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 Philosophical Perspectives, 15, Metaphysics, 2001

 THE LIMITS OF HUMAN MATHEMATICS*

 Nathan Salmon

 University of California, Santa Barbara

 I

 What, if anything, do Godel's incompleteness theorems tell us about the

 human intellect? Do they inform us, for example, about human insight and cre-

 ativity? Or perhaps about the human mind's capacity for a priori certainty?

 Ernest Nagel and James R. Newman write:

 Godel's conclusions bear on the question whether a calculating machine can be

 constructed that would match the human brain in mathematical intelligence....as

 Godel showed in his [first] incompleteness theorem, there are innumerable prob-

 lems in elementary number theory that fall outside the scope of a fixed axiomatic

 method... The human brain...appears to embody a structure of rules of operation

 which is far more powerful than the structure of currently conceived artificial ma-

 chines.... Godel's proof [of the first incompleteness theorem]...does mean that the

 resources of the human intellect have not been, and cannot be fully formalized, and

 that new principles of demonstration forever await invention and discovery.... The

 theorem does indicate that the structure and power of the human mind are far more

 complex and subtle than any nonliving machine yet envisaged.l

 More recently, Roger Penrose has declared that "from consideration of

 Godel's theorem...we can see that the role of consciousness is non-algorithmic

 when forming mathematical judgments, where calculation and rigorous proof

 constitute such an important factor."2 J. R. Lucas provided an argument in sup-

 port of a similar (if slightly stronger) conclusion:

 Godel's [first incompleteness] theorem must apply to cybernetical machines, be-

 cause it is of the essence of being a machine, that it should be a concrete instanti-

 ation of a formal system. It follows that given any machine which is consistent and

 capable of doing simple arithmetic, there is a formula which it is incapable of pro-

 ducing as being true i.e., the formula is unprovable-in-the-system but which we
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 can see to be true. It follows that no machine can be a complete or adequate model
 of the mind, that minds are essentially different from machines.

 ...The conclusions it is possible for the machine to produce as being true

 will...correspond to the theorems that can be proved in the corresponding formal

 system. We now construct a Godelian formula in this formal system. The formula

 cannot be proved-in-the-system. Therefore the machine cannot produce the corre-
 sponding formula as being true. But we can see that the Godelian formula is true:

 any rational being could follow Godel's argument, and convince himself that the

 Godelian formula, although unprovable-in-the-given-system, was nonetheless in
 fact, for that very reason true. Now any mechanical model of the mind must in-

 clude a mechanism which can enunciate truths of arithmetic, because this is some-

 thing which minds can do... But...for every machine there is a truth which it cannot

 produce as being true, but which a mind can. This shows that the machine cannot

 be a complete and adequate model of the mind. It cannot to everything that a mind

 can do, since however much it can do, there is always something which it cannot

 do, and a mind can.... The Godelian formula is the Achilles' heel of the cybernet-

 ical machine. And therefore we cannot hope ever to produce a machine that will be

 able to do all that a mind can do: we can never, not even in principle, have a me-
 chanical model of the mind.3

 Anticipating this argument, Hilary Putnam exposed an apparently fatal fal-

 lacy.4 We are to suppose, for a reductio ad absurdum, that we have been given
 in full detail a complex logistic ("formal") system that adequately and com-
 pletely formalizes the mathematical abilities of a human mind. It is by no means

 a foregone conclusion that the mind can prove the proposition expressed by the
 Godelian sentence for this system-a sentence that indirectly says of itself (in
 a well-defined sense) that it is not provable-in-the-given-logistic-system. What
 is proved is conditional: that the proposition is true provided the logistic system
 is consistent. Indeed, this much is provable within the very logistic system in
 question. Proving that the system is consistent (free of contradiction) would
 yield the target proposition as an immediate corollary. Godel's second incom-
 pleteness theorem states that the logistic system, if it is consistent, cannot in

 this sense prove its own consistency. (The second theorem itself is proved pre-
 cisely by noting the corollary that would otherwise result.) For some relatively
 simple logistic systems of arithmetic, we may know with mathematical cer-
 tainty, even though this is not provable within the system, that its primitive

 deductive basis (the axioms and primitive rules of inference) does not generate
 any contradiction. In these cases, there may be a sense in which it is true that

 the human mind relevantly "sees" the truth expressed by the Godelian sen-
 tence, since this provably follows from the system's consistency. But there are

 other logistic systems for mathematics with respect to which the system's con-
 sistency is anything but obvious. In particular, the second incompleteness theo-
 rem calls into serious question whether the human mind is capable of a proof
 of consistency for a logistic system sufficiently complex to capture all of hu-
 manly demonstrable mathematics, i.e. a logistic system adequate to formalize
 the human capacity for proving mathematical theorems.5
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 Perhaps a more guarded conclusion can be legitimately drawn. In his 1951
 Josiah Willard Gibbs Lecture to the American Mathematical Society, Godel him-
 self derives from his second incompleteness theorem a disjunctive conclusion
 which, though weaker than the conclusions of Newman and Nagel, et. al., Godel
 says is a "mathematically established fact which seems to me of great philo-
 sophical interest":

 Either mathematics is incompletable in this sense, that its evident axioms can never
 be comprised in a finite rule, that is to say, the human mind (even within the realm
 of pure mathematics) infinitely surpasses the powers of any finite machine, or else
 there exist absolutely unsolvable diophantine problems of the type specified (where
 the case that both terms of the disjunction are true is not excluded, so that there
 are, strictly speaking, three alternatives).6

 This disjunction is evidently not subject to the same response that Putnam
 made to Nagel and Newman and company. For Godel judges only that the hu-
 man mind surpasses any theorem-proving machine provided that the mind is in
 principle capable of solving any purely mathematical problem, including the
 question of its own mathematical consistency. This more cautious conclusion is
 nevertheless philosophically substantive. Godel proceeds to draw disjunctive
 philosophical conclusions from it, by inferring consequences of the first dis-
 junct about the human mind's capacity for outperforming any finite computing
 machine, including whatever theorem-proving machinery there is in the human
 brain, and consequences of the second disjunct about the independence and ob-
 jectivity of pure mathematics. If the theorem-proving machinery of the human
 brain is a computer, then either the human mind surpasses the human brain or
 humankind does not deserve credit for creating pure mathematics (or as some
 might see it, humankind does not deserve the blame). Thus, the human mind
 either surpasses the very organ in which it evidently resides or else it is not
 responsible for the existence of pure mathematics or both, as Godel himself
 believed (and I agree).7 Here follows the relevant passage in which Godel de-
 rives the disjunction:

 It is [the second incompleteness theorem] which makes the incompletability of math-
 ematics particularly evident. For, it makes it impossible that someone should set up
 a certain well-defined system of axioms and rules and consistently make the follow-
 ing assertion about it: All of these axioms and rules I perceive (with mathematical
 certitude) to be correct, and moreover I believe that they contain all of mathemat-
 ics. If someone makes such a statement he contradicts himself. [Godel's note: If he
 only says "I believe I shall be able to perceive one after the other to be true" (where
 their number is supposed to be infinite), he does not contradict himself. (See be-
 low.)] For if he perceives the axioms under consideration to be correct, he also
 perceives (with the same certainty) that they are consistent. Hence he has a math-
 ematical insight not derivable from his axioms. However, one has to be careful in
 order to understand clearly the meaning of this state of affairs. Does it mean that
 no well-defined system of correct axioms can contain all of mathematics proper? It
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 does, if by mathematics proper is understood the system of all true mathematical

 propositions; it does not, however, if one understands by it the system of all de-

 monstrable mathematical propositions. I shall distinguish these two meanings of

 mathematics as mathematics in the objective and in the subjective sense: Evidently

 no well-defined system of correct axioms can comprise all [of] objective mathemat-

 ics, since the proposition which states the consistency of the system is true, but not

 demonstrable in the system. However, as to subjective mathematics, it is not pre-

 cluded that there should exist a finite rule producing all its evident axioms. How-

 ever, if such a rule exists, we with our human understanding could certainly never

 know it to be such, that is we could never know with mathematical certainty that

 all propositions it produces are correct; [Godel's note: For this (or the consequence

 concerning the consistency of the axioms) would constitute a mathematical insight

 not derivable from the axioms and rules under consideration, contrary to the as-

 sumption] or in other terms, we could perceive to be true only one proposition after

 the other, for any finite number of them. The assertion, however, that they are all

 true could at most be known with empirical certainty, on the basis of a sufficient

 number of instances or by other inductive inferences.... If it were so, this would

 mean that the human mind (in the realm of pure mathematics) is equivalent to a

 finite machine that, however, is unable to understand completely its own function-

 ing. [Godel's note: Of course, the physical working of the thinking mechanism could

 very well be completely understandable; the insight, however, that this particular

 mechanism must always lead to correct (or only consistent) results would surpass

 the powers of human reason.] 8

 There appears to be the following sort of argument: Suppose that the hu-

 man mind's capacity for conceiving proofs is an effectively describable phe-

 nomenon, like the deterministic workings of a Turing machine, so that the

 very process by means of which the mind attains, or can attain, purely math-

 ematical knowledge with mathematical certainty is thus fully captured by some

 finite effective rule (even if it is very long). It is a consequence of the second

 incompleteness theorem that the mind cannot know with mathematical cer-

 tainty that this rule generates only correct results, or even that its results are

 internally consistent. For if the mind can know with mathematical certainty of

 all the propositions of pure mathematics it is able to prove that all of them are

 true, then it can also know with mathematical certainty that they are formally

 consistent something that is precluded by the theorem. Since the consistency

 of the system of theorems can be recast as a purely mathematical proposition,

 it follows that if the mind, in its theorem-proving capacity, is a finite ma-

 chine, then there are purely mathematical truths it cannot know with math-

 ematical certainty; in particular, it cannot prove its own consistency, and hence

 cannot completely understand its own functioning.

 George Boolos has claimed that Godel's disjunction-that either the hu-

 man mind is not equivalent to a finite machine or there exist absolutely un-

 decidable mathematical propositions though it is weaker than the conclusions

 of Nagel and Newman, et. al., is still not validly derivable from the incomplete-

 ness theorems.9 Boolos deems the above argument inconclusive owing to ob-

 scurity in the idea that "the human mind is equivalent to a finite machine."
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 Even assuming, for the sake of argument, that the theorem-proving aspect of
 the human mind is mechanistic, it does not straightforwardly follow that in that
 case the mind's theorem-proving mechanism meets the conditions for being a
 Turing machine and is therefore incapable of proving its own consistency. For
 it is in the first place excessively unclear what is meant by saying (or by deny-
 ing) that the human mind, or even that a single mind, simply is a Turing ma-
 chine. And if what is meant is that the theorem-proving aspect of the mind, or
 of a single mind, is (or is not) represented by a Turing machine, Boolos ob-
 jects, Godel does not specify exactly how the representation is supposed to go.

 The argument does indeed raise troubling questions of this sort, and more.
 A Turing machine is the formal counterpart of a deterministic computational
 process. It does much more than merely represent a recursive function in the
 abstract, mathematical sense. The function is fully represented by the ma-
 chine's input and output, and may be aptly represented equivalently by a set of
 ordered sets of numbers. By contrast, a Turing machine is the program that
 produces a specific output for a given input; it represents the process of calcu-
 lating the value of the function for any argument. In the opening paragraph of
 the Gibbs Lecture, just before arguing for his disjunction, Godel cites Turing
 machines as providing the most satisfactory way of defining the concept of an
 effective calculation or algorithm (a "finite procedure") thereby indicating his
 acceptance of Church's thesis (at least as restricted to numerical functions, and
 sets characterizable by numerical functions). Is the "finite machine" of which
 Godel speaks in the quoted passage supposed to mirror, in the manner of a
 Turing machine, the method and procedures by which the human mind is able
 to construct or discover (as the case may be) mathematical proofs? If so, we
 need to know exactly how, and exactly to what extent, the finite machine does
 this in order to assess Godel's conclusion. Lacking this additional information,
 the most that can be justified is the supposition that the machine delivers the
 same theorems that the mind is able to prove, though perhaps by a completely
 different construction.

 Filling in the gaps, Boolos proposes a reconstruction of Godel's argument
 culminating in a circumscribed conclusion concerning not the actual process of
 proving theorems, but just the results thereby obtained. Though still somewhat
 vague, Boolos grants that the following is a consequence of the second incom-
 pleteness theorem: If there is a theorem-proving Turing machine whose output
 is the set of sentences expressing just those mathematical propositions that can
 be proved by a mind capable of understanding all polynomials with integer
 coefficients (and therefore capable of understanding a mathematical sentence
 tantamount to the meta-theoretic observation that the mind's theorem-proving
 mechanism is consistent), then there is a true mathematical proposition that can
 be understood but cannot be proved by that same mind namely, the mathemat-
 ically recast assertion of its own consistency. (See note 10 below.) Thus, any
 mind whose theorem-proving capacity is representable by some Turing ma-
 chine in terms of the theorems it proves (as opposed to the proofs it produces
 and/or the process by which it conceives those proofs) is in principle incapable
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 of solving certain mathematical problems indirectly about its own theorem-

 proving capacity. On Boolos's reconstruction, the machine passively represents

 the mind's potential output of theorems. Boolos's conclusion concerns those

 theorems only in the sense that it is about that class of theorems, not their pro-

 duction. The machine does not necessarily represent the mind's potential proofs

 of that potential output, let alone the active process by which the mind can

 generate those proofs.

 Boolos's conclusion is comparatively strikingly narrow. It is a trivial, dis-

 appointingly anti-climactic restatement of the second incompleteness theo-

 rem's corollary that no theorem-enumerating Turing machine prints a sentence

 tantamount to an assertion of its own consistency. Any possible generating ac-

 tivity whose output coincides, for whatever reason (or for no reason at all),

 with that of a theorem-enumerating Turing machine fails to produce a math-

 ematical proposition tantamount to the consistency of that output regardless

 of whether the activity is teleologically assisted by an understanding of the out-

 put, hence even if it is a room full of monkeys at typewriters.l° One might also

 point out, in much the same spirit, that anyone whose feats in manipulating

 geometric figures, as it happens, do not exceed those geometric tasks that can

 be performed using only a compass and straightedge, does not trisect an angle.

 In confining his attention to the mathematical theorems themselves, setting aside

 the epistemological character of their potential proofs by the human mind, Boo-

 los disengages his conclusion from the philosophical issues that drive Godel's.

 Godel's argument does not concern hypothetical minds of a precisely delimited

 capacity. It concerns the capability of the human mind, such as it is, to attain

 certainty in mathematics. It is about human mathematics at its edges both the

 initial starting points and the ultimate upward limits. Does the obscurity of the

 very idea that the human mind is equivalent to a machine block us from any

 such sweeping conclusion, and force a disappointingly restrictive retreat? I be-

 lieve it does not and that, contra Boolos, Godel's argument about the limits of

 human mathematics is reasonably secure, or can be made so.

 II

 Godel's principal argument does not make any essential detour through Tur-

 ing machines, or machines of any sort. One can dispense with machines alto-

 gether and make an end run for a disjunctive conclusion of just the sort from

 which Godel draws philosophical conclusions about the human mind and the

 objectivity of mathematics.

 Following Godel, let us distinguish between mathematics proper (i.e., all

 the truths of pure mathematics) and what I have called human mathematics

 (Godel's "subjective mathematics") that portion of mathematics that the hu-

 man mind, or any intelligence (whether biological or artificial) that is episte-

 mologically similarly situated to human intelligence, is capable of knowing with

 mathematical certainty ("mathematical certitude"). It is useful for this purpose
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 to introduce some artificial terminology. Let 'HuMath' designate the class ("sys-

 tem") of all true propositions of human mathematics. This is a subclass of the

 class Math of all purely mathematical truths. HuMath almost certainly ex-

 tends well beyond all the mathematics that will ever have been known with

 mathematical certainty by humans by some human or other at some time or

 other. Take note: it is not assumed that Math and HuMath are distinct, nor is it

 assumed that they are identical. It is not even assumed that HuMath includes

 every purely mathematical proposition that mathematicians take to be true. Hu-

 Math is restricted to those purely mathematical propositions that are know-
 able, hence true. If (contrary to our expectation) there should be any false purely

 mathematical propositions of which mathematicians have been persuaded (e.g.,

 by a subtly fallacious argument), they are excluded from HuMath. Since all of

 HuMath are true, HuMath is a fortiori consistent, i.e. no contradiction is cor-

 rectly deducible from it. Notice also that HuMath excludes any purely math-

 ematical truths that are only knowable by the human mind to some degree short
 of mathematical certainty. 1 l

 HuMath's definition invokes the generic notion of knowability by the hu-

 man mind, and this notion is somewhat obscure. What is knowable by one hu-

 man mind may be unknowable by another. It may be that no single, existent

 human mind (past, present, or future) is capable of knowing everything that the

 human mind is capable of knowing. It may even be that no possible human

 mind can know all of the facts each of which, taken individually, the human

 mind is capable of knowing. 12 As Boolos notes, it does not follow that no prop-

 osition involving the notion of human knowability is validly deducible from a
 mathematical theorem. Boolos cites the particular inference: 91 is composite;
 therefore, it is not humanly knowable that 91 is prime. This instance depends

 on the fact that knowledge entails truth. Godel's derivation of his disjunction,

 by contrast, depends on the fact that knowledge entails epistemic justification.

 But this does not, in itself, provide a reason to doubt that Godel's argument is

 sound. The basic epistemological assumption is that, whatever differences there

 are among humans, certain epistemic mechanisms ways of coming to know-

 are in principle accessible to the human mind.l3 At a minimum, there is an

 epistemic mechanism that is characteristically human, in this sense, and yields

 mathematical knowledge with mathematical certainty. The principle does not
 require that one be able to determine with any certainty whether a particular

 alleged phenomenon (e.g., telepathy) is a human epistemic mechanism, in this

 sense, or whether a particular alleged fact is knowable by a human mechanism.

 It may well be that this fundamental epistemological principle is not itself known

 with mathematical certainty, and to the extent that Godel's argument presup-

 poses the principle, the derived disjunction is also not so known. But the prin-

 ciple is known (even if not with mathematical certainty), and is not typically

 subject to doubt. If a proposition is validly inferred from a mathematical theo-

 rem using this epistemological principle, it is not unreasonable to say that the
 inferred proposition is a mathematically established fact.
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 The epistemic mechanism by which the elements of HuMath are know-

 able with mathematical certainty by humans is evidently that of mathematical

 proof. Godel notes that if any purely mathematical knowledge is obtained by

 proof on the basis of truths antecedently known with mathematical certainty,

 then some purely mathematical knowledge is not. 14 For proofs must have start-

 ing points, and knowledge obtained by proof is derived ultimately from knowl-

 edge of those starting points. The latter knowledge Godel calls the "evident

 axioms." (It includes axioms of both logic and mathematics proper.) This epi-

 stemic mechanism for attaining certainty in pure mathematics is aptly repre-

 sented by the logistic method.l5 There is a proper subclass Ax of HuMath

 consisting of epistemologically foundational axioms purely mathematical "first

 truths" each knowable with mathematical certainty by the human mind (i.e., by

 some possible human mind) without proof from other purely mathematical truths

 but through direct mathematical intuition or insight ("perception"), or perhaps

 derived from something more fundamental than pure mathematics (including

 logic) while the rest of HuMath are knowable with mathematical certainty

 only by proof, i.e. only by deductive derivation ultimately from the mathemat-

 ical axioms, using logical (primitive) rules of inference together perhaps with

 purely mathematical rules of inference over and above the axioms. HuMath is

 the deductive closure of Ax under the rules of human mathematical reasoning.

 In this sense, the union of Ax with the rules of human mathematical inference

 form the deductive basis of human mathematics. Let us call it 'Basis'. 16

 Ax may extend beyond all those fundamental truths of pure mathematics

 that will ever have been known by humans with mathematical certainty with-

 out independent mathematical proof, i.e. without proof from antecedently known

 purely mathematical truths. It is not assumed that any particular human math-

 ematician, or even any possible human mathematician, can know all the ele-

 ments of Ax. However, each of the axioms, taken individually, must be humanly

 knowable with mathematical certainty without independent mathematical proof.

 If we cannot know an axiom, then we also cannot know anything derived from

 it except by some independent epistemological means. Genuinely inferential

 knowledge requires knowledge of that from which it is inferred. Moreover, each

 of the rules of inference of human mathematical reasoning must be not only

 valid (i.e., such as to preserve truth in any model), but also of a sort that trans-

 fers, through the cognitive act of immediate inference, the sort of epistemic

 justification that yields mathematical certainty. It is not independently required

 that we know each of the inference rules to be valid (let alone that we know

 this with mathematical certainty), but knowing this may be inextricably bound

 up with the rules' being such as to transfer mathematical certainty to the imme-

 diately inferred conclusion from that from which the conclusion is immediately

 inferred. In any event, it is reasonable to suppose that we can know of each

 inference rule of the required sort, with mathematical certainty and without

 independent mathematical proof, that it is indeed valid.

 It is frequently assumed in discussion of Godel's incompleteness results (es-

 pecially of their philosophical implications) that they entail that any well-defined
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 deductive basis for arithmetic, if consistent, is incomplete and fails to decide in

 particular a recast assertion of its own consistency. From this it would follow

 directly that, contrary to David Hilbert, there are purely mathematical truths the

 human mind is incapable of proving, including an assertion of its own math-

 ematical consistency. (Recall that Ax is a subclass of HuMath, which is re-

 stricted to truths, and that the rules are valid; hence Ax is consistent.) But the

 assumption often involves a mistake, and Godel did not believe its conclusion.

 There exist deductive systems for arithmetic (in a broad sense of 'deductive sys-

 tem') that are both consistent and complete Godel's theorems notwithstand-

 ing. This simple fact, although sometimes overlooked, is essential to a proper

 understanding of Godel's disjunction and the argument for it. One way to ob-

 tain a consistent deductive system for arithmetic whose theorems are exactly

 those sentences of the language that express truths of arithmetic is to take all

 and only those sentences as axioms.l7 No object-theoretic Godelian sentence

 indirectly asserting its own unprovability-in-this-system exists. On the other

 hand, the axiom set is unwieldy as unwieldy as possible without allowing for

 the deduction of falsehoods. It is all over the map. Each expressible truth of

 arithmetic, regardless of how complex or abstract, is provable in this system in

 a single line. We are currently in no position to determine whether certain

 sentences are axioms of this system for example, the sentence expressing

 Goldbach's Conjecture. By contrast, the elements of Ax are narrowly confined

 to those purely mathematical truths that are humanly knowable with mathemat-

 ical certainty without independent mathematical proof. The envisaged com-

 plete, consistent system does not come close to adequately representing the way

 the human mind achieves knowledge with mathematical certainty in arithmetic.

 Part of the significance of Godel's incompleteness results derives from the fact

 that they obtain for deductive systems that do at least approach the way the hu-

 man mind attains mathematical knowledge.

 A requirement that the axioms be written out in full would be excessive,

 since it excludes the possibility of a logistic system with infinitely many axi-

 oms. Instead, it is customary to consider deductive systems whose primitive

 bases are recursively enumerable (if not indeed primitive recursive) so that

 even if there are infinitely many axioms there is an effective procedure by which

 theoretically one could enumerate them (allowing repetitions) and calculate what

 the nth axiom is for any natural number n. This condition (or something that

 entails it, perhaps given Church's thesis) is typically built into the definition of

 a logistic or formal system or theory. l8 It is only in that case that the deductive

 system can be effectively specified (in an intuitive sense) in a finite descrip-

 tion. Moreover, if the deductive basis is effectively decidable, then so is the

 notion of a proof. Suppose that the elements of Ax constitute a recursively enu-

 merable set of propositions, in the following sense: that there is a recursive

 numerical function from whole numbers onto a set A of Godel numbers of sen-

 tences of a possible formal language expressing each of the elements of Ax in

 that possible language so that there is an effective procedure by which theo-

 retically one could calculate what the nth element of Ax is for any natural num-
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 ber n.l9 Suppose also that the rules of inference are analogously recursively

 enumerable. (See note 16.) Godel showed how, in that case, the notions of a

 proof-from-Ax and of contradiction, and therewith the statement of HuMath's

 consistency (which is meta-theoretic), can be put into object-theoretic form.

 Specifically, if the elements of Ax form a recursively enumerable set, and so

 do the inference rules, then there is a purely mathematical binary relation Proof

 which is designated by an open formula 4)proOf(X, y) of a possible formal lan-

 guage suitable for arithmetic and which provably holds between a pair of num-

 bers n and m if and only if n is the Godel number of a sequence of formulae

 that collectively express, in that same formal language, a proof from Ax, by

 way of the inference rules, of the proposition expressed, in that language, by

 the formula whose Godel number is m. Likewise, there is a purely mathemati-

 cal relation Contradict, designated by an open formula 4)contradict(x, y) of the

 same language, which provably holds between a pair of numbers if and only

 if they are the Godel numbers of formulae one of which is the negation

 of the other. There is then a corresponding sentence g)Cons of the form

 (3X)(3Y)[+Contradict(x7 y) A (3Z)+Proof(z7 X) A (3Z)+Proof(z7 y), which

 is mathematical code via Godel numbering for the consistency of the logistic

 system generated by the set A of axioms and the inference rules. The sentence

 f4)cons expresses a mathematical proposition Cons which we know with math-

 ematical certainty to be equivalent to the logistic system's formal consisten-

 cy.20 On the assumption that the elements of Ax and the rules constitute

 recursively enumerable sets, Godel's second incompleteness theorem implies

 that g)Cons iS not provable from Ax. For the theorem (as extended by Barkley

 Rosser) states that if an axiomatic basis suitable for arithmetic is both recur-

 sively enumerable and consistent, then the corresponding object-theoretic state-

 ment (constructed thus via Godel numbering) of the theory's consistency, though

 true, is not provable from those axioms.2l Since each of the propositions ex-

 pressed by the elements of A is knowable, a fortiori each is true. And since all

 of the them are true and the rules are valid, A is a fortiori consistent. Thus, if

 the elements of Ax constitute a recursively enumerable set, and so do the rules,

 then Cons is a purely mathematical truth that does not belong to HuMath.

 In this sense, either the axiomatic basis of human mathematics (i.e., the

 purely mathematical truths knowable by the human mind with mathematical

 certainty without independent mathematical proof, together with the rules of

 human mathematical inference) is not reducible to a recursively enumerable set

 (and thus they do not yield a logistic or formal system, in the technical sense),

 or else some purely mathematical truths including a mathematical encoding

 of the consistency of human mathematics are in principle unknowable by the

 human mind with mathematical certainty. This result already goes significantly

 beyond Boolos's conclusion that any mind capable of understanding all poly-

 nomials with integer coefficients and whose provable theorems exactly co-

 incide with the output of a theorem-proving Turing machine is incapable of

 proving a mathematical truth that it apprehends. But Godel takes matters fur-

 ther still.
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 Enter the argument about a "finite rule" and the prospect of the human

 mind being "equivalent to a finite machine." Against the interpretation placed

 on this by Boolos and others, the imagined rule, as it is understood and in-

 tended by Godel, does not generate proofs of the elements of HuMath let

 alone does it capture the method or procedure by which the mind constructs or

 discovers proofs.22 Whereas Godel's argument is concerned with the epistemo-

 logical character of potential proofs by the human mind, the actual cognitive

 process whereby the human mind might conceive or discover its proofs is irrel-

 evant. Let it be by a mechanistic process or let it be utterly non-mechanistic,

 by an indescribable mathematical inspiration, by a vital, non-deterministic spark

 of creativity. Let it be by supernatural revelation, or by divine intervention. It

 makes no difference to the argument.

 Nor is the envisaged "finite rule" merely supposed to produce the math-

 ematical theorems provable by the human mind the elements of HuMath-

 even if by a potentially different construction. What the speculated rule is

 supposed to generate are the "evident axioms," i.e., not the elements of Hu-

 Math themselves but their axiomatization in Basis. If Basis is recursively enu-

 merable, there is an effective procedure that enables one to enumerate its

 elements (possibly with repetitions). According to Church's thesis (construed

 so as to include the effective enumeration of a set of propositions), the con-

 verse obtains as well. Suppose there is a finite rule that produces all the ele-

 ments of Basis for example, finite instructions enabling one automatically to

 write out the sentences of a possible mathematical language, one after another,

 which express just the elements of Ax as well as the inference rules. Mathemat-

 ical certainty that the rule, properly characterized, generates no inconsistencies

 would then be unattainable. It follows from the second incompleteness theorem

 (and Church's thesis) that if there are such instructions, then even though each

 of the propositions expressed by the sentences they produce is true and hu-

 manly knowable with mathematical certainty without proof, and even though

 each of the generated rules are valid and such as to transfer mathematical cer-

 tainty via the immediate inference, we cannot know of the instructions, with

 the same certainty, that their product is even consistent. Therefore, either there

 is no such rule equivalently, no recursive function that enumerates the ele-

 ments of Basis or again there are purely mathematical truths of a certain type

 that are humanly unprovable. This is, nearly enough, Godel's disjunction. It is,

 in effect, a trivial transformation in propositional logic of the following: If the

 elements of Basis constitute a recursively enumerable set, then HuMath is a

 proper subelass of Math.23

 Godel expands on his first disjunct that there is no effective procedure

 producing exactly the axiomatic basis of human mathematics by drawing an

 inference concerning the human mind vis a vis a finite machine. If indeed there

 is no such rule, then the human mind's capacity for attaining certainty in math-

 ematics surpasses that of a theorem-proving computer at least insofar as the

 computer's theorem-proving capacity is restricted to procedures that corre-

 spond to a recursive notion of proof. There is no assertion here that the theorem-
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 proving mechanism of the human brain is not a computing machine (if 'machine'

 is the right term to use) whose theorem-proving capacity is not restricted in

 this way. Boolos's worries about the vagueness of the general notion that "the

 human mind is equivalent to a finite machine," while they may be an appropri-

 ate reaction to an attempt to derive some such more sweeping conclusion than

 this, are not pertinent here. The difficulty of likening the theorem-proving ca-

 pacity of the human brain to a computer is not so much that the brain's cogni-

 tive processes are not mechanistic. Nor is it that a machine cannot know the

 fundamental axioms of human mathematics. (Although it cannot. Strictly speak-

 ing, it is a person, and not the person's brain, that knows things.) The difficulty

 comes in the very design (let alone the construction) of a theorem-proving ma-

 chine when there is no effective procedure for delimiting its proofs' admissible

 starting points. Either there is no such procedure with regard to the human mind's

 capacity for attaining knowledge with mathematical certainty in pure mathemat-

 ics, or else there are purely mathematical problems of a certain sort that are in

 principle unsolvable by the human intellect. This is Godel's disjunction.

 III

 Godel remarks in passing (in effect) that the correctness of a set of propo-

 sitions (i.e., truth of all the elements) entails their formal consistency, and hence

 knowledge with mathematical certainty of the former yields knowledge with

 mathematical certainty of the latter. Call this 'Godel's thesis'.24 It follows that

 knowledge with mathematical certainty of a proposition p (which may be a

 conjunction of propositions) yields the knowledge, with the same certainty, that

 p is consistent. Insofar as Ax consists of propositions that the human mind is

 capable of knowing with mathematical certainty, one might expect the mind to

 be able to know the conjunction of those axioms (perhaps by repeated applica-

 tions of a familiar logical rule of inference). From the latter, according to Godel's

 thesis, we could deduce the conjunction's consistency, and from this the Gode-

 lian undecidable proposition. Does Godel's thesis provide support for Lucas's

 assertion that the mind can after all see the truth of Godel's undecidable prop-

 osition, which indirectly says of itself that it is not provable from the axioms?

 Not without further argument. Ax is presumably infinite. The conjunction

 of its elements would then be an infinite conjunction. But there is a question of

 whether there even exist such propositions. If such propositions do exist, there

 is still a question of whether the human mind can comprehend them. Further-

 more, though each element of Ax is knowable with mathematical certainty with-

 out independent proof, it does not follow that the conjunction of all the axioms

 is itself knowable with mathematical certainty-even assuming that this con-

 junction is humanly comprehendible. In order for a proof to confer knowledge

 with mathematical certainty, one must know each of the axioms employed in

 the proof with the same certainty. Even if one is thus capable of knowing with

 certainty the conjunction of axioms used in any proof that one may construct

 or discover, since proofs are finite this yields knowledge with certainty of con-
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 junctions of finite subsets of elements of Ax, not yet knowledge with certainty

 of the conjunction of all elements of Ax.25

 Suppose the human mind were able to know the conjunction of all of Ax

 at once. Suppose the inference rules are finite. According to Godel's thesis, we

 could then know with mathematical certainty that if the conjunction of such-

 and-such axioms is correct, then the conjunction of such-and-such axioms (these

 same ones) is formally consistent. The fact concerning Ax-that if all those

 propositions are correct then they are consistent is something we would be

 able to know with mathematical certainty if we were capable of apprehending

 Ax all at once, and if we are capable of any mathematical knowledge at all.

 Hence, if we could but know the conjunction of all elements of Ax with math-

 ematical certainty, we could infer their consistency by modus ponens (an infer-

 ence rule of just the sort required). But if the elements of Ax constitute a

 recursively enumerable set, then we cannot know Cons (which is provably equiv-

 alent to the consistency of Ax) with mathematical certainty. Therefore, by re-

 ductio ad absurdum, either the elements of Ax are not recursively enumerable,

 or else their conjunction is not humanly provable. Or to put the point some-

 what differently from Godel: Though each of the elements of Ax, taken indi-

 vidually, is humanly knowable with mathematical certainty, if those elements

 are recursively enumerable, then even though they are, their conjunction is not

 humanly knowable with mathematical certainty. This result does not advance

 the position of Nagel and Newman, et. al.

 By Godel's thesis, if the elements of Ax are recursively enumerable, then

 the human mind is barred from knowing their conjunction with mathematical

 certainty. This does not mean that if the elements of Ax are recursively enu-

 merable, then the human mind is barred from knowing with mathematical cer-

 tainty the general meta-theoretic proposition that all the purely mathematical
 propositions knowable with mathematical certainty by the human mind without

 independent mathematical proof are true. On the contrary, the latter proposi-

 tion appears to be something of which we are certain (setting aside worries

 about the so-called paradox of the knower), on the basis of the analytic truth

 that whatever is known is true. (See note 25.) What it does mean is that if the

 elements of Ax are recursively enumerable, we are barred from knowing of

 those propositions (de re) with mathematical certainty that all are true, by in-

 ference from anything of the form rEvery x such that +(x) is true' where r+(x)'

 designates Ax in a manner provably equivalent to its designation in 04Proof and

 04Cons In particular, even if the elements of Ax are recursively enumerable, we

 cannot know with mathematical certainty of any recursive function that enu-

 merates it, that it generates only Godel numbers of true sentences with the

 enumerating function characterized so as to yield a formula r+(x)' of the indi-

 cated sort.

 Again suppose there is a finite rule that produces exactly the axioms of

 human mathematics. Under certain circumstances (e.g., where one fully under-

 stands the possible language in question), knowing of the envisioned effective

 instructions that they produce only sentences expressing truths is tantamount to
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 knowing those propositions expressed to be consistent. It follows that if there

 are such instructions, then even though each of the propositions expressed by

 the sentences they produce is true and humanly knowable with mathematical

 certainty without proof, we cannot know of the instructions, with the same cer-

 tainty, that their product is correct. If there are effective instructions that pro-

 duce sentences expressing exactly the axioms of human mathematics, we are

 incapable of knowing of those instructions with mathematical certainty that they

 do so. If we were to stumble upon such a rule we could not prove it to be such,

 or even that it produces only truths.26

 Lucas, like Nagel and Newman and others who have discussed the philo-

 sophical import of Godel's incompleteness results, evidently tacitly assumes

 that insofar as the mathematical capabilities of a human mind is represented by

 a deductive system at all, the axioms constitute a recursively enumerable set, if

 not indeed a recursive set.27 It follows from this assumption, taken together

 with Godel's thesis, that though each of the axioms is humanly knowable with

 mathematical certainty, the mind is incapable of deducing their conjunction.

 This in itself does not refute Lucas's argument. The position of Nagel and New-

 man, et. al., appears to be that, whatever one's axioms for mathematics may be

 at a given time, the human mind, unlike the logistic system it instantiates at

 that time, is capable of augmenting its primitive deductive basis through a non-

 mechanistic mathematical insight that goes beyond what is strictly provable from

 those axioms. The mind can both prove that the axioms cannot prove their own

 consistency, and at the same time see (without proving this from the current

 axioms) that those same axioms en toto are correct, hence consistent. The mind

 thereby expands its deductive basis, empowering itself to prove the incomplete-

 ness of the previous axioms from the new set. The mind can then repeat the

 maneuver with respect to its new deductive basis, and then again with the yet

 newer basis, and so on in an ongoing dialectic. More important, the vital math-

 ematical faculty or insight that fuels the dialectical progression also yields knowl-

 edge with mathematical certainty of its own correctness, and hence consistency,

 and thereby of the correctness, and consequent consistency, of the entire sys-

 tem generated by the initial axioms and inference rules taken together with the

 special non-mechanistic faculty itself. The hypothesized vital mathematical in-

 sight would strikingly set the human mind apart from any machine or mecha-

 nistic process that lacks it.

 Unfortunately, this view of human mathematics as a dynamic process of

 continuing discovery fueled by a unique kind of non-mechanistic and self-

 validating mathematical insight does not solve the problem. Ax, by definition,

 includes every purely mathematical truth that is humanly knowable without proof

 from other purely mathematical truths. If there is any special, self-validating

 faculty or intuition of the sort hypothesized, whatever is humanly knowable by

 its means is thus already included in Ax. The only way for the mind to come to

 know a purely mathematical truth with mathematical certainty that does not

 belong to Ax is to prove it ultimately from Ax (i.e., to prove it from Ax, or to

 prove it from theorems proved from Ax, or from theorems proved from theo-

This content downloaded from 
������������128.111.121.42 on Sat, 19 Sep 2020 12:18:20 UTC������������� 

All use subject to https://about.jstor.org/terms



 Human Mathematics / 107

 rems proved from Ax, etc.). HuMath is completely axiomatized by Basis, i.e.,

 Ax together with the inference rules. In light of Godel's second theorem, if

 Basis is recursively enumerable, the recast assertion of its consistency is not

 humanly knowable with mathematical certainty. Rather than making the case

 for the position of Nagel and Newman, et. al., this result spells trouble for it.

 Assume for the moment, with Hilbert, that the human mind is capable, in

 principle, of solving any purely mathematical problem. It then follows from

 Godel's disjunction that the mind's capacity for proving theorems surpasses that

 of any theorem-proving computer whose primitive deductive basis is recur-

 sively enumerable. The mind's superiority over any such machine (in this sense)

 is explained not so much, or not directly, by the mind's being able to "see" that

 which cannot yet be proved, but instead by the fact that its primitive deductive

 basis is essentially richer than the computer's. The richness of human math-

 ematics would in that case result from some human faculty or intuitive insight-

 which would indeed separate man from those machines without it but this

 special mathematical faculty or intuition might be the very same faculty that

 provides us with even the simplest axioms, not something further and different.

 Moreover, its consistency may not be reducible to any purely mathematical prop-

 osition, and therefore it need not be self-validating to be mathematically com-

 plete.28 In any event, there remains the unproven assumption that the human

 mind can prove every purely mathematical truth.

 IV

 Godel's derivation pointedly places a special focus on a question that is

 ignored in Lucas's argument: Are the elements of Basis recursively enumera-

 ble? Or put another way (under the assumption of Church's thesis, applied to

 the effective enumeration of a set of propositions): Is there an effective proce-

 dure for enumerating the rules of human mathematical inference together with

 those purely mathematical truths that the human mind is capable of knowing

 with mathematical certainty without independent mathematical proof? If there

 is not, then the mathematical capacity of the human mind surpasses that of any

 mathematics machine whose deductive basis is subject to such a procedure;

 and otherwise, the human mathematical mind is, in a certain sense, in principle

 incapable of resolving the question of its own consistency.

 In particular, could it be that Ax is not effectively enumerable? Many lo-

 gicians would regard this prospect as quite impossible. Church argued, in ef-

 fect, that nothing should count as a genuine proof unless the totality of axioms

 form a recursively enumerable set, indeed a recursive set. He posed his argu-

 ment in the context of a logistic system, construed syntactically. Church im-

 posed as an inviolable restriction on any logistic system that "the specification

 of the axioms shall be effective in the sense that there is a method by which,

 whenever a well-formed formula is given, it can always be determined effec-

 tively whether or not it is one of the axioms."29 Unless there is an effective

 procedure for deciding whether a given formula is or is not one of the axioms,
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 the notion of proof itself will not be effective. Church's justification for the

 restriction is given with characteristic eloquence and force:

 There is then no certain means by which, when a sequence of formulae has been

 put forward as a proof, the auditor may determine whether it is in fact a proof.

 Therefore he may fairly demand a proof, in any given case, that the sequence of

 formulae put forward is a proof; and until this supplementary proof is provided, he

 may refuse to be convinced that the alleged theorem is proved. This supplementary

 proof ought to be regarded, it seems, as part of the whole proof of the theorem, and

 the primitive basis of the logistic system ought to be so modified as to provide this,

 or its equivalent. Indeed it is essential to the idea of a proof that, to any one who

 admits the presuppositions on which it is based, a proof carries final conviction.30

 Lecturing on Godel's incompleteness theorems in 1974, Church gave the

 following related argument, as reconstructed from my notes (edited and ap-

 proved by Church at the time for distribution to the class):

 The initial reaction to an incompleteness proof for a logistic system is to search for

 additional axioms, postulates, or rules of inference which, when added to the in-

 complete system, yield a complete system. But there does not seem to be any way

 of doing this for the logistic system A2 [a formalization of second order Peano

 arithmetic]. The Godel proof does not make great use of the particular axioms,

 postulates, and rules of inference of A2. The proof is of such generality that it is

 easily extended to a logistic system obtained from A2 by the addition of particular

 axioms, postulates, and rules of inference.

 The reason for the incompleteness of A2 does not lie in the axioms, postulates,

 or rules of inference, but rather in the notion of mathematical proof. A proof must

 carry conviction; one who accepts the axioms and rules of inference, if he has once

 seen a proof of a particular theorem, must then not be able justifiably to doubt the

 theorem. But if axiom schemata or rules of inference are non-effective, the situa-

 tion can arise that one who has seen a proof may still doubt, because he is unable

 to verify that what is before him is in fact a proof. Thus the notion of proof must be

 effective, that is, there must be an effective procedure for determining whether an

 alleged proof is a proof. Presumably this means that the notion of proof must be

 general recursive, since there is no known effective check which is not general

 recursive. Even if we were to add an axiom schema to the logistic system A2, the

 set of instances of this axiom schema must be general recursive, if not indeed prim-

 itive recursive, in terms of their Godel numbers. One need only show that the no-

 tion of mathematical proof which is obtained by adding this axiom schema to A2 is

 expressible in A2 by means of Godel numbering in order to carry through an in-

 completeness proof along the lines given above, and this should be possible in vir-

 tue of theorems connecting general recursion and primitive recursion (for example,

 that any general recursive relation can be expressed by means of quantifiers and

 primitive recursive relations).

 Thus in a general way, the Godel proof is not only a proof of incompleteness,

 but also a proof of incompletability. Since the only known way of making precise

 the notion of mathematical proof is the logistic system, the usual conclusion drawn
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 from the Godel proof is that any precise formulation of arithmetic cannot be

 complete a conclusion which shatters one of the hopes of the Hilbert program.

 A genuine mathematical proof is not merely a sequence of formulae satis-

 fying certain purely syntactic conditions (viz., every element of the sequence is

 either an element of the recursively specified set of "axioms," or else follows

 from formulae occurring earlier in the sequence by means of one of the recur-

 sively specified set of "rules of inference"). Rather, a genuine proof is what

 such a sequence of formulae semantically expresses: a line of reasoning, con-

 sisting of propositions, that conclusively demonstrates a proposition. Church's

 argument that since a proof must "carry final conviction" the notion of proof

 must be effective, if sound, applies directly to authentic proofs, and only deriv-

 atively, by extension, to their syntactic expression within a logistic system. If

 sound, the argument supports the broad conclusion that there must be an effec-

 tive procedure that enables one to decide of any mathematical proposition

 whether it is or is not an element of Ax. In fact, assuming Church's thesis (in

 the form indicated above), his argument, if sound, supports the conclusion that

 the elements of Ax must constitute a recursive set of propositions, in the sense

 that there is a recursive numerical function that exactly characterizes a set of

 Godel numbers of sentences of a possible formal language expressing each of

 the elements of Ax e.g., a recursive function that yields 1 for the Godel num-

 ber of any axiomatic sentence and 0 for the Godel number of any other sen-

 tence of the language in question. (See note 19.)

 Church's argument, however, does not itself carry conviction. First, the fact

 that an auditor may justifiably doubt whether a purported proof is correct (and

 thus a genuine proof) does not entail that the line of reasoning in question does

 not after all conclusively demonstrate its conclusion with mathematical cer-

 tainty (i.e., is not a genuine proof). A proof provides potential epistemic justi-

 fication for conviction; the carrying of conviction is a horse of a different color.

 Whether the horse drinks from the water to which it is led is up to the horse. It

 is not unusual for a theorem to be proved before it is confirmed that the rea-

 soning is thoroughly sound sometimes well before this is confirmed even to

 the original author's satisfaction. In such cases, a potential epistemic justifica-

 tion for conviction is provided before conviction is carried-perhaps even be-

 fore conviction is actually justified by its potential justification. Church's concern

 is with the auditor who questions whether a purported proof that has been spelled

 out in full, with a justification provided for each step, is correct. Often one can

 know that a given object has a given property even in the absence of an effec-

 tive test for the property in question. Often one can even prove this. In partic-

 ular, a given proof's correctness can be verified without applying any general

 test capable of verifying the correctness of any proof whatsoever. It is typically

 sufficient to re-check each step of the particular proof in question, and to ver-

 ify that those particular steps are legitimate. One can do this by applying cer-

 tain sufficient conditions for the justification of a step, even in the absence of a
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 complete set of such conditions, let alone a complete set of effectively decid-

 able necessary and sufficient conditions. Where one auditor may doubt whether

 a particular piece of reasoning is a proof, another auditor may correctly see,

 without the benefit of an effective test, that the reasoning is perfectly sound. In

 that case, the reasoning can decisively establish its conclusion, at least for the

 second auditor.31

 For that matter, even if there is an effective test, its mere existence does

 not put an end to the infinite regress of demanding a proof, then demanding

 a proof that the first proof is correct, then demanding a proof that the second

 proof is correct, and so on.32 Nor does the existence of an effective test for

 proofs eliminate the possibility of justified doubt in a given case. To quell such

 doubt the test has to be applied to the proof in question. One may then question

 whether the test has been applied correctly. And even if one is satisfied that it

 was, one may justifiably doubt whether the purported test itself is correct. If

 an auditor wonders whether a particular proposition employed as an axiom in

 the proof is indeed antecedently known, it is no answer to point out that the

 formula expressing the proposition in question was written under the heading

 "AXIOMS" in setting up the primitive basis of a particular logistic system for

 mathematics (or is generated by an effective procedure for producing the logis-

 tic system's "axioms"). The auditor's question is not whether the formula is

 playing the role of an axiom in the purported proof, or whether it is called an

 'axiom'; the question concerns the proposition expressed, whether it is genu-

 inely known with mathematical certainty without independent mathematical

 proof. The so-called test simply assumes it is so, as it were, by stipulative fiat.

 The prospects are dim for an effective procedure for deciding whether it really

 is so. If such a procedure is required for there to be proof, mathematical igno-

 rance is considerably wider than is currently realized.

 On the contrary, the general issue of whether the entire line of reasoning in

 question is a proof is separate from the issue the proof itself is intended to

 settle: whether the theorem in question is true. The reasoning, if it is correct,

 enables an auditor to know the theorem with mathematical certainty. This is

 the purpose of the proof, its raison d'etre. To ask whether the purported proof

 is correct is to raise a separate, further question, an epistemological meta-

 question related to the issue of whether one knows that one knows a question

 that the auditor need not consciously consider in order to gain knowledge of

 the theorem with mathematical certainty on the basis of the proof. If the as-

 sumptions employed in the line of reasoning are in fact already known with

 mathematical certainty, and the inference rules are of the right character (so as

 to transfer mathematical certainty to the inferred conclusion), the reasoning can

 be of the right sort to establish its theorem conclusively, and to confer math-

 ematical certainty for an auditor, even if the question of whether it does so is

 never raised perhaps even if the question is raised and answered incorrectly,

 as long as the auditor continues to believe the theorem on the basis of the proof.

 Church's argument is fundamentally Cartesian in character. It assumes that

 knowledge with mathematical certainty precludes the possibility of a certain
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 kind of justifiable doubt. Church supposes that in order genuinely to know some-

 thing in mathematics one must be able to prove it beyond all possible justifi-

 able doubt, and in order to do this one must be able to prove beyond justifiable

 doubt that one has done so, by applying an effective test. Descartes took this

 assumption a step further, requiring that all knowledge, mathematical or other-

 wise, be obtained by proof that is not subject to doubt of this sort. But the same

 mistake occurs even when the assumption is restricted to knowledge in math-

 ematics with mathematical certainty. Despite the astounding feats of its cham-

 pions, the assumption inexorably leads to skepticism. One may legitimately

 wonder, for example, how one knows (and in particular, whether by direct math-

 ematical insight) that if integers n and m have the same successor then n = m.

 It is doubtful that anything other than Descartes's Cogito is completely im-

 mune from the kind of doubt raised by demanding indubitable proof that one's

 proof is a proof. One may even doubt whether the Cogito is.

 None of this diminishes the epistemological power of mathematical proof.

 That power is awesome. Though not immune from Cartesian doubt, mathemat-

 ical proof provides a way indeed, the only way to extend human knowl-

 edge with mathematical certainty beyond the severely narrow confines of Ax.

 Few epistemological mechanisms can achieve the kind of certainty that math-

 ematical proof confers. In any event, even if Church's argument is not cogent,

 it does not follow that his conclusion is incorrect.

 Though severely narrow, Ax may be remarkably diverse. As noted, Ax in-

 cludes fundamental mathematical truths that no one in the entire history of hu-

 man life will have ever apprehended let alone believed, let alone known. Some

 elements of Ax involve concepts that are humanly apprehendible but of which

 no one will have ever formed a grasp. Some elements of Ax may be knowable

 only through modes of thought which are humanly possible but in which no

 one will have ever engaged. It may be that, though each element of Ax taken

 individually is humanly knowable with mathematical certainty, no possible hu-

 man mind could apprehend all of them let alone believe all of them, let alone

 know all of them with mathematical certainty. As far as Godel's theorems go,

 the question is left open whether Ax is effectively decidable, or at least effec-

 tively enumerable, or enumerable at all even whether the elements constitute

 a set. Hao Wang has reported that, though Godel derives only a disjunction

 from his second incompleteness theorem, he believed Hilbert was correct in

 rejecting the second disjunct.33 In light of Godel's first theorem (and Church's

 thesis), Hilbert's optimism that the human mind is capable of solving any purely

 mathematical problem carries with it the view that the axioms of human math-

 ematics are not effectively decidable. If every purely mathematical problem is

 humanly solvable in principle, then there is no effective procedure for listing

 the axioms of human mathematics. This would not mean that the human brain

 is not (among other things) an organic machine. It does mean that, insofar as

 Hilbert's optimism is correct, the theorem-proving capacity of the human mind

 far exceeds that of any theorem-proving mechanism whose deductive basis is

 effectively enumerable a restatement of Godel's disjunction. But one does not
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 have to be optimistic to appreciate that if the human brain is a machine, then it

 is a remarkable one or else Godel was not human (or both).

 Notes

 tThe present essay grew out of meetings of the Santa Barbarians Discussion Group,

 organized by C. Anthony Anderson. I am indebted to the participants for encourag-

 ing my thoughts on the topic and for their comments on an early draft, and espe-

 cially to Anderson for his valuable assistance.
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 ematically, Lucas's derivation does not constitute a proof, or anything close to a

 proof. Given Lucas's objective, it is not sufficient for him to argue merely that mech-

 anism cannot be proved.

 An assessment of the arguments and assertions of Lucas and Penrose is pro-

 vided in Stewart Shapiro, "Incompleteness, Mechanism, and Optimism," The Bul-

 letin of Symbolic Logic, 4 (September 1998), pp. 273-302.

 6. "Some Basic Theorems on the Foundations of Mathematics and Their Implica-

 tions," in Godel's Collected Works, III: Unpublished Essays and Lectures, S. Fefer-

 man, J. W. Dawson, Jr., W. Goldfarb, C. Parsons, and R. N. Solovay, eds (Oxford

 University Press, 1995), pp. 304-323, at 310. See also Hao Wang, A Logical Jour-

 ney: From Godel to Philosophy (Cambridge, Ma.: MIT Press, 1996), especially chap-

 ters 6 and 7, pp. 183-246.

 7. If the second alternative obtains that there are purely mathematical questions of a

 certain sort that the human intellect is in principle unable to prove or disprove-

 this would seem to indicate that truth in pure mathematics is not reducible to prov-

 ability (demonstrability), since the two are not even co-extensional. This conclusion

 relies on the assumption that if there are humanly undecidable purely mathematical
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 propositions, at least some have truth value. In fact, the propositions that are pro-
 duced in Godel's proof as undecidable in the logistic system in question are true
 (their negations false) provided the system is consistent, and are otherwise false.
 Any analogous propositions that are undecidable in human mathematics are like-
 wise truth valued, so that truth in pure mathematics would provide no guarantee of
 certainty, or even potential certainty.
 8. Ibid., pp. 309-310.

 9. Boolos, "Introductory Note to 81951," in Godel's Collected Works, III: Unpub-
 lished Essays and Lectures, S. Feferman, J. W. Dawson, Jr., W. Goldfarb, C. Par-
 sons, and R. N. Solovay, eds (Oxford University Press, 1995), pp. 290-304, at 294.

 10. Boolos misformulates his conclusion by saying that if there is a Turing machine
 whose output is the set of sentences expressing just those mathematical proposi-
 tions provable by a mind capable of understanding all propositions expressed by
 any sentence of the form r(Vx)(3y)+(x, y) = 0', where x and y are sequences of
 integer variables and +(x, y) is a polynomial with integer coefficients, then there is
 a true mathematical proposition of this same technical sort that cannot be proved
 by that same mind. It is evident that the conclusion Boolos intends is, rather, that if
 there is a Turing machine that produces exactly the mathematical truths provable by
 a mind with such comprehension, then there is a mathematical truth that such a
 mind understands (never mind what technical sort it is) but cannot prove. The latter
 carries with it the suggestion that the mind's incapacity, under the envisaged cir-
 cumstances, does not result from a lack of understanding.

 The suggestion, however, is misleading. It is built into the case that the mind's
 theorem-proving capacity, by hypothesis, does not exceed the output of some
 theorem-enumerating Turing machine or other. This in itself says nothing about why
 the mind's mathematical prowess is thus limited. No logical inconsistency results
 by adding that the mind's limitations do not result from any lack of understanding.
 But neither has it been argued that the prospect of such a human mind whose
 theorem-proving capacity coincides exactly with the output of Turing machine but
 nevertheless capable of fully understanding that which, as a consequence of the
 second theorem, it therefore cannot prove- is a real psychological possibility. These
 issues are in any case irrelevant. Boolos's intended conclusion follows from the
 second incompleteness theorem in the same way as the misformulated conclusion.
 Any possible generating activity whose potential output happens to coincide with
 the actual output a Turing machine-human or alien, animate or inanimate, with
 understanding or without-cannot in the relevant sense prove its own consistency.

 11. HuMath is a proper subclass of the class of propositions, purely mathematical or
 otherwise, humanly knowable with mathematical certainty (i.e., with the same de-
 gree of certainty attainable in pure mathematics). It is not assumed that Math, or
 HuMath, is a set in the classical sense. Rather, the use of these terms in bold type-
 face in a sentence is to be regarded as an abbreviation for statements employing
 predicates that apply, respectively, to all purely mathematical truths and all purely
 mathematical truths humanly knowable with mathematical certainty. To say, for ex-
 ample, that a proposition p is one of (or an "element of," or "belongs to") Math is
 to say no more (or less) than that p is one of these propositions [the truths of pure
 mathematics], and to say that HuMath is a proper subclass of Math, is to say that
 all of these propositions [the truths of pure mathematics that are humanly knowable
 with mathematical certainty] are among those propositions [the truths of pure math-
 ematics] but not vice versa. From the former it follows that if there is a set M of all
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 truths of pure mathematics then p E M, from the latter that again if there is such a

 set as M then the subset HM consisting of those elements humanly knowable with

 mathematical certainty is proper. Neither the antecedent of these conditionals nor

 its negation is presupposed.

 12. One may take Heisenberg's Uncertainty Principle to entail this.

 13. There may be other epistemic mechanisms, or potential epistemic mechanisms, that

 are, by contrast, precluded by a mind's being human, i.e. by the nature and biology

 of humanity. One such may be the co-rule of inference, which licenses the inference

 from premises, +(0), ¢(1), +(2), and so on, to their generalization in r(tn)+(n)'.

 Unless the human mind can reason with infinitely premises in a finite time span, it

 may be unable to draw inferences in accordance with this rule.

 14. Op.cit.,p.305.

 15. This observation is to be taken in a sense in which it is beyond reasonable dispute.

 Some writers have mistakenly taken the incompleteness results to cast doubt on it.

 Thus Penrose writes: "Godel's theorem...established...that the powers of human rea-

 son could not be limited to any accepted preassigned system of formalized rules"

 (op. cit.). It is incumbent on one who denies the observation to specify how the

 phenomenon of proof in mathematics might be otherwise understood while avoid-
 ing mathematical mysticism.

 Contemporary holistic empiricism holds that even knowledge of mathematical

 axioms is inextricably interconnected with all human knowledge taken as a whole,

 and thus ultimately empirical and fallible. Epistemological holism, however, is not

 inconsistent (as suggested by Shapiro, op. cit.) with the observation well con-

 firmed by actual practice- that knowledge in mathematics, unlike other disciplines,

 is furthered by an epistemologically special tool: mathematical proof from axioms,

 themselves humanly knowable with certainty without proof. Certainty, even math-

 ematical certainty, does not entail immunity from error, let alone the absolute im-

 possibility of human fallibility. (Some holists have proved their own fallibility on

 the very point in question.) Holistic empiricism maintains that the principles gov-

 erning mathematical reasoning are ultimately judged, and conceivably might be

 revised, on ordinary empirical grounds. Whatever the shortcomings of this episte-

 mological stance, it is not committed to denying the obvious role of mathematical

 proof in extending knowledge with certainty.

 16. Axioms may be regarded as special rules of inference permitting inferences ex ni-

 hilo. On this conception, the deductive basis of a logistic system consists entirely of

 primitive inference rules. It is common, on the other hand, to minimize the set of

 primitive (non-axiom) inference rules by taking modus ponens as the only such rule,

 replacing every other inference rule,

 From f I, ¢)2 v and ¢)nv to infer v

 with all instances of the corresponding axiom schema r((l)l D ((1)2 2 ( (b¢)n 2 tJfl)) )'

 17. Notice that the resulting axiom set is defined by a precise, finite rule. See note 23
 below.

 18. Under this restriction, the deductive system that takes all sentences expressing truths

 of arithmetic as axioms (though it exists) is disqualified as a logistic or formal sys-

 tem or theory. Thus Wang the expositor who more than any other brought Godel's

 philosophical views into the public domain gives the following informal state-

 ment of the first incompleteness theorem (op. cit., p. 3): Noformal system of math-

 ematics can be both consistent and complete; or alternatively, Any consistentformal
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 theory of mathematics must contain undecidable propositions. Similarly, C. Smoryn-

 ski, "The Incompleteness Theorems," in J. Barwise, ed., Handbook of Mathemati-

 cal Logic (Amsterdam: North Holland, 1977, 1983), pp. 821-865, states the theorem

 as follows: Let T be a formal theory containing arithmetic. Then there is a sentence

 Ss which asserts its own unprovability and is [undecidable by T if T is -consistent]

 (p. 825).

 19. The possible formal language in question should satisfy certain minimal con-

 straints. As a matter of clarity, for example, ambiguity is precluded. The language is

 assumed to contain denumerably many expressions, to be bivalent (i.e., every sen-

 tence is either true or false and never both), and also such that a version of Tarski's

 theorem about truth holds for it. The language must also include the resources to

 express any mathematical concept that figures in any element of HuMath including

 such concepts that have not yet been, or will never be, discovered or apprehended.

 (It is not assumed that the language contains only a finite number of logical or

 mathematical primitive constants.)

 20. Godel showed how to construct a formula along the lines of cOtIs roughly for any

 logistic system suitable for arithmetic that includes the resources to designate any

 recursive function of integers and whose primitive deductive basis is recursive. For

 details, see Elliot Mendelson, Introduction to Mathematical Logic (New York: D.

 Van Nostrand, 1979), chapter 3, especially pp. 161-162. (See also the following

 note.) The notion of a mathematical axiom, in the sense of a fundamental, purely

 mathematical truth that is humanly knowable with mathematical certainty without

 independent mathematical proof, is not itself a purely mathematical notion and is

 not directly expressible in the language in question. Instead, assuming the elements

 of Ax are recursively enumerable, those propositions may be indirectly specified

 within the formula ¢)Proofv and hence within ¢)Consv by means of a direct, purely

 mathematical specification of the recursive function v that enumerates the Godel

 numbers of sentences expressing those very propositions. As a corollary of Godel's

 first incompleteness theorem, there can be no expression of the language that ex-

 tensionally specifies Math in an analogous manner. (This is Tarski's theorem about

 truth; see the preceding note.)

 The formulae ¢)Proof and ¢)Cons do not strictly speaking semantically express

 the notions of proof from such-and-such axioms (those generated by recursive func-

 tion J) and the consistency of such-and-such axioms and inference rules, respec-

 tively. The mathematical notions that are semantically expressed are, however,

 provably equivalent to these meta-theoretic notions. Indeed, the relationship is closer

 than mere provable equivalence; in a sense, the formulae are a code for the meta-

 theoretic notions. It is useful in the present context to think of the language of ¢)Proof

 and ¢)Cons as consisting of integers (Godel numbers) functioning directly as expres-

 sions, and of the expression of a proof within the language i.e., of a "proof" in

 the syntactic sense of a sequence of formulae as a sequence of such integers-qua-

 formulae (rather than as its encoded representation by a single integer via the inte-

 ger's prime factorization). Then cOt15 semantically expresses that there are no such

 proof-sequences of integers culminating in integers one of which is the number-

 theoretic negation of the other (or something trivially equivalent to this).

 21. Rosser, "Extensions of Some Theorems of Godel and Church," Journal of Symbolic

 Logic, 1 (1936), pp.87-91. It follows from the result obtained by William Craig in

 "Axiomatizability Within a System," Journal of Symbolic Logic, 18, 1 (March 1953),

 pp. 30-32, that if Ax is recursively enumerable, then even if Ax is not itself recur-
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 sive, HuMath is primitive recursively axiomatizable. (Thanks to C. Anthony An-

 derson for calling my attention to the relevance of Craig's result.)

 22. Shapiro, op. cit., explains the first disjunct of Godel's disjunction as the denial of

 the thesis that "all human arithmetic procedures are effective algorithms," and says

 that Godel inclined instead to hold (with Lucas and Penrose) that "some of the rou-

 tines and procedures that humans can employ...cannot be simulated on a Turing ma-

 chine. There are inherently non-computational human arithmetic procedures" (pp.

 277, 290, emphasis Shapiro's).

 23. Godel says in the passage quoted that his second incompleteness theorem "makes it

 impossible that someone should set up a certain well-defined system of axioms and

 rules and consistently make the following assertion about it: All of these axioms

 and rules I perceive (with mathematical certitude) to be correct, and moreover I

 believe that they contain all of mathematics. If someone makes such a statement he

 contradicts himself.... [For] no well-defined system of correct axioms can contain-

 ...all true mathematical propositions..." (The thrust of this remark is evidently better

 conveyed if the italicized phrase 'I believe' is deleted.) A similar remark is reported

 by Wang (op. cit., p. 187): "There is a vague idea that we can find a set of axioms

 such that (1) all these axioms are evident to us; (2) the set yields all of mathemat-

 ics. It follows from my incompleteness theorem that it is impossible to set up an

 axiom system satisfying (1) and (2), because, by (1), the statement expressing the

 consistency of the system should also be evident to me. All this is explicitly in

 my Gibbs lecture." In order for someone to "set up" (i.e., fully specify) an infinite

 system of axioms, there would have to be an effective procedure for enumerating

 them. The term 'well-defined' is evidently a synonym in this context for 'recursive-

 ly enumerable'.

 24. "For if he perceives the axioms under consideration to be correct, he also perceives

 (with the same certainty) that they are consistent" (op. cit., in the passage quoted

 above from p. 309). Trivially, no contradiction is validly deducible from a set of

 truths. The casual manner of Godel's remark creates the impression that this trivi-

 ality is sufficient for the thesis, whereas strictly speaking, this justification is incom-

 plete. Given a class of putative inference rules, one must know with mathematical

 certainty that every element of the class is valid in order to know with the same

 certainty that no falsehood, and hence no contradiction, is derivable from truths by

 their means. The validity of each inference rule of human mathematical reasoning

 is humanly knowable with mathematical certainty. Assuming the inference rules con-

 stitute an effectively decidable set, it is reasonable to suppose further that those

 very rules can be known with mathematical certainty to be one and all valid. Godel's

 thesis then follows.

 25. The argument I attribute to Godel is significantly different from that to which Boo-

 los's criticisms apply. Still other interpretations have been proposed. Wang (op. cit.,

 p. 185) apparently construes Godel as arguing that if the axioms and inference rules

 of human mathematics were finite in number, then we could not know those very

 propositions and rules to be the basis of human mathematical knowledge, since other-

 wise we could know something about that basis (by confirming each element indi-

 vidually) that is not deducible from it its consistency and hence they would not

 be all the axioms and rules of human mathematics.

 I believe for a variety of reasons that this cannot be Godel's argument. Curi-

 ously, Wang notes that the same line of argument yields another conclusion one

 that is, in fact, significantly stronger namely, that the basis of human mathematics
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 is infinite. Wang might mean to attribute to Godel a somewhat different argument:

 We cannot know any finite basis to be the basis of human mathematics; for other-

 wise we could prove (by individual confirmation) something mathematical that is

 not deducible from that basis: that the basis (and hence all) of human mathematical

 knowledge is consistent. But this will not do either. That the basis of human math-

 ematical knowledge whatever it is, and whatever its size is internally consistent

 is trivial and as certain as any mathematical theorem. This, however, is not reduc-

 ible to a mathematical truth. It is an epistemological truism.

 26. This probably yields the intent behind the following remark of Godel's, reported by

 Wang (op. cit., p. 186): "The incompleteness results do not rule out the possibility

 that there is a theorem-proving computer which is in fact equivalent to mathemati-

 cal intuition. But they imply that, in such a highly unlikely for other reasons-

 case, either we do not know the exact specification of the computer or we do not

 know that it works correctly." If Ax is recursively enumerable, so that a computer

 program might be written for proving theorems from it, then even if we were to

 write such a program, we could not know that its product is correct; otherwise we

 would also know what, according to the second incompleteness theorem, we cannot

 prove: its consistency.

 27. Lucas, op. cit. (p. 44 of the reprinting in Anderson, Minds and Machines), declares

 that Godel's results obtain for any formal system that is consistent and contains the

 natural numbers and the operations of addition and multiplication. In a later foot-

 note (p. 52n6), he explicitly mentions the restriction that the primitive deductive

 basis be recursively enumerable.

 28. Godel evidently believed that the human mind does possess some self-validating

 insight of this sort. Cf. Wang, op. cit., pp. 187-189.

 29. Church, Introduction toMathematical Logic, I(Princeton University Press, 1956),

 at pp. 50-51. See note 18 above.

 30. Ibid., pp. 53-54.

 31. C. Anthony Anderson makes a related objection in "Alonzo Church's Contributions

 to Philosophy and Intensional Logic," Bulletin of Symbolic Logic, 4, 2 (June 1998),

 pp. 129-171, at 130-131.

 32. Cf. Lewis Carroll, "What the Tortoise Said to Achilles," Mind, N.S. IV, 14 (April

 1895), pp. 278-280.

 33. Wang, From Mathematics to Philosophy (London: Routledge and Kegan Paul, 1974),

 at pp. 324-326.
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