time. Since each system comes with
specifications impossible to avoid, whether or not the given system can
accept the program becomes an issue; and if it can, how effective is the
program going to be? Finally, the messages meant for the user (and ‘issued’
by the computer) should be concise, precise, and understandable —
conditions easier to claim than to implement. I shall refer here only to the
connative function from among the others, mainly because interface issues
are concerned with the types of problems a system is supposed to assist
the user in solving. Two different forms of ‘intelligence’ are evident: the
‘intelligence’ built (wired) into the hardware and the ‘intelligence’ of the
program. Several design decisions are expected in regard to error handling
(interface and compiler, or interface of an environment like LISP or
PROLOG), feedback to the user (how? what? why?), type of processing
(effective, virtual), etcetera. The referential function is difficult to ap-

296 M. Nadin

Program
and Data

Process ‘ User
Interface Interface
Computer —————>» f———————| User

Computable
Function

f

Operational
System

Figure 24.

proach because while the computer is a Boolean machine, the relation
between the concrete problem and the computable function can be
described in modal, not binary logic. The expressive function, influenced
by the same two-valued logic, reflects the state of the art in deterministic
thinking, hopefully to be improved by the use of fuzzy logic or of the logic
of vagueness (see Zadeh 1984). Looking from the computer to the user,
we see a slightly different picture (Figure 24). Obviously, the referential
function of this segment is the same as the metalinguistic function of the
user-computer segment. Two interesting aspects relate to the expressive
function:

1. As a Turing machine, the computer can deal with the computable
function step by step (one thing at a time); that is, no evaluation of the
entire function is possible.

2. Moreover, the computer evaluates only a limited part of the generally
infinite function, which brings into discussion the so-called approxima-
tion of the infinite by the finite (in computer terms, the evaluation of
algorithms by machines).

Recently, artificial intelligence concepts (Reichman-Adar 1987) have
suggested ways to improve this function. The problem to be approached
in this respect is the presentation of a computable function in machine
language. Operationally satisfactory definitions for computable functions
are far from being a trivial issue. The designer of interface (process
interface in this case) should be aware of the semiotic implications of this
issue. We can refer to compiler-related aspects as a particular case
pertaining to the same segment of communication (Figure 25). Very
relevant here is the metalinguistic function, since what actually goes on is
‘transition’ (from programming language to machine language). We refer
to three semiotic aspects of such translations: Is it faithful? How complex
is it? How efficient is it? Although the user is not distinctly referred to in
this segment, the formal (poetic) function is very important. The pro-
gramming language influences the way the search for syntactic errors

Interface design 297

Machine
Language

Process l Process
Interface Interface
Computer ————> ———————>| Computer

Computable
Function

T

Program
and Data

Figure 25.

takes place and, in the case of more advanced systems, the so-called level
of gravity (permissiveness of the system) as well. Some languages support
this function better by allowing a higher level of gravity (that is, although
a program may have some errors, it is ‘accepted’ in the processing phase).
More recently developed programming languages provide an improved
formal function.

The last segment to be considered concerns the computer user (see
Figure 26). Basically, this segment deals with the way the results of
computing (finite subset of the range of the computable function used) are
made available/communicated to the user (assuming that the program
was accepted and run and that the data was compatible with the software
requirements). Semantic considerations are prevalent in this segment. The
user ignores the metalinguistic function if the program performs well. In a
debugging mode, this function becomes very important. For reasons
difficult to understand, interface designers treat application environments
and programming and debugging environments as though they were
totally independent. Basically, this treatment makes several distinct
channels of communication necessary, a decision that deserves further
examination from the hardware and software perspectives. This issue
brings me to the last aspect of the semiotics of computer interface.

Everybody knows, or would agree, that an effective computer, and in

Program
and Data
Communi- l
cation Output
Protocol Devices
CPU Com;{utable Ly
Function Display
T Processor
Memory

Figure 26.

298 M. Nadin

general an effective device of any sort (car, radio, dishwasher, etcetera), is
more than good (or good looking) hardware or good software (each
device we use is driven by some sort of program). The bottom line is that
it should allow for good use (not necessarily easy or friendly) and for
quality performance. The different ways users interact with such devices is
very important and should be accounted for in the design of interface. But
while we understand how the machines we build work, and even manage
to find out why their functioning sometimes seems ‘irrational’, we only
partially understand processes in which our thinking and emotions are
involved. Some progress has been made in understanding behavioral
aspects; cognitive processes have been extensively and intensively re-
searched too. The results are frequently applied in the design of interfaces.
The following aspects are routinely observed: message from user to
computer, feedback, and computing and return of results. As already
mentioned, interfacing goes well beyond these aspects and extends to
everything a user will come into contact with when using a system and
getting output from it (on CRT display, slide, film, hard copy, etcetera).
Two attitudes regarding how interface should be approached can be
identified:
1. Emulate the current human way of thinking and acting on the
computer. (‘It is important that the formal computer procedures do not
prevent the user from changing his representation of the problem or task
environment necessary to reach the best solution’.”
2. Challenge the user with a totally new language, thus with a totally
new way of thinking and acting.
In both cases, a better understanding of what languages are, how they are
used, and how they work is necessary. Interface is a semiotic issue on both
of the levels at which it takes place: process interface and user interface.
Our expectations are reliability (with tolerance toward the user, if possible),
self-sufficiency, ease of use, and adaptability. All relate to the semiotic
qualities of interface language. We can distinguish between as many
languages, as many senses as we have. A ‘taste’ statement can go as a
mixture of or succession from sour, bitter, sweet. ... Hot, warm cold ... can
represent an example of a touch-interpreted statement. The same holds for
smell. Van Dam (1984) confirms this when he states, ‘The computer
interface may eventually metamorphose into a total sensory environment’.
The main systems of signs are the visual and the verbal (natural
language). In reality, the distinction is less obvious, and influences
between both are very important. Another distinction is between natural
and formal languages. A suggestive representation can be given as a
matrix (Figure 27) rendering four possibilities: formal-visual, formal—
verbal, natural-visual, and natural-verbal.

Interface design 299

formal

verbal visual

natural

Figure 27. Language matrix.

Voice input devices, or other I/O features (heat sensitive or touch
sensitive, for instance) will, of course, require a more sophisticated matrix
which is not just multidimensional but also reflects influences between the
different components. The visual-verbal distinction refers first of all to
possible forms of representation. The natural-formal distinction refers to
the logical structure and thus to the nature of language (cultural versus
artificial). The matrix takes combinations into consideration too. Formal
verbal language may prove difficult for people to read or write. Such
languages require special training and a competence level demanded by
specialized fields (mathematics, symbolic logic, language programming,
dance, music, etcetera). Reading texts written in a programming lan-
guage, or a musical score, or a choreographic labanotation is difficult.
Formal visual languages may prove difficult to ‘write’ but can be read
more easily (though not necessarily with precision). Research has recently
approached such languages and the attempts to resuscitate visual modes
based on pictographic representation or to improve such forms of visual
representation (for example, diagrams, charts, lists, etctera). Although
controlled by grammar, natural languages are easier to write because this
grammar is not as rigidly specified as the grammar of formal languages.
On the other hand, it is harder to be specific and precise, to avoid
ambiguity in natural language. In the cultural environment, this is an
advantage evidenced by qualities which are usually not duplicated in
formal languages. This is not to say that natural language is easier to use,
as so many assume. Bar Hillel (1970) maintains that ‘Natural languages
are essentially pragmatic, free’. Whether something fundamental has
changed since 1970 in respect to our understanding of the pragmatics of
formal languages or to the way such languages are used is a matter of
controversy. Nevertheless, the pragmatics of natural languages is far
more difficult than the pragmatics of any other language (formal in-
cluded). If we again use the metaphor of ‘governing’, the environment in

300 M. Nadin

which natural language is used is one of important amounts of ‘govern-
ing’. Type is not the issue; ‘dissidence’ is allowed, but the regime is very
bureaucratic. Transactions essential to normal life involve ‘red tape’. The
language user is under the heavy burden of the ‘institution of language’.
In the artificial environment, ‘dissidence’ is not possible (especially in
compiler environments); but once the language is used according to its
rules, no pressure from the language is noticed. The amount of ‘govern-
ing’ is small; type is the issue. What I have addressed here are issues of
language use in two different environments: one in which the user is
comfortable, since it is the environment of his everyday life; and another
in which the user faces something less familiar, in which interface should
play a mediating role. ‘The ideal situation’, as Van Dam (1984) describes
it, in tune with many computer scientists and/or science fiction writers,
‘would be to interact with the computer as if it were a helpful human
being, perhaps chatting in natural language’. This should be contradicted,
not only because it raises false hopes, but also because the underlying
principles of digital computers are those of Boolean logic — a reduction
from the multivalued logic of natural languages to two-valued logic.
Progress in better emulating natural languages (English, basically) is to be
expected, but the use of natural languages can become possible only on
computers applying the logic of such languages. Interface is a trade-off in
which amount and type (of signs used) are the fundamental parameters.
Norman (1983), who introduced a remarkable quantitative method for
trade-off analysis, makes the basic statement: ‘Any single design tech-
nique is apt to have its virtues along one dimension compensated by
deficiencies along another’. Maybe the following comparative charts
(Table 2) will explain the kind of trade-off implicit in the semiotic decision

Table 2. Language chart.

Natural language Formal language Communications characteristics of
formal languages
write select read
general specific understand read system model system
unlimited limited vocabulary system intuition intuition
vocabulary predefined grammar concrete have purpose indefinite
indefinite grammar logical structure knowledge semantics purpose
intuitive structure difficult to acquire ~ have purpose error semantics
easily acquired competence syntax error error
competence easy to attain high
difficult to obtain performance/easy

performance to learn

Interface design 301

involved in the design of interfaces. An integrated, interdisciplinary
approach to interface considers the contribution of each component.
Semiotics coordinates the relationship between everything that partici-
pates in interfacing. Product design, software engineering, hardware,
ergonomics, etcetera — highly specialized fields — should each be
evaluated in turn and integrated in the comprehensive language of the
product. Of course, semiotics has to provide the necessary means
required. This article has given some examples.

Notes

* The author is grateful to Leif Allmendinger, Thomas Ockerse, Richard Zakia, and
Harvey Carapella for valuable comments and for providing some of the figures used here.
In addition, the author thanks his students from the class ‘Semiotics of Computer-Aided
Human Activity’, held at The Rochester Institute of Technology (Spring 1984) during his
tenure as William A. Kern Institute Professor in Communications and ‘Computer
Graphics—Graphic Design Issues’, Autumn 1984, RISD.

1. Registered trademark, Apple Computer Corporation.
2. Registered trademark, Xerox, Inc.

3. Copyright Mihai Nadin, 1981.

4. Registered trademark, Nadin and Ockerse, Ltd., 1983.
5. Source unknown.

References

Bar Hillel, Yehoshua (1970). Communication and argumentation in pragmatic Janguages. In
Linguagi nella Societa nella Tecnica, 129-168. Milan: Covegno Olivetti.

Biihler, Karl (1933). Die Axiomatik der Sprachwissenschaft. Kant Studien 38, 19-90.

Calude, Cristian and Marcus, Soloman (1981). Introduction to the semiotics of man —
computer communication. Revue Roumaine de Linguistique 31, 191-211.

Jakobson, Roman (1960). Linguistics and poetics. In Style and Language, T. A. Sebeok
(ed.), 350-377. Cambridge: The MIT Press.

Meyrowitz, Norman and Van Dam, Andries (1982). Interactive editing systems. Computing
Surveys 14 (3), 323.

Molzberger, Peter (1983). Aesthetics and Programming CHI ‘83, Proceedings. New York:
Association for Computing Machinery.

Morris, Charles (1938). Foundations of the Theory of Signs. Chicago: University of
Chicago Press. :

Nadin, Mihai (1981). Zeichen und Wert. Tiibingen: Narr Verlag.

Norman, D. A. (1983). Design principles for human—computer interfaces. In Human Factors
in Computing Systems CHI ‘83, Proceedings, vol. 1. New York: ACM.

Peirce, Charles Sanders (1931-1966). The Collected Papers of Charles Sanders Peirce,
C. Hartshorne, P. Weiss, and A. W. Burks (eds.). Cambridge, MA: Harvard University
Press.

Reichman-Adar, Rachel (1984). Extended person-machine interface. Artificial Intelligence
22, 157-218.

302 M. Nadin

Schneider, M. L. and Thomas, J. C. (eds.) (1983). The humanization of computer interfaces
(Introduction). Communications of the Association for Computing Machinery. 26 (4),
252-253.

Shannon, Claude and Weaver, Warren (1947). The Mathematical Theory of Communication.
Urbana: University of Illinois Press.

Simon, Herbert (1982). The Sciences of the Artificial. Cambridge, MA: The MIT Press.

van Dam, Andries (1984). Computer graphics comes of age. Communications of the
Association for Computing Machinery. 27 (7), 646.

Zadeh, Lofti (1984). Coping with the impression of the real world. Communications of the
Association for Computing Machinery. 27, 304-311.

Mihai Nadin is Eminent Scholar, Professor in Art and Design Technology at The Ohio
State University. From 1980-1985, he was Professor in the Liberal Arts and Graphic
Design Divisions at the Rhode Island School of Design and director of the Institute for
Visual Communication and Semiotics. His principal research interests are foundations of
semiotics, the semiotics of computer-aided human activity, art and design issues in artificial
intelligence, and fuzzy logic/vagueness, on which he has written extensively. He lectures
at several universities in the USA and Europe and is a consultant in visual and computer-
aided communication.

P -

e el

