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Abstract

Three dimensional motion capture facility is a power-
ful tool for quantitative and qualitative assessment of multi-
joint external movements. Electro-myograph (EMG) sig-
nals give the physiologic information of muscles while do-
ing motions. In this paper, our objective is to integrate these
two different bio-medical data together and to extract pre-
cise and accurate feature information for classifying the
human motions. When both forms of data are integrated
and analyzed together, the information achieved will be im-
mensely useful to quantify the complex human motions for
medical reasons or sport performances. These biological
quantifications of biomechanical data, are useful for gait
analysis and several orthopedic applications, such as joint
mechanics, prosthetic designs, and sports medicines.
The different dimensionality reduction approaches such In-
tegral of Absolute value and Weighted Singular Value De-
composition are used to extract the preliminary features
from EMG and motion capture data respectively. On com-
bining these feature vectors, fuzzy clustering such as Fuzzy
c-means (FCM) is performed on these vectors that are
mapped as the points in multi-dimensional feature space.
We get the degree of memberships with every cluster for
each mapped point. This extracted information is used as
the final feature vectors for classifying the human motions.

1. Introduction

Motion Capture is the process of recording a live human

motion event and translating it into three-dimensional po-

sitional and orientation information of joints in space over

time. The EMG signal is a biomedical signal that measures

the electric currents generated in muscles during contrac-

tions that occur while performing the motions. When both

these information are integrated and analyzed together, the

information achieved will be immensely useful to quantify

the complex human motions for medical reasons or sport

performances. These biological measuring of biomechani-

cal data, are useful for gait analysis and several orthopedic

applications, such as joint mechanics, prosthetic designs,

and sports medicines.

Figure 1. Human motion capture data is cap-
tured using the reflectors (round-shaped)
on the body and EMG activity is mea-
sured simultaneously using EMG electrodes
(rectangular-shaped, gray-color).

Figure 1 shows the retro-reflective markers (round-

shaped) on the participant’s body in the 3D space. As the

participant keeps moving, the cameras track the movement
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of these markers and give the exact position and orientation

of the joints/segments in the 3D space. Hence, every motion

is represented by a matrix which contains the 3D positional

information for all joints, in the form of 3-column per joint

(called as “joint matrix”) in whole motion matrix. Also,

EMG electrodes (rectangular-shaped and gray in color) are

attached to the limbs as shown in Figure 1. Since human

motions are mostly natural activities, semantically similar

motions such as walking can have large variations in EMG

signals. The data acquisitions of the both sensors is trig-

gered at the same time when the participant starts perform-

ing action.

The main interest of this paper lies in understanding the

relationship between the motion capture and EMG data for

the different kind of human motions. Once the nature and

characteristics of this relation is understood, this collabora-

tion of information will be useful for clinical diagnosis and

biomedical applications. Until now, extensive research has

been made on EMG signal analysis, processing, and pattern

classification on only EMG etc. Also, in the field of human

motion database, similarity matching of motions, indexing,

content-based retrieval of human motions are being done.

But as far our knowledge goes, integration the motion cap-

ture and EMG data and then analyzing both to classify the

human motions is never being tried. In this paper, we make

an effort to develop a motion classification technique that

depends on both kinds of data.

Figure 2 shows the sample synchronous EMG and mo-

tion capture data. The participant is performing the rais-

ing of arm on instruction. In third figure, we can see the

3D positional trajectory of the wrist motion in the 3D-space

while raising arm. While he raises the arm, there are mus-

cle activities in upper-arm and forearm that are captured by

biceps and upper forearm EMG electrodes/sensors respec-

tively. Thus, seeing motion capture along with EMG data

gives us the better picture internally as well as externally

for analyzing the motions. Though both EMG and Motion

Capture are synchronous while capturing they have differ-

ent properties that make them difficult to have unique fea-

ture extraction technique. The differences between the two

data are following

The EMG data is more non-stationary in nature. It

depends on anatomical and physiological properties

of muscles whereas motion capture data depends on

physical movements of the joints while performing

motions.

The EMG data measures the electric currents gener-

ated in muscles during contraction, while motion cap-

ture data measures the 3D positional (and rotational

too, but we will be neglecting them in our current

work) values of each joints during performing action.

The resolution of the EMG data is in mV (millivolts),

and the resolution of the motion capture data is mm

(millimeters).

The EMG data is not at all immune to the noise like

motion capture data.
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Figure 2. The 3D-motion trajectory of the wrist
joint and corresponding muscle activity in bi-
ceps and upper forearm while raising as arm.

The EMG signal, is more complicated signal, as it is con-

trolled by nervous system. The two similar motions per-

formed, even by assuming with same local speed, it is not

necessary that EMG signal will be similar. And of course,

vice-versa is equally true. Thus, if we consider two motions

equidistant from the mean of the cluster of similar motions

in feature space, they may be significantly different form

each other. And even, two motions given in a cluster may

be similar even though they are far away from each other

in feature space. Thus, in biomedical data such as motion

capture and especially EMG, the boundaries between the

classes of motions are not sharply defined.

To overcome the above differences we use different fea-

ture extraction techniques for EMG and motion capture

data. We use the sliding window approach to extract the

features from motion matrix data. To get a final feature vec-

tor corresponding to a window of a motion, we combine

these two sets of features and map it as a point in multi-

dimensional feature space, which is combination of EMG

and motion capture feature space. We perform the fuzzy

clustering such as fuzzy c-means (FCM) on these mapped

points to generate the degree of memberships with every

cluster for each point. Due to non-stationary property of the
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EMG signal, fuzzy clustering has an advantage over tradi-

tional clustering techniques. For a given motion, highest de-

gree of membership for each cluster among all the divided

windows of a motion becomes the final feature vector for

the given motion. The separability of these feature vectors

among different motions depends on the fuzzy clustering.

This extraction technique projects the effect of both motion

capture and EMG in a single feature vector for the corre-

sponding motion.

2. Related Work

[10] constructed qualitative features describing geomet-

ric relations between specified body points of a pose and

uses these features to induce a time segmentation of mo-

tion capture data streams for motion indexing. For each

query, a user has to select suitable features in order to obtain

high-quality retrieval results. The posture features of each

motion frame are extracted and mapped into a multidimen-

sional vector in [3] for motion indexing. These methods are

more posture specific; and matching in two motions is car-

ried by indexing first and last frames that may not be same

for most of the similar motions, affecting similarity results.

In [9], the authors use a hierarchical motion description for

a posture, and use clustering-based key-frame extraction for

retrieving the motions. To extract key-frames they need to

find similarity between each consecutive frame, which is

time consuming. Similarly Keogh et al. [8] used bounding

envelops for similarity search in one attribute time series

under uniform scaling. Also, lot of work is proposed on re-

trieving nearest- neighbors for the queries in multi-attribute

data repository. The iDistance [14] is a distance-based in-

dex structure; here dataset is partitioned into clusters and

transformed into lower dimension using similarity with re-

spect to reference point of cluster. MUSE [13] extends [14]

where partitioning of dataset at each level of the index tree

is based on the differences between corresponding principal

components.

In the past decades, much research has been done on the

recognition of EMG signals, most of which is reviewed in

[12]. The researchers, has investigated various techniques

to extract the feature vectors which include zero-crossing

[7], EMG Histogram [15], coefficients of an EMG autore-

gressive model [5] etc., Another classification techniques

used to classify the EMG signals are neural networks [1],

fuzzy systems [2], fractal analysis [6] etc.

3. Feature Extraction

Using motion capture facility and Myomonitor EMG fa-

cility, the external 3D positional information of the human

segments and the electric current flowing through muscles

internally is captured/measured synchronously for the per-

formed motions. Both data characterize the motion in dif-

ferent format, but they definitely give more information

when they are analyzed together than analyzed separately.

Our goal is to extract the desirable features from both form

of data and to estimate the human motion precisely. To

start with, we extract the corresponding preliminary fea-

tures from motion capture and EMG separately using the

techniques, which are discussed in shortly. Then using our

approach, we combine these two different preliminary ex-

tracted features to come with a single final feature vector

which can then reflect the effect of motion capture and EMG

in the combined single feature space.

3.1. EMG Data

The EMG signals are acquired using surface electrodes

attached at the skin surfaces. Each electrode measures the

electric flow in associated muscles. We follow a traditional

measure to extract the feature of the EMG using the Integral

of Absolute Value (IAV). We calculate IAV separately for

individual channel. Each channel is defined by each EMG

sensor. Let be the sample of an EMG signal/data and

be the window size for computing the feature compo-

nents. In a stream of EMG signal let be the Integral
of Absolute Value of window of EMG which is calcu-

lated as,

(1)

3.2. Motion Capture Data

With the global positions, it becomes difficult to analyze

the motions performed at different locations and in differ-

ent directions. Thus, we do the local transformation of po-

sitional data for each body segment by shifting the global

origin to the pelvis segment because it is the root of all body

segments.

An appropriate mapping function is required to map 3D

motion joint matrices into 3D feature points in the feature

space. In our implementation, we used the linearly optimal

dimensionality reduction technique SVD [4] for this pur-

pose. For any joint matrix A and window size , the

SVD for the window is given as follows,

(2)

is a diagonal matrix and its diagonal elements are called

singular values. And columns of matrix are called right

singular vectors. We add up the three right singular vectors

weighted by their associated normalized singular values to
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construct the features for a joint motion’s window as

follows:

(3)

where , , , and

is singular value vector and is the com-

ponent of the right singular vector and is the normal-

ized weight for the right singular vector. The weighted

joint feature vector of length 3 represents the contribution of

the corresponding joint to the motion data in 3D space for

the window of length and also captures the geometric

similarity of motion matrices.

3.3. Combining Feature Vectors

Having extracted the feature vectors for each window

from motion capture and EMG, the next step is to com-

bine them by appending one to other. Thus, -length EMG

feature vector (i.e. a point in m-dimensional EMG feature

space) and -length motion capture feature vector (i.e. a

point in n-dimensional motion capture feature space) form

a -length feature vector represented as a point in

-dimensional feature space. Since the EMG data is

non-stationary in nature, it introduces vagueness in the fea-

ture vectors. Vagueness is a problem that requires a fuzzy

approach/solution to handle. We use fuzzy c-means cluster-

ing (FCM) algorithm [11] to cluster the points in -d

or -d(let ) feature space where each point rep-

resents the combined feature vector for each window.

The FCM on all points in -d feature space is given

by,

(4)

where is the pre-determined number of clusters we are

interested into, the performance of the classification varies

on choice of cluster numbers which will be discussed later

in Section 6. gives the center/median points for all

clusters in -d space and matrix gives the degree of

membership for each points(i.e. windows) with respect

to each cluster. contains a history of the objective

function across the iterations which is of least interest in our

approach.

Each motion of length say , is divided into win-

dows and thus mapped as points in -d feature space.

Using fuzzy c-means clustering each of these points has de-

gree of membership with the fuzzy clusters. Thus, for each

points we choose highest degree of membership and its

corresponding cluster. The highest degree of membership

indicates that the point is more closer to the correspond-

ing cluster than other clusters. Thus, for the given motion

which is represented in form of feature points in -d

feature space, we have final feature vector corresponding to

this motion in form of the maximum and minimum of the

highest degree of membership for each cluster.

Consider a motion , each window of motion has a

corresponding point in -d space. And we get a degree of

membership with all clusters for each point in matrix

using FCM. Thus, for each window/point in motion ,

we get the highest degree of membership ( ) with cluster

as follows,

(5)

(6)

The final feature components of motion corresponding to

cluster i.e. are given as follows, for all

,

(7)

(8)
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Raise Arm − Right Hand M2

Figure 3. The range of highest degree of infor-
mation per cluster for two sets of two similar
motions "Raise-Arm" and "Throw Ball" with
cluster c = 6.

Figure 3 illustrates the previous discussion using two sets

of two similar right hand motions. In motion ,

has as maximum of the highest degree of member-

ship with Cluster and as the minimum of the highest

degree of membership. Thus, for , feature component

corresponding to Cluster are . Similarly for all

other motions with different clusters. Thus the length of the

final feature vector is where is the number of clusters.
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From Figure 3 we see that, all the points corresponding to

windows in motion are near Cluster 1, 3, 4,

5, and for motion near Cluster 3, 4, 5 and

6. Figure 4 shows the final feature vectors for two sets of

similar motions.
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Figure 4. The feature vectors for the two sets
of similar motions corresponding to the mo-
tions shown in Figure 3.

4. Searching for similar motions (Classifica-
tion)

We perform content-based retrieval for the given query

matrices(EMG + Motion Capture) from our database. For

the given query matrix, we transform it into query fea-

ture vector so that it becomes compatible to search in our

database by just comparing with low-dimensional feature

vectors of motions in database.

The query matrix which includes EMG and motion

capture, we use the same window size to transform query

EMG and motion capture data into feature vectors. To trans-

form the query matrix of EMG and motion capture we use

the same techniques discussed in Sub-Section 3.1 and Sub-

Section mocap respectively. Let be the query combined

feature vector by combining both EMG and motion capture

feature vectors for window in query matrix .

To get final feature vector corresponding to the query

motion, we need to know the maximum and minimum of

highest degree of membership with each of the clusters

which are formed by applying FCM on the existent motions

in the database. For each window of query, we get the

degree of membership with cluster as follows,

(9)

where is the centroid of the cluster , while

is the euclidean distance expressing the similarity between

query feature point and the center. According to [11], pa-

rameter m is chosen in range of , with in

most applications of FCM. Hence, we choose as it

is most widely used.

Having know the degree of membership with all clusters,

the final feature vector corresponding to the query is deter-

mined the same way as seen in Sub-Section 3.3. We can use

any searching technique like linear search to get the nearest

neighbors and to classify the query motion. The main goal

of this paper is to retrieve the correct matching motion and

to do classification on the query motion. For fast searching,

our extracted feature vectors can be applied to any indexing

technique to prune irrelevant motions.

5. Experimental Procedures

The human motion data was generated by capturing hu-

man motions in our Motion Capture Laboratory. This lab-

oratory has 16 high-resolution Vicon cameras connected to

a data station running Vicon iQ software. There are 3D-

attributes for the local transformed motion capture data, and

each attribute represents the positional values of one joint of

a moving subject. EMG Ag electrodes are used to pick the

muscle signals of limbs while performing motions. On each

hand, four electrodes are placed mainly on biceps, triceps,

upper forearm, and lower forearm. On each leg, two elec-

trodes are placed on front side of shin and on backside of

shin. The EMG signals are amplified and band-pass filtered

(20-450 Hz) by Delsys Myomonitor system. Te sampling

rate is 1000 samples second. This, processed signal is full-

wave rectified and down-sampled to 120 Hz to make it uni-

form with the motion capture system which works at 120

samples per second. Motion capture and EMG system has

to be synchronized along time axis, i.e. both has to start

their acquisitions of data at the same time when participant

starts to perform. Figure 5 shows a circuitry which we de-

signed to make both systems work synchronously with each

other using Delsys designed “Trigger Module”.

MATLAB behaves as a main controller that sends a trig-

ger to EMG and motion capture to start acquisitions through

trigger module. The trigger module is attached to the par-

allel port of workstation. And MATLAB communicates

with trigger module via parallel port using Data Acquisi-

tion Toolbox.
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Figure 5. The hardware circuit for synchroniz-
ing motion capture and EMG system.

Our test bed consists of different human motions per-

formed by different participants. We analyze differently for

upper limbs and lower limbs though our approach is flex-

ible enough to classify the human motions for whole hu-

man body. To analyze just one limb makes more sense in

prosthetic control and medical rehabilitation of single limb.

Thus, when we consider hand, we have four attributes from

motion capture in form of human body segments such as

clavicle, humerus, radius and hand; and four attributes from

EMG such as biceps, triceps, upper forearm and lower fore-

arm. Also, when we consider leg, we have three segments

tibia, foot, toe, and two attributes from EMG such as front

and back shin. The window sizes were made variable from

50ms to 200ms to study the effect on classification rate, dis-

cussed next.

6. Performance Evaluation

To quantify the suitability of the feature vectors mapped

in feature space, we evaluate the system performance by

two ways. The first way is for certain amount of queries,

we check whether the query motion is correctly classified

or not. In this case, we measure the average misclassifica-

tion rate by varying window size and pre-determined clus-

ters used in FCM. The second way to find k-Nearest Neigh-

bors for the given query motion and to check the percentage

of returned motions in k which are actually present in the

same group of query motion. The other returned motions

are false alarms. Thus, we measure the performance of our

approach by doing experiments on captured data and vary-

ing the parameters like,

Window Size in range of ,

Number of Clusters in range of .

6.1. Mis-classification Rate
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Figure 6. Percent of trials Misclassified for the
Right Hand.

Figures 6 and 7 shows the effect of window size and

change in number of clusters on the average percent of

mis-classified trials/queries. Since we analyze the hands

and legs separately, Figures 6 and 7 shows the perfor-

mance of classification on right hand and right leg respec-

tively. The mis-classification is generally between 10-20%

for the number of clusters between 10-25, for both feature

spaces (hand and leg). The overall mis-classification rate

decreases, as number of cluster increases. It is more clearer

in right leg trials when number of clusters are large that

most of the time mis-classification rate increases by small

amount when window size increases.

6.2. k-NN feature space classifier

Retrieving the k-closest motion from the database for the

given query motion is a good non-parametric classifier. For

all set of experiments is set to 5. Figures 8 and 9 shows

the percentage of correctly classified motions among the
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Figure 7. Percent of trials Misclassified for the
Right Leg.

retrieved motions from the database for the right hand and

right leg respectively. Figure 9 clearly shows that as the

window size goes on increasing more number of correctly

classified motions are retrieved. Also, as the number of

clusters goes on increasing, the percentage of kNN classi-

fied also goes on increasing. Thus, by analyzing the Figures

6 and 8, we can see that for large number of clusters and

larger window size, mis-classification rate decreases and

more number of correct closest neighbors are retrieved from

the database.

7. Discussion and Conclusions

We have two biomedical signals to measure from the hu-

man while he/she is performing; first is the 3D Motion cap-

ture data which gives the 3D positional information of all

joints and second, the EMG data which records the electric

current flowing through muscles due to muscle-contraction

while performing motions. In this paper, we discussed a

technique to extract the feature vectors, which reflect the

characteristic nature of motion capture as well as EMG

muscle data on that motion. Since both have different prop-

erties, different dimensionality reduction approach is used

to extract the preliminary features from them. Integral of

Absolute value and Weighted Singular Value Decomposi-

tion techniques are used for EMG and motion capture re-

spectively. On combining these feature vectors, fuzzy clus-

tering such as fuzzy c-means (FCM) is performed on these

vectors, which are mapped as point in multi-dimensional

feature space. We get the degree of memberships for each

mapped point with every cluster. This information extracted
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Figure 8. Percent of correctly classified Right
Hand motions out of k(= 5) motions retrieved
for the right hand query motion.

becomes the final feature vector for individual motions. The

length of the feature vector is in the order of the number of

clusters selected for clustering. Fuzzy logic is used because

contradictions in the data can be tolerated. Also, it is possi-

ble to discover the combined patterns of motion capture and

EMG that are not easily detected by other methods. After

the extraction of the feature vectors any similarity search-

ing technique can be used to find the nearest neighbors or

for classification of the motions.

Our experiments show that mis-classification rate is

mostly in between 10-20%, which is understandable due to

uncertainty of biomedical data and they are prone to noise.

Some other unwanted environment effects such as signal

drift, change in electrode characteristics, signal interference

may affect the data. Also, other bio-effects such as subject

training, fatigue, nervousness etc., can cause the purity of

the biomedical signals. We also analyzed, the k-NN feature

space classifier to check among the k- most nearest neigh-

bors how many are exact match or how many are there in

same class of query. Since, we are considering the raw sig-

nal, the average percentage of correct matches among k-NN

is about 80%.

The degree of membership with clusters generated by

fuzzy c-means clustering is used to extract the feature vec-

tors for the given motion described by motion capture and

EMG data. Our approach has shown the satisfactory results

in terms of feature classification. Our work represents the

new way of integrating the two different bio-medical data

which when analyzed together and correctly gives more pre-

cise and accurate information.
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