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Abstract

Recent advancements in the brain sciences have enabled researchers to determine,
with increasing accuracy, patterns and locations of neural activation associated with
various psychological functions. These techniques have revived a longstanding debate
regarding the relation between the mind and the brain: while many authors claim that
neuroscientific data can be employed to advance theories of higher cognition, others
defend the so-called ‘autonomy’ of psychology. Settling this significant issue requires
understanding the nature of the bridge laws used at the psycho-neural interface. While
these laws have been the topic of extensive discussion, such debates have mostly fo-
cused on a particular type of link: reductive laws. Reductive laws are problematic:
they face notorious philosophical objections and they are too scarce to substantiate
current research at the intersection of psychology and neuroscience. The aim of this
article is to provide a systematic analysis of a different kind of bridge laws—associative
laws—which play a central, albeit overlooked role in scientific practice.

1 Introduction

In a classic paper attempting to undermine theoretical reductionism, Jerry
Fodor| (1974, p. 97) noted that “the development of science has witnessed the
proliferation of specialized disciplines at least as often as it has witnessed their
reduction to physics, so the widespread enthusiasm for reduction can hardly
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be a mere induction over its past successes.” Four decades later, Fodor’s as-
sessment remains accurate; indeed, it has been reinforced. Rather than being
progressively reduced to physics, the special sciences have sprawled into a num-
ber of burgeoning subfields. Yet, at the same time, we have also witnessed
the rise of interdisciplinary studies. If, as Fodor holds, the special sciences are
relatively ‘autonomous,” what explains the recent proliferation of fields such as
neurolinguistics, moral psychology, and neuroeconomics?

The relation between different scientific fields has been extensively debated
in philosophy and the particular case of psychology and neuroscience has gath-
ered enormous attention. As reported in [Bourget and Chalmers| (2013), the
dominant position is now non-reductive physicalism—the thesis that, although
mental states are realized by brain states, mental kinds cannot, in general, be
reduced to neural kinds. As we discuss below, this position fails to adequately
address an important issue, namely, why studying the brain can inform our
understanding of the mind. The failure to provide a convincing answer to this
question is especially troublesome given the current trend in cognitive neuro-
science, where advancements in neuroimaging have begun to affect theories of
higher cognition, such as language processing and decision making (Gazzaniga
2009; Mather et al.|2013; \Glimcher and Fehr|2014)). If theorists are right that the
mapping of mental kinds onto neural kinds is too problematic to substantiate
any meaningful interaction at this interface, is neuroscience simply promising
something that cannot be achieved? Or does the constant use of neural data
in fields such as neurolinguistics and neuroeconomics mean that philosophical
critique misunderstands the relation between cognitive and neural levels?

In this article, we argue that the tension between meta-theory and scien-
tific practice stems from the failure to distinguish between different types of
bridge laws, that is, principles that link kinds across domains. On the one
hand, theorists have generally been concerned with reductive bridge laws. On
the other hand, most bridge laws currently employed in cognitive neuroscience
are not reductive; they are associative statements that are categorically distinct
from the contingent type-identities typically employed in derivational reduction
and in more recent reductive approaches. The aim of this essay is to provide
an account of associative bridge laws which, despite their widespread use in
neuropsychology, have never been systematically discussed. We begin by intro-
ducing the role of bridge laws in traditional models of derivational reduction and
rehearsing some well-known problems ( Next, we present the kind of bridge
laws that are employed in neuroscientific studies of higher-cognition ( and
elucidate the main differences between these associative statements and their
reductive counterparts ( We conclude by discussing some implications of
our analysis for extant debates in the philosophy of mind and science (§5)).

Before we begin, two brief remarks about terminology. First, we employ
the term ‘bridge law’ as referring to any statement that maps predicates across
theories or domains of science. Depending on the nature of the interfield relation,
these links can assume different forms. Whereas reductionist accounts require
reductive laws, different types of bridge laws can be found in non-reductive
theories. Second, we shall not enter longstanding metaphysical debates on the



notions of event and natural kind. For present purposes, we treat natural kinds
as predicates that fall under the laws or generalizations of a branch of science
(Fodor|[1974)). Similarly, a P-event is an event involving property P.

2 Bridge Laws in Theory Reduction

In what became a locus classicus, |[Nagel (1961)) characterized reduction as a de-
ductive derivation of the laws of a reduced theory P from the laws of a reducing
theory N. Such derivation requires that the predicates of P be expressed in
terms of the predicates of N. For instance, suppose that we want to show that
alaw Lp : Pix — Psx, expressed in the language of theory P, can be reduced
to—that is, derived from—a law Ly : Nz — Nox, expressed in the language
of theory N. (For the sake of simplicity, let us assume that the languages of the
two theories do not overlap, i.e., that the predicates of P do not also belong to
N, and vice versa.) What we need is a series of bridge laws, that is, principles
that govern the translation of the relevant P-predicates into N-predicates:

(Rl) PlfL‘ — Nll'
(Rg) PQ.’)S — NQ.T

How should the ‘>’ connective be interpreted, in order for R; and Ry to
play their role in Nagelian reduction? [Fodor| (1974) makes a number of impor-
tant points. First, ‘>’ must be transitive: if P; is reduced to Ny, and Nj is
reduced to @1, then Pj is thereby reduced to Q1. Second, ‘<>’ cannot be read as
‘causes,’” for causal relations tend to be asymmetric—causes bring about their
effects, but effects generally do not bring about their causes—whereas bridge
laws are symmetric: if an Pj-event is a Nj-event, then a Nj-event is also an
Pi-event. Given these two features, bridge laws are most naturally interpreted
as expressing contingent event identities. Thus understood, R; can be read as
stating that Py is type-identical to N1E|

Note that the Nagelian model of reduction provides a clear-cut account of
how discoveries at the neural level could, in principle, inform theories of higher
cognition. Suppose that we want to test hypothesis Lp : Pixz — Psx, which
posits a law-like connection between two psychological predicates P, and P,. If
we had a pair of reductive bridge laws that map P, and P, onto neural kinds
N; and N,, respectively, then we could confirm and explain the law-likeliness of
Lp directly by uncovering the neural-level connection Ly : Nyx — Nox. This
is because, as noted above, the bridge laws employed in derivational reduction
express type-identities. Consequently, if P, and P, are type-identical to N7 and
Ny and there is a law-like connection between P; and Ps, there will also be

L As Fodor notes, reductive bridge laws express a stronger position than token physicalism,
the view that all events that fall under the laws of some special science are physical events.
Statements such as R; and R2 presuppose type physicalism, according to which every kind
that figures in the laws of a science is type-identical to a physical kind. Since our focus is not
on physicalism per se; the relevant claim is whether the kinds of one science can be reduced
to the kinds of a more fundamental science, not necessarily to physics.



an analogous law-like connection between N7 and N,. To illustrate, consider
the following analogy. Suppose, for the sake of the argument, that water and
sodium chloride can be reduced, in the sense of being type-identical, to HoO
and NaCl. If one provided a successful explanation of why NaCl dissolves in
H50, under specific circumstances, then one has thereby explained why sodium
chloride dissolves in water, under those same conditions. In short, the reductive
model suggests a specific goal for cognitive neuropsychology, namely, to look for
neural-level implementations of psychological processes, which can then be used
directly to test and explain psychological laws.

The well-known objection against type-physicalism is that natural kinds sel-
dom correspond so neatly across levels. Although one could make a case that
heat is reducible to mean molecular kinetic energy, or action-potentials to nerve
impulses, the reigning consensus in philosophy of science is that contingent
event identities are too scarce to make derivational reduction a plausible general
inter-theoretic model (Horst(2007)). In most cases, there seem to be no physical,
chemical, or macromolecular kinds that correspond to biological, psychological
or economic kinds, in the manner required by the reductionist scheme. This,
simply put, is the multiple-realizability argument against the classical model of
derivational reduction (Putnam|[1967; Fodor||1974). The basic idea is that in-
stead of Ry and Rg, what we usually find are linking laws such as Rs, which
capture how higher-level kinds can be potentially realized by a variety of lower-
level states:

(R3) Pix < Niz V...V Nyx

In response to the multiple-realizability argument, philosophers pursued two
alternative routes, depending on their metaphysical inclinations. One strategy
consists in refining the reductive framework. This can be done in various ways,
for instance, by relativizing Nagelian bridge-laws to types of physical systems or
individuating psychological and neural kinds more finely (see , or by trying
to avoid altogether any commitment to bridge laws (Hooker||1981; |Bickle|[1998;
Kim| (1999 2005)E| Following a different path, many philosophers embraced a
functionalist approach, according to which mental states are individuated by
their causal roles, independently of their physical realization (Putnam||1967;
Fodor||1974], [1997)). Psychofunctionalists embrace the multiple realizability of
higher-level states: on the standard functionalist reading of Rj3, psychological
kind P; can be realized by a variety of neural kinds N;. Hence, functionalism
leaves open one way in which neuroscience can contribute to psychology: since,
according to Rs, Pj is token-identical to one of its neural realizers, the presence
of any N; would be evidence for the engagement of psychological kind P, in a
specific task. However, this approach suggests that neuroscience can be only
applied to psychology when the neural realizer(s) of cognitive states are known—
an extremely demanding presupposition, given our current knowledge.

2However, it has been persuasively argued that any form of bona fide reductionism requires
some kind of bridge laws (Marras|2002} |Fazekas| 2009).



Let us take stock. Derivational reduction provides a clear explanation of how
neuroscience can be used to advance psychological theories, but it presupposes
an implausible and overly-demanding account of the linkage of kinds across
domains. Functionalism, in contrast, avoids the unpalatable assumptions of
reductionism and suggests a subtler way in which neuroscientific evidence can
contribute to psychological debates. Yet, the standard functionalist model is still
extremely demanding, as it requires bridge laws mapping psychological states
onto some their neural realizers, in the manner illustrated by Rs.

Part of the problem with the extant debate, we surmise, is that reduction-
ists and functionalists alike share an overly restrictive view of the psycho-neural
interface. Researchers in both camps often talk as if the only potential contri-
butions of neuroscience to psychology are:

(i) To establish correlations between cognitive- and neural-level events, e.g.,
to find the brain locations where particular mental functions are computed.

(ii) To discover the neural-level mechanisms that compute/implement cogni-
tive processes, i.e., to establish how the brain actually computes/implements
specific mental functions.

That neuroscience can contribute to project (i) is hardly controversial; the prob-
lem is that, by itself, (i) seems pointless, since seeking mind-brain correlations
that do not contribute to an explanation of how neural mechanisms compute
cognitive functions becomes a sterile vindication of token physicalism. There-
fore, it is common to assume that (i) is valuable only insofar as it contributes
to the more substantial and ambitious project (ii). Is neuroscience currently at
the point of uncovering the mechanisms that implement and compute mental
functions in the brain? Reductionists tend to stress the remarkable successes
in discovering neural mechanisms of sensory systems, such as early vision, pain,
taste, and other basic sensations (Bickle|2003; [Kim|2006]). Antireductionists,
in contrast, emphasize that comparable achievements cannot be claimed for
language processing, decision making, and other functions of higher cognition
and, consequently, deem the pursuit of project (ii) hopeless (Fodor|1999)) or, at
best, drastically premature when applied to the more central cognitive systems
(Gallistel [2009; |Coltheart|2013)).

This view of the psycho-neural interface, assumed by reductionists and func-
tionalists alike, is too restrictive. In the rest of this article, we argue that neu-
roscientific data can be fruitfully employed to advance psychological theories,
even in the absence of strongly reductive bridge laws such as R; and R,, which
type-identify kinds across levels, or weaker statements, such as Rz, express-
ing the multiply-realizable token-identities of psychological kinds at the neural
level. In order to capture the success of these interdisciplinary studies, we need
a novel account of bridge laws that captures their non-reductive character and
explains how they can be applied even when the neural realizers are unknown.
To flesh-out the nature of these links, we focus on one of the main techniques
which cognitive neuroscientists use to make neural data and theories bear on
cognitive-level hypotheses: reverse inference.



3 Bridge Laws and Reverse Inferences

In order to discriminate between competing cognitive hypotheses, neuroscien-
tists often ‘reverse infer’ the engagement of a cognitive state or process, in a
given task, from particular locations or patterns of brain activation (Henson
2005; [Poldrack 2006} Del Pinal and Nathan|2013; Hutzler||2014} [Machery{|2013)).
These reverse inferences presuppose the availability of bridge laws; yet, contrary
to a widespread assumption, the required links are not reductive, they are what
we call associative bridge laws. In this section, we examine the role of bridge
laws in two kinds of inferences employed in neuroimaging studies: location-
based and pattern-based reverse inferences. More specifically, we focus on stud-
ies of decision-making—a paradigmatic domain of higher-cognition—aimed at
discriminating between the processes which underlie behavioral generalizations.

To begin, consider the following psychological generalization, somewhat sim-
plified for the sake of illustration, where s ranges over ‘normal’ adults:

(Gar) If s is faced with the option of performing an action a that will result in
the death of fewer people than would die if s were not to perform a, s will
choose a unless doing so requires using a person directly as a means.

G captures a distinctive capacity of higher-cognition which is in need of expla-
nation. We shall refer to the level at which we isolate these types of psychological
generalizations as Marr-level 1E| Given a Marr-level 1 generalization, one can
explore the underlying cognitive processes: such conjectures are usually referred
to as Marr-level 2 hypotheses. Consider two competing explanations of G :

(M) In moral decision making, subjects generally follow consequentialist rules.
However, in cases which involve using another person directly as a means,
consequentialist rules are overridden by negative emotions.

(M*) In moral decision making, subjects generally follow consequentialist rules.
However, in cases which involve using another person directly as a means,
consequentialist rules are overridden by deontological rules.

M and M* are very different explanations of Gj;. Whereas M explains the
behavioral pattern as a conflict between rules and emotions, M* explains the
same pattern as a conflict between different types of rules: consequentialist vs.
deontological.

M and M* are competing Marr-level 2 hypotheses about the cognitive pro-
cesses which underlie a Marr-level 1 generalization. To adjudicate between them,
researchers use reverse inferences, which require two preliminary steps. First,
the competing processes must be functionally decomposed, for entire processes

3In an influential discussion, Marr| (1982) argued that information-processing systems
should be investigated at three complementary levels. Hypotheses at Marr-level 1 pose the
computational problem: they state the task computed by the system. Hypotheses at Marr-
level-2 state the algorithm used to compute Marr-level 1 functions: they specify the basic
representations and operations of the system. Finally, hypotheses at Marr-level 3 specify how
Marr-level 2 algorithms are implemented in the brain: they purport to explain how these
basic representations and operations are realized at the neural level.



such as M and M* are too coarse-grained to be directly mapped onto patterns
or regions of neural activation. Next, the subcomponents of the competing pro-
cesses for which there are bridge laws must be identified. To illustrate, let us
assume that, in task 7', cognitive process M posits the engagement of subprocess
m1, whereas M* posits the engagement of subprocess mj, and that m; # mj.
Further, suppose that we have the following bridge laws connecting m; and mj
with regions or patterns of neural activation n; and nj:

(Al) mi ®TL1
(A2) mi ®nj

Note that ‘®’ is different from the ‘>’ connective figuring in reductive bridge
laws. We shall discuss the basic properties of such relation in The important
point here is simply that ‘®’ stands for an associative relation that allows one
to reliably infer the presence of one relatum from the other.

To illustrate the application of statements such as A; and A, consider some
bridge laws used to discriminate between M and M*. Assume that m; stands
for processes involving negative emotions such as fear, and that mj stands for
ruled-based processes such as following simple instructions. Researchers have es-
tablished a close connection between processes involving negative emotions and
activation in certain neural regions such as the amygdala and the ventromedial
prefrontal cortex (VMPFC)[T] This connection is captured by A;. Researchers
have also established a connection between rule-based and controlled reasoning
and activation in the dorsolateral prefrontal cortex (DLPFC)H Ay captures this
connection by associating mj with activation in the DLPFC.

Given A; and As, one can devise neuroimaging experiments to discriminate
between M and M*. For example, Greene and colleagues (2001) scanned sub-
jects making moral decisions in two sets of tasks that involve choosing whether
to sacrifice one innocent person to save five, as in the famous trolley problems.
The relevant difference is that in one set of tasks all the choices that would save
five people involve using another person directly as a means (personal cases),
whereas in the other set subjects can save five by sacrificing one indirectly,
that is, without using the person as a means (impersonal cases)ﬂ Greene and

4In general, the amygdala is critically involved in conditioned and unconditioned fear re-
sponse in animals, including humans. For example, patients with selective damage to the
amygdala show no physiological response to a previously fear-conditioned stimulus, although
they can explicitly remember the conditioning experience (Kandel et al|2013, Ch. 48).

5Miller and Cohen| (2001)) present several studies that support the key role of the DLPFC
in cognitive control and rule-guided processes. A relevant set of experiments are based on the
famous Stroop task, in which subjects are instructed to name the color of the ink of words as
they appear on a screen. Famously, reaction times and error rates increase dramatically when
subjects read color-terms that differ from the color of their ink. Miller and Cohen present
imaging studies which show that, in the misleading cases, subjects who manage to follow the
correct rule and name the word’s ink color showed increased activation in DLPFC, compared
to subjects who fail the task.

6In the classic version of the trolley problem, personal cases are exemplified by the ‘foot-
bridge’ scenario, where five people are saved by throwing a corpulent person on the track.
Impersonal cases are exemplified by the ‘switch’ scenario, where five people are saved by
pulling a lever that diverts the trolley onto a parallel track where it will kill a single person.



colleagues found that, relative to impersonal cases—and to structurally anal-
ogous non-moral control tasks—personal cases result in differential activation
of the amygdala and VMPFC, and less activation of DLPFC. Given that A,
associates amygdala activation with negative emotions, and that A, associates
DLPFC activation with rule-based and controlled reasoning, this finding favors
M over M*. This is because, according to M, in personal cases, decisions not
to sacrifice one person to save five are based on negative emotions. In addition,
M predicts that areas involved in rule-based reasoning should be more active
in impersonal compared to personal cases. In contrast, M* incorrectly predicts
that personal and impersonal cases should engage rule-based areas equally, since
both cases involve applying different types of rules.

Critics of the relevance of neuroimaging experiments for psychology often
assume—iore or less explicitly—that all bridge laws currently employed in re-
verse inferences associate cognitive processes with locations of neural activation,
as in the previous example. However, this is a mistake: in some cases, the rel-
evant bridge laws map cognitive processes onto particular patterns of neural
activation. Indeed, pattern-based inferences, which are rapidly becoming one
of the main ways of studying cognition, have significant implications for the
psycho-neural interface. To see this, let us examine an example from the study
of recognition memory. Consider the following generalization:

(Gn) A set E contains some items that are new to s and others that s has
previously encountered. If s is randomly presented with item e € E and
has to decide whether she has previously encountered e, s can reliably
distinguish between old and new items.

Among the Marr-level 2 explanations of Gy recently advanced in episodic mem-
ory research, two of the most important are the following:

(N) Recognition decisions are based on two processes which draw on distinct
sources of information: recollection of specific details and non-specific feel-
ings of famaliarity. Recollection is used by default but, when such infor-
mation is unavailable, subjects employ familiarity.

(N*) Recognition decisions are based on two processes which draw on distinct
sources of information: recollection of specific details and non-specific feel-
ings of familiarity. However, neither is the default process: the source of
information employed depends on specific contextual cues.

While N and N* agree on the basic components underlying recognition deci-
sions, they posit different interactions. According to IV, subjects generally use
recollection information to decide whether items are old, and only rely on in-
tuitions of familiarity when such information is unavailable. In contrast, N*
predicts that certain contextual cues will induce subjects to make familiarity-
based recognition decisions even if recollection information is available.

In pattern-based recognition studies, ‘classifiers’ are trained to determine
the multi-voxel patterns associated with recollection and familiarity processes.
Specifically, classifiers are trained in tasks where experimenters can control



which cognitive process is engaged. For instance, in an experiment designed
to adjudicate between N and N*, subjects were exposed to singular and plural
words such as ‘shoe’ and ‘shoes’ (Norman et al.[2009). These subjects were
then scanned while performing recognition tasks involving previously examined
items (e.g., a shoe) and unrelated lures (e.g., a bicycle). The recognition tasks
are divided in two sets: recollection blocks and familiarity blocks. In recollec-
tion blocks, subjects are instructed to recall specific details of the mental image
formed during the study phase, and to only answer ‘yes’ if they are success-
ful. In contrast, in familiarity blocks subjects are instructed to answer ‘yes’
if the word is familiar and to ignore any details they might recollect from the
study phase. After training, classifiers can determine whether some multi-voxel
pattern of neural activation is an instance of recollection or familiarity. What
makes this method especially interesting is that the reliability of the classifiers
can be established within the experiment itself. This can be done by saving a
subset of the recollection and familiarity blocks for later testing (so they are not
used at the training stage), and then determining the rate at which the classifier
correctly categorizes the corresponding neural patterns. This part of the study,
where experimenters control which process is engaged, establishes the bridge
laws that will then be used in reverse inferences.

Having obtained the relevant bridge laws which map recollection and fa-
miliarity onto multi-voxel patterns, one can then test competing hypotheses
N and N* regarding the dynamics underlying recognition-decisions in cases
where the engagement of the sub-processes cannot be directly controlled. For
example, in a second phase of the study, subjects were scanned while trying
to determine whether some word is old or new, while being exposed to previ-
ously studied items (‘ball’), unrelated lures (‘horse’), and previously unstudied
switch-plurality lures (‘balls’). Experimenters then examined the subset of the
items for which subjects made correct positive recognition decisions. Note that
these are cases where both recollection and familiarity information was available
to subjects. Hence, according to hypothesis N, the classifier should categorize
the corresponding voxel patterns as recollection processes (since this is the de-
fault). In contrast, N* predicts that the classification should be more variable,
involving—at least in some cases—familiarity processes. Experimental results
support N* over N: when both types of information are available, various con-
textual cues determine whether subjects use familiarity or recollection as the
basis of their recognition decision (Norman et al.[2009)).

4 Associative Bridge Laws

The previous examination of reverse inference allowed us to place associative
bridge laws such as A; and As in their context of use. The aim of this section
is to make explicit the characteristic features of these linking statements. As
we shall see, unlike their reductive counterparts, associative bridge laws are
probabilistic and context-sensitive relations that do not identify their relata,
either at the type-level or at the token-level.



4.1 Probabilities

The first main feature of associative bridge laws is their probabilistic nature. To
clarify, consider a recent debate about the ‘selectivity’ of brain regions. Several
critics have emphasized that the success of a reverse inference depends on the
degree of selectivity of the relevant brain regions (Uttal 2002} |Ross|[2008; [Phelps
2009; |[Anderson||2010; |Coltheart|[2013). Suppose that some bridge law maps
neural activation in n; onto the engagement of cognitive process mi. According
to critics, this linkage allows one to legitimately reverse infer the engagement
of my from the activation of n; only provided that region n, activates for the
cognitive process of interest, in this case my, and no other. This is because,
the objection runs, if ny also activates when ms, mgs, and my are engaged, one
cannot reverse infer to m, merely on the evidence of ny activation. The problem
is that there is widespread consensus among cognitive neuroscientists that very
few brain regions are maximally selective in the sense just described. From this
perspective, then, it looks like most reverse inferences are actually invalid, as
they rely on an unjustified assumption of maximal selectivity.

This substantial and influential worry ought to be addressed with care. For
starters, it is undeniable that few, if any, brain regions are indeed maximally se-
lective. Hence, virtually no brain region can be mapped onto cognitive functions
via a single bridge law; rather, each brain region is covered by multiple bridge
laws which associate it with a variety of cognitive functions. As a result, when
we reverse infer the engagement of a cognitive function from the activation of
a neural region, the inference falls short of absolute certainty. Confidence that
one has identified the correct bridge law is a matter of degree, which is de-
termined by the conditional probability that cognitive process m; is engaged,
given activation in n;. This conditional probability can be determined through
a straightforward application of Bayes’ theorem:

P(n1|m1)P(m)

n1|m1)P(m1) —+ P(n1|—|m1)P(—\m1) (1)

P(milni) = B

Equation (1) entails that the degree of belief in a reverse inference depends not
only on the prior P(m;) but also on the selectivity of the neural response—i.e.,
on the ratio of the process-specific activation P(ni|m1), to the overall likelihood
of activation in that area across all tasks which do not involve my: P(nq|—m;).

As an illustration, consider the example of moral decision making (Gps). As
neuroscientists note, the amygdala is also activated by processes that are not
related to negative emotions in any obvious way. Consequently, amygdala ac-
tivation does not deductively entail the engagement of fear or related negative
emotions. However, it does not follow that inferences from amygdala activa-
tion to the presence of negative emotions are invalid; what follows is simply
that such inferences are inductive or probabilistic. The case of the amygdala is
not the exception, it is the norm: as noted, most brain regions are associated
with multiple cognitive processes. Furthermore, this point is not restricted to
location-based inferences, but also applies to pattern-based ones. The multi-
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voxel patterns are, at best, a reliable guide for inferring (via bridge laws) the
engagement of the associated cognitive process.

With all of this in mind, we can now turn to a refinement of the above cri-
tique, directed to the probabilistic nature of reverse inference. Several authors
have argued that, since the application of a given bridge law in some task is de-
termined by a conditional probability, most interesting reverse inferences turn
out to be unacceptably weak (Miller|[2008; [Phelps|[2009; |Legrenzi and Umilta
2011)). This objection underlies many skeptical claims about the use of reverse
inferences and has led to the explicit suggestion that genuine progress at the
psycho-neural interface requires reductionist bridge laws (Ross| 2008} |Anderson
2010). No doubt, in some cases, such accusations are justified: some proposed
reverse inferences are indeed questionable, to say the least. Yet, this observa-
tion falls short of a general critique, for the significance of the lack of (maximal)
selectivity on the validity of reverse inference has been substantially exagger-
ated. This is because critics often overlook another important characteristic of
associative bridge laws, namely, their context sensitivity.

4.2 Context-Sensitivity

In an influential article, [Poldrack| (2006]) noted that the conditional probability
that a cognitive state or process m; is engaged given a neural state or process
ny should be determined relative to a particular task. However, to simplify
the discussion, Poldrack intentionally ignored this task-relativity in the rest of
his analysis. That simplification had the unfortunate consequence that several
ensuing discussions also ignored the task-relativity of bridge laws in reverse
inferences. This resulted in a misleading objection.

Consider, again, the selectivity of the amygdala, which plays a central role in
several studies of decision making. Although the amygdala is typically involved
in processing fear and other negative emotions, it is also involved in many other
cognitive processes that are usually unmentioned in studies such as |Greene
et al| (2001). Such processes include the perception of odor intensity, sexually
arousing stimuli, and trust from faces (Phelps|2006; |[Lindquist et al.[[2012), as
well as the processing of faces from other races, and the perception of biological
motion and sharp contours (Phelps|2009)). It has also been claimed that the main
function of the amygdala is to process novel or emotionally salient stimuli—not
fear-related stimuli per se (Lindquist et al.[2012)). Based on these considerations,
Phelps| (2009) argues that amygdala activation in a given psychological task
could signal the engagement of any of these cognitive processes. Consequently,
reverse inferences such as the ones used by Greene and colleagues overestimate
the conditional probability that negative emotions are engaged, given amygdala
activation.

What Phelps and other critics (e.g., Klein|2011)) overlook is that the proba-
bility that a particular bridge law applies, given the activation of a brain region,
should be determined relative to relevant tasks. Specifically, in the case under
consideration, the success of the reverse inference does not depend on the as-
sumption that we can reliably infer the engagement of negative emotions from
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differential activation in the amygdala. What is required is that the engagement
of negative emotions can be inferred from the pattern of neural activation ob-
served in the particular task under consideration (Del Pinal and Nathan/[2013)).
In other words, the inference is from differential amygdala-activation in per-
sonal scenarios to the engagement of negative emotions. Once the inference
is framed in these terms, we can see that most other cognitive processes that
also involve the amygdala are not plausible explanations for such differential
activation, and can thus be ruled out. Consider, for instance, the tasks used
by Greene and colleagues (2001)). Personal cases do not differ from impersonal
ones with respect to stimuli related to odor, facial-processing, sexual material,
sharp-contours, or the comparative novelty of the tasks. Hence, relative to
personal cases, the conditional probability of the engagement of negative emo-
tions, given amygdala activation, is significantly higher than suggested by the
objection presented abovel|

How, precisely, to formalize the task-relativity of reverse inferences is a sub-
ject of current debate. A promising proposal is to incorporate task-relativity
into the Bayesian formula (Hutzler[[2014). The main idea is to revise by
conditionalizing explicitly on the relevant task—call it ‘¢;.’

P(n1|m1 74\ tl)P(m1|t1)
(TL1|T)’L1 AN tl)P(m1|t1) + P(nl\—\ml A tl)P(_'m1|t1)

P(m1|n1 /\tl) =P (2)
To motivate , Hutzler presents a simple thought experiment. Imagine that
activation in the left fusiform gyrus (n;) is covered by two bridge-laws: A;
associates n; with access to the mental lexicon and A, associates n; with face
perception. Assume that a visual word-presentation-task ¢ results in n;. The
question is whether n; significantly increases one’s confidence that ¢; involves
access to the mental lexicon. Equation (1) entails that confidence in ¢; involving
access to the mental lexicon is decreased by As, according to which nq could also
signal face perception. But this is counterintuitive, for ¢; clearly has nothing
to do with face perception. In contrast, Equation makes As irrelevant:
by taking t¢; into account, we can eliminate the possibility that in this case
ny underlies face perception. In short, conditionalizing on tasks increases the
strength of actual location-based inferences: decreasing the number of possible
cognitive functions that the neural measure could be signaling reduces the risk
of false alarms. This is essentially the same strategy we followed in defending
the reverse inference from amygdala activation to engagement of emotions in
the moral decision making experiments [

"We surmise that the task relativity of reverse inferences is systematically overlooked be-
cause methodological discussions (e.g., [Poldrack|[2006} [Phelps||2006) often consider only arbi-
trary ‘empty’ tasks which do not eliminate any processing possibilities (that is, any bridge
laws) for the brain region of interest. Hence, reverse inferences seem intuitively weak. However,
once we consider the tasks relevant to each reverse inference, we can eliminate some subset of
bridge laws which cover the brain regions of interest, thereby increasing their strength.

8 An alternative is to reformulate reverse inference in likelihoodist terms (Machery|[2013).
Consider two competing cognitive hypotheses m; and mg and neural activation data n;. On
this view, n1 favors mj over mg if and only if P(ni|m1) > P(ni|mz). In a likelihoodist
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Of course, computing Equation [2| is not always a straightforward matter.
Consider again the moral decision making case. While sexually arousing stimuli
and sharp contours can be ruled out right away, the possibility that differen-
tial amygdala activation might result from the increased presence of biological
motion cannot be so easily dismissed. In such cases, a follow-up task should be
devised to test for the remaining possibilities. In general, there is no formal or
purely objective way to determine which cognitive subprocesses are (ir)relevant,
given a certain task, and the role of ‘value judgments’ in scientific practice is
well known (Kuhn||1977)). Sometimes the decision is obvious; when it is not,
further experimental work becomes necessary.

It is crucial to note that the criticisms of reverse inference based on lack
of selectivity are typically raised against location-based inferences. In contrast,
pattern-based reverse inferences provide an elegant solution to this problem.
This is one reason why multivariate pattern-decoding methods are now gener-
ally regarded as superior techniques to univariate location-based methods. The
key advantage of decoding techniques is that the reliability of classifiers can be
established within the experiment itself. In the recognition example from
this was done by saving a subset of the recollection and familiarity blocks for
later testing (so these data sets are not part of the classifier training sets). In
this phase, experimenters can control whether familiarity or recollection pro-
cesses are engaged in the task. One can then feed these neural data sets to
the classifier, which maps them onto recollection or familiarity processes. Such
predictions are compared to the original labels to determine their accuracy.
For theorists interested in reverse inference, the classifier will only be useful
if its accuracy is significantly above chanceﬂ This condition was satisfied in
the recognition example. In other cognitive domains—e.g., visual perception,
phonological processing, and decision making—classifier accuracy can be ex-
tremely high (for an overview, see Tong and Pratte/[2012). In short, when we
use pattern-decoding techniques we can quantitatively estimate the degree to
which a classifier can use patterns of brain activation to predict the engage-
ment of specific mental processes in some task. This results in a more formal

framework, one only compares cognitive hypotheses that are under dispute, treating reverse
inference as an inherently comparative technique that tells us which among the competing hy-
potheses is favored by some neural evidence. One drawback of this suggestion is that evidence
becomes purely comparative. On the other hand, the advantage of this approach is that the
relevant likelihoods can be calculated without having to determine the base rates of activa-
tion of the brain regions involved. We should note that the main reason why Machery prefers
this likelihoodist approach to reverse inference over the Bayesian account is that Equation |I|
cannot, in general, be computed. This is because neuroscientists rarely know the base rates of
activation of particular brain regions of interest. It is not clear whether Machery thinks this is
still a serious problem for Huzler’s refined Equation since he does not directly consider that
option. However, we should also note that there is a substantial literature on Bayesianism
and imprecise probabilities that can be used to address Machery’s concern (Joyce|[2011}).

9Cases where classifiers cannot perform significantly above chance can still be interesting,
albeit for different reasons. Suppose that, in task ¢, a classifier underperforms when using
data sets taken from some region ni, but performs significantly above chance when using data
from region na. This provides evidence that na carries information relevant to performing ¢,
whereas n1 does not.
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implementation of particular reverse inferences (Poldrack 2011)@

4.3 Non-Identity

Unlike their reductive counterparts, associative bridge laws do not presuppose
any kind of identity—a priori, a posteriori, necessary, or contingent. To wit, in
the moral decision making case, the bridge law mapping amygdala activation
to the engagement of negative emotions presupposes neither the type-identity
nor the token-identity of these two events. As we saw, the amygdala is differ-
entially activated by a variety of cognitive processes that have little or nothing
to do with negative emotions, and it might turn out that some unambiguously
fear-or-distress-related processes are not accompanied by increased amygdala
activation. We should make it clear that we are not recommending any depar-
ture from token-physicalism. Our point is simply that associative bridge laws
are so metaphysically uncommitted that they would also be consistent with
some rejections of token-physicalism.

A similar point applies to pattern-based inferences. Bridge laws used in
the recognition case do not presuppose that recollection or familiarity processes
are (type- or token-) identical to their associated multi-voxel patterns. For one
thing, the patterns are only highly reliable—but not infallible—indicators of
the corresponding processes. More importantly, even if we had perfect corre-
lations, multi-voxel patterns are not plausible candidates for such identities.
Voxel patterns are representations that average over the activation of thou-
sands of neurons, but do not specify the actual neural mechanisms that compute
cognitive-level processes. This, of course, is not to say that the possibility of a
type-identity can be ruled out @ priori: one might believe that, eventually, the
neural mechanisms that carry out, say, recollection processes will be identified.
However, this potential reduction is neither required nor presupposed by the
use of pattern-based inferences to discriminate among competing hypotheses of
the processes underlying recognition tasks.

To appreciate further what is distinctive about associative bridge laws, it is
useful to contrast them with reductive accounts that respond to multiple realiz-

100f course, this does not mean that there are no difficulties in using this method. Ap-
propriate experimental design is crucial, especially since pattern classifiers are designed to
use whatever information is available to make better predictions. In addition, there is still a
question whether we can extend the reliability of classifiers obtained from the testing phase
to cases in which the experiments cannot determine the engagement of the psychological vari-
ables, since the latter inevitably involve some variation on the task. There are various studies
which suggest that classifiers perform well under task variations. For example, in one study
pattern classifiers were used to predict phonemes. The classifiers were still successful when
presented with data from voices which were not presented in the learning phase (Formisano
et al||2008). Hence, at least this much variation in the task does not affect performance.
In a study of visual working memory, classifiers were trained on data elicited by unattended
gratings, and then tested on whether they could also predict which of two orientations was
maintained on working memory when subjects were viewing a blank screen. Again, their
reliability was maintained despite the substantial difference in stimulus and task (Harrison
and Tong|[2009). Indeed, testing for this kind of robustness relative to stimuli/task variation
is usually taken as evidence that the brain region from which the data was obtained really
does provide information about the function of interest (Tong and Pratte [2012).
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ability by adding parameters or weakening Nagelian bridge laws. David [Lewis
(1969) famously argued that reductive type-identities are not meant to hold
across the board. On his view, the bridge laws reducing mental states to brain
states are implicitly restricted to a specific domain. For example, while pain
tout court cannot be reduced to a single brain state, human pain, octopus pain,
martian pain, etc. can each be reduced to a different type of brain state. Lewis’
argument has been developed and refined by various philosophers (Hooker|[1981;
Eng|/1983}; |(Churchland| 1986} [Kim|/1992)) all of whom emphasize that contingent
event identities should have as conditional antecedents some kind of domain re-
striction. To cite a textbook example, the standard identification of temperature
with mean molecular kinetic energy in classical equilibrium thermodynamics is
left completely unscathed, the arguments runs, by the observation that tem-
perature is differently realized in gases, solids, vacuums, and other mediums.
Relativizing or conditionalizing reductive bridge laws might ultimately lead to
a substantial increase in their number. This is a topic of current debate. But
what is important to note here is that associative bridge laws do not require
restricted conditional identities of any kind. This is especially evident in the
case of pattern-based inferences: the particular voxel patterns used to infer the
engagement of each sub-type of recognition process—that is, the bridge laws—
are often not even stable across individuals, let alone all human beings, and
can only be used reliably in specific experimental conditions. In the recognition
experiments, the voxel patterns were used by classifiers to infer the engagement
of familiarity or recollection in a task where these processes were the only un-
known variables. If a third task (say, a face-recognition process) were added,
the pattern-classifier would have to be re-trained. In this case, there would be
no guarantee that the patterns that were previously associated with familiarity
and recollection, even if present, could still be used, in the new experimental
settings, to reliably predict the original processes.

For similar reasons, associative bridge laws should also be distinguished from
recent attempts to weaken Nagelian bridge laws by replacing type-identity with
a condition of connectability based on co-referentiality. |Klein| (2009)) argues that
a higher-level science S is N-connectable to a lower-level science S’ if and only if
S’ has the resources to introduce new terms, in its own vocabulary, which are co-
referential with the predicates of S that are absent in S’. Choosing an account
of reference determination in general, and then arguing for a particular case of
co-referentiality, is a substantial endeavor that we can set aside. Associative
bridge laws do not require that terms such as ‘fear’ and ‘increased amygdala
activation’, or ‘recollection’ and ‘voxel vector pattern V'’ be co-referential. All
that matters is that the presence of the referent of one can be reliably inferred
from the presence of the referent of another. The co-referentiality of terms
in the relata of a bridge-law is consistent with—but not a necessary condition
for—their successful employment in reverse inferences.

In short, the bridge laws which figure in location- and pattern-based reverse
inferences do not assume any kind of identity between neural and cognitive states
or processes. In order to play a role at the psycho-neural interface, associative
bridge laws only need to allow us to reliably infer, in certain experimentally con-
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trolled settings, the engagement of a cognitive state or process from particular
locations or patterns of neural activation.

5 Implications

In the previous section, we analyzed the characteristic features of associative
bridge laws by drawing on the way they are employed in scientific practice and
contrasting them with their reductive counterparts. We now turn to their im-
plications for various ongoing debates about inter-level relations in philosophy
of mind and science. Specifically, we begin by discussing functional locationism
and multiple realizability. We conclude by revisiting the traditional intrerpre-
tation of Marr-levels and its relation to the alleged ‘automony’ of psychology.

5.1 Avoiding Radical Locationism

Many prominent scientists and philosophers argue that cognitive neuroscien-
tists assume an unreasonably strong version of functional locationism (Van Or-
den and Paap|1997; [Fodor|1999; |Uttal|2001}; (Coltheart|2013; [Satel and Lilienfeld
2013). Some have gone as far as labeling current cognitive neuroscience the ‘new
phrenology’ (Uttal/[2002)). This critique often presupposes a reductive model of
the psycho-neural interface. To wit, if one assumes both that bridge laws are re-
ductive and that most reverse inferences are grounded in location-based neural
data, then it becomes reasonable to conclude that cognitive neuropsychology is
in the business of type-identifying cognitive functions with neural locations, bla-
tantly ignoring multiple realizability and the failures of derivational reduction.
While the charge of excessive functional locationism is sometimes warranted, it
does not apply to properly conducted reverse inferences (Del Pinal and Nathan
2013). Furthermore, it ignores the current trend in cognitive neuroscience, at
least if the increasing importance of pattern-based inferences is a reliable indi-
cator (Poldrack|[2008, 2011)).

As illustrated by our examples, most reverse inferences do not associate the
engagement of entire cognitive processes with specific locations of neural acti-
vation. The general strategy is to decompose the competing processes into their
subcomponents and to consider those subcomponents that can be mapped, via
bridge laws, to neural locations or patterns. We can then reliably reverse-infer
the engagement of one of the cognitive processes, relative to a specific task. In
the moral decision-making case, only one of the competing processes predicted
the engagement of negative emotions in personal tasks, which is why differential
amygdala-activation provided evidence in favor of M over M*. The point to
stress is that, for the argument to go through, one need not assume the func-
tional localization of the entire moral decision-making processes. Pattern-based
inferences are even less plausible targets for the charge of unjustified functional
locationism. Classifiers use multi-voxel patterns to infer the engagement of rec-
ollection or familiarity in recognition tasks. Classifiers need not be given any
location-related information, which allows, in principle, for the set of patterns
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assigned to, say, recollection, to be implemented in various neural locations. In-
terestingly, recent studies suggest that key components of recognition processes
are, indeed, functionally localized (Norman et al.[2010]). To be sure, there remain
several controversial issues regarding the foundations of cognitive neuropsychol-
ogy, including the substantial question of how to formalize the context-relativity
of reverse inference (Del Pinal and Nathan [2013; Hutzler|2014; [Machery|2013)).
Yet, the wholesale dismissal of the entire cognitive neuropsychology of higher
cognition as a ‘sophisticated new phrenology in disguise’ does not withstand
serious scrutiny.

5.2 Accommodating Multiple Realizability

As discussed in §2] anti-reductionist philosophers maintain that the natural
kinds of a ‘higher’ science cannot, in general, be reduced to kinds of a ‘lower’
science because natural kinds seldom correspond across domains in the way re-
quired by reductive bridge laws. A complete assessment of multiple realizability
and reductionism lies beyond the scope of this article. Our point is simply that
multiple-realizability, coupled with a reductive conception of bridge laws, gener-
ates serious problems for understanding the fruitfulness of the interdisciplinary
work pursued in current neuroscience.

Associative bridge laws are perfectly consistent with the multiple-realizability
of psychological kinds. Amygdala activation signals the engagement of processes
involving negative emotions but, as discussed at length, it can also be triggered
by other cognitive processes, such as the perception of sharp contours and un-
usual stimuli. In addition, processes involving negative emotions could be imple-
mented in other neural locations. Still, as long as we can order these links in a
probabilistic way, and provided that we factor in the relevant task, neuroimaging
data can be used to discriminate among competing cognitive hypotheses. Sim-
ilarly, pattern-based inferences are also compatible with multiple realizability,
even in its most radical forms. In the recognition example, multi-voxel patterns
are extracted and classifiers are trained in specific tasks and for each subject
individually. For instance, that some pattern is categorized as a recollection pro-
cess by a classifier trained for a subject does not entail that the same pattern
would be so categorized by a classifier trained on a different subject. Likewise,
that a classifier trained for a subject in a particular recollection/familiarity task
is reliable does not mean that it would still reliably distinguish between these
processes in different tasks, e.g., one that uses visual objects instead of words.
In short, the successful use of these patterns and classifiers to discriminate be-
tween theories of recognition does not depend on whether they are stable across
subjects or even, within certain limits, across tasks. Hence, the assumption that
recollection and familiarity processes are multiply realizable leaves the applica-
bility of context-sensitive reverse inferences completely unscathed.
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5.3 Revisiting Marr-Levels and Reductionism

Let us conclude by discussing the third and most general implication of our
account. The classic reductive model of interlevel relations and Marr’s influential
subdivision of the study of cognition into three levels are, strictly speaking,
independent. Early eliminative materialists such as Paul |Churchland (1981)
endorse reductionism while rejecting Marr-levels, whereas many philosophers
recognize the usefulness of Marr-levels while eschewing reductionism (Bechtel
and Mundale|[1999). However, the two views mutually support each other. To
wit, a standard reductionist response to multiple realizability is to argue that
antireductionists set up a straw man by selecting relata on the cognitive side that
are too coarse-grained to be reduced (Kim||1992; |Shapiro||2000). The general
idea underlying this response is that, as cognitive functions are progressively
broken down into smaller subcomponents, it becomes more likely that we will
reach a level where (local) reductive bridge laws can be established. Note how
this picture of functional decompositions and local reductions fits in naturally
with a standard interpretation of Marr-levels, according to which it only makes
sense to ask about the lower-level implementation of functions once the cognitive
processes that compute them have been laid out in algorithmic detail.

We do not deny that hypotheses regarding the neural implementation of
cognitive processes constitute a significant portion of cognitive neuroscience.
Indeed, astonishing progress has been made in the study of how certain percep-
tual and motor functions are carried out in the brain. However, we believe that
this model of the psycho-neural interface as essentially addressing Marr-level 3
hypotheses is inadequate, as it leaves out much of the cognitive neuroscience
of higher cognition. On the reductive account of Marr-levels, psychology and
neuroscience only begin to meaningfully interact once we can ask how cognitive
processes are implemented in neural hardware. This ignores a different—Dbut
equally important—type of psycho-neural interaction: using neural data to se-
lect among competing cognitive processes even when we have no clue how they
could be neurally implemented (Del Pinal and Nathan||2013|). This possibility
of delving into the neural level only to ‘come back up’ to select hypotheses at
the cognitive level is too often ignored by critics.

Our account of associative bridge laws also clarifies why, contrary to reduc-
tionist assumptions, it is often easier to employ neural data when Marr-level 2
hypotheses are not (yet) fully developed. For example, syntactic and seman-
tic theories in linguistics are quite refined, but neuroimaging studies have been
notoriously difficult to apply in this area. Linguists often face the task of deter-
mining whether a certain process is syntactic or semantic, with different models
yielding different predictions. Take the case of ‘it is raining,” used to mean
that it is raining at the place of utterance. To account for this implicit loca-
tion restriction, some models assume that a syntactic variable is inserted in the
sentence prior to semantic interpretation (Stanley|2000); other models assume
that the meaning of ‘raining’ is enriched to include the specification of a location
(Recanati|[2011)). The former explanation appeals to a syntactic process; the lat-
ter to a semantic one. If we found bridge laws mapping syntactic and semantic
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operations onto distinct locations or patterns of neural activation, we could try
to discriminate between the two models by scanning subjects while processing
such sentences. Unfortunately, establishing the relevant bridge laws is proving
to be a daunting task: since semantic and syntactic processes usually work in
tandem, they are extremely hard to disentangle. As a consequence, we cannot,
at present, use neural data to discriminate between syntactic and semantic mod-
els of ellipsis. In contrast, models of moral and economic decision making are
still comparatively underdeveloped. As Camerer and colleagues (2005) argue in
great detail, one of the main divisions in current studies of decision making is
between hypotheses that assume more rational processes, and hypotheses that
assume an essential involvement of emotions. This division is illustrated by our
discussion of moral decision making, and also emerges in several neuroeconomic
debates, such as in competing explanations of the endowment effect (Knutson
et al.||2008]). This contrast is significant for the use of reverse inferences because
we have bridge laws that map emotions and rule-guided behavior onto distinct
brain regions (Miller and Cohen|2001};|Greene|2009). Consequently, we can often
test these decision-making hypotheses using reverse inference. However, as this
branch of science progresses and mixed models that incorporate both rational
and emotional components become more common, it may become more difficult
to use our current bridge-laws to discriminate amongst them in neuroimaging
studies.

The occasional difficulty in finding bridge laws that discriminate between
advanced Marr-level 2 models, compared to the relative ease with which such
laws often discriminate more elementary models, is hard to reconcile with the
traditional reductive interpretation of Marr’s framework. Hypotheses that have
an advanced functional decomposition are better suited for implementation;
hence, from the reductive perspective, they should also be better candidates for
interaction and integration with the neural level. Furthermore, since few of our
current hypotheses regarding capacities such as language or decision making
are ready for Marr-level 3 implementation, it is hardly surprising that those
who accept the reductive interpretation of Marr levels typically endorse the
relative autonomy of the psychology of higher cognition. In contrast, our dy-
namic account makes better sense of the current limitations and achievements
of interdisciplinary research at the border of psychology and neuroscience. Once
again, our approach is compatible with the possibility that scientists will eventu-
ally discover the neural implementation of higher-level cognitive processes. Yet,
abandoning the reductive perspective suggests other significant ways in which
neural data can be employed to advance psychology.
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