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Dissolving the paradoxicality paradox
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Abstract

Non-classical solutions to semantic paradox can be associated with conceptions of paradoxicality
understood in terms of entailment facts. In a K3-based theory of truth, for example, it is prima
facie natural to say that a sentence ¢ is paradoxical iff ¢ V —¢ entails an absurdity. In a
recent paper, Julien Murzi and Lorenzo Rossi exploit this idea to introduce revenge paradoxes
for a number of non-classical approaches, including K3. In this paper, I show that on no
understanding of ‘is paradoxical’ (for K3) should both rules needed for their paradox be expected
to hold unrestrictedly. Just which rule fails, however, depends on various factors, including
whether the derivability relation of a target system of reasoning is arithmetically definable.
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1 Introduction

The Liar paradox teaches us that classical logic, self-reference, and the so-called transparency
(or ‘naivety’) of truth are incompatible: together they entail everything. Accordingly, proposed
solutions to it and related paradoxes fall into three main camps: those that block self—referenceﬂ
those that restrict the transparency of truth; and those that weaken classical logic. The latter
group can be categorized based on which classical rule(s) they restrict so as to avoid paradox. My
focus in this paper will be on K3-based approaches, which restrict the law of excluded middle (see
Kripke, [1975], Field| [2008]).

Murzi and Rossi [2020] (henceforth: M&R) have recently introduced four new paradoxes, one for
each of four different non-classical approaches, including K3. Like the Liar, these new paradoxes
involve a predicate—‘is paradoxical’ in the case of K3—governed by apparently intuitive (or ‘naive’)
rules. M&R show that K3 is trivial when augmented with both the naive truth rules and the rules
governing the paradoxicality predicate. They claim that further weakening K3 renders it too weak
to be tenableE] and argue that the motivation for the naive paradoxicality rules is of a kind with
the motivation for the naive truth rules, such that it would be ad hoc to insist on one but not the
other. If M&R are right, then the K3 approach will not do for a unified treatment of the paradoxes
and K3 theorists must simply accept that naivety (for both truth and paradoxicality) must go. My
primary aim in this paper is to defuse this argumentE]

!Self-reference scenarios familiar from [Kripke| [1975], as well the fact that a modicum of arithmetic or syntax
generates self-referentially behaving sentences, make this something of a nuclear option. I will not continue to
consider it.

2This, it should be said, is not obvious. It depends on whether there is a weakening of K3 weak enough to avoid
M&R’s triviality proof but still strong enough to recapture classical logic in classical contexts. This is an interesting
question, though one I won’t try to answer.

31t should be relatively straightforward to adapt most of the arguments I’ll make in this paper to M&R’s paradox
for the LP approach. On the other hand, their paradoxes for substructural approaches raise quite different issues and
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Let me begin by clarifying the dialectical situation. The concept of paradoxicality is not univocal.
Rather, that generic concept may be specified in a number of different ways to express distinct (but
perhaps related) properties of sentences. M&R offer no reason to think K3 theorists are unable
to express any such property; nor that a predicate expressing any such property must conform to
their proposed rules. Rather, they introduce two cases of intuitive reasoning meant to illustrate
an expressive need for a specific notion of paradoxicality that does conform to their rules. For
this reason, offering up a purportedly better account of paradoxicality that does not conform to
their rules would be a non-sequitur. To refute their argument, one needs to show that their case
for the coherence of their specific notion fails; and that K3 theorists can maintain, without fear of
expressive inadequacy, that any notion conforming to M&R’s proposed rules is incoherentﬁ

On the other hand, it must be stressed that by the lights of K3 theorists, M&R’s own triviality proof
is already a refutation of their notion of paradoxicality. Unless M&R can independently motivate
the coherence of their notion, there is no reason to think the problem is with K3 and not with
their notion. For this reason, undermining M&R’s case for the coherence of the latter is all the K3
theorist must do. She need not additionally demonstrate its incoherence. For, without independent
motivation for its coherence, that has already been accomplished by the triviality proof.

Roadmap: §2 sets up the language and proof system I’ll work with, introduces M&R’s para-
doxicality rules, and outlines the proof of K3’s triviality when augmented with the paradoxicality
and truth rules. In §3, I discuss M&R’s motivations for their rules, including their two cases, the
significance of the sequent ¢ V —¢ = 1, and the intended interpretation of ‘=’. With this pre-
liminary discussion out of the way, the key argument is made in §4. The argument is an instance
of reasoning by cases. §4.1 considers the supposition that, given some system of reasoning S and
arbitrary sentence ¢, it is not the case that whenever ¢ is paradoxical, it is derivably paradoxi-
cal. In this case, M&R’s motivation for their elimination rule fails. In §4.2, T suppose that if ¢ is
paradoxical, then it is derivably so. In this case, the elimination rule must fail if S’s derivability
relation is arithmetically definable, whereas the motivation for the introduction rule fails if it is
not. It is thereby shown that on no understanding of ‘is paradoxical’ do M&R’s cases successfully
motivate both of the rules needed to derive triviality. In §4.3, I show that interpreting ‘=’ in terms
of validity instead of derivability does not rescue M&R’s rules. §5 concludes with some remarks
on the intuitive reason we should expect the elimination rule for paradoxicality (or, more precisely,
the rule it is a special case of) to fail in the cases that it does.

2 The paradox

I’ll work with a first-order language, £, which includes an identity predicate, =; the logical connec-
tives and quantifiers: —, V,V; a sentential absurdity constant |; and a name-forming function, "™
from sentences ¢ to the closed terms "¢ that serve as their names. Terms, formulae, and sentences
are defined in the usual way. For all theories under consideration, I'll assume that they interpret

I make no claims as to whether or how they can be avoided.

4For this reason, Rosenblatt [forthcoming]’s pass at addressing the paradoxicality paradox is at best incomplete.
Rosenblatt offers a plausible alternative notion of paradoxicality for which one of M&R’s rules fails, but this does
not show that there is anything wrong with M&R’s notion. Though he also challenges the motivation for M&R’s
introduction rule, in doing so he makes substantive assumptions about paradoxicality that M&R need not take on.
As I’ll argue in §4.2, there are coherent notions of paradoxicality—including the one arguably closest to what M&R
have in mind—on which their introduction rule is very plausible.
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enough arithmetic or syntax such that, for all open formulae ¢(z), there is a term t4 := "¢(ty/)"
(where ¢(t/x) is the result of substituting every free occurrence of = in ¢(z) with t).

Sequents are expressions of the form I' = ¢, where I (the antecedent) is a set of sentences and
¢ (the consequent) a sentenceﬁ Sequents above a horizontal line are premises, those below are
conclusions, and the premise-to-conclusion expressions rules. What follows is an axiomatization
of classical logic (CL), with quantifier rules and equality rules omitted for simplicity. T' = ¢ (¢)
means that the given rule holds for both I' = ¢ and I' = ¢ and a double horizontal line means
that the rule works with premise and conclusion flipped.

B I'=s¢ Ad=19

b= 0 WSWeak P,A=>1/J Cu
wvl F'=o¢Vy  Apd=x A=Y
F:}(]ﬁ\/w i FuA()vAl:X

I=¢ /B L¢=1  T=¢ A=~ I'=1 -

T= —¢ L= —¢ A= L ~E TS

t

V-E

Given the standard definitions of ¢ A as =(—¢ V =) and ¢ — 1) as = V 9, the following familiar
rules are derivable:

I'=9¢ A= I'=o¢oNyY . Lo= '=¢ A=od—Y
TAsorey " Toe@  T=éov T.A= ¢ -

-E

Let L7 be £ augmented with a truth predicate, T. The ‘naive’ rules governing T are:

I'=9¢ I'= —¢
——————— TI/E ————-T-I/E
T=1T" ¢ F= -1 ¢

For any derivation system Z, let ZT be Z with the T rules added. I trust the reader is familiar with
the derivation of the triviality of CLT from the Liar sentence, A, provably equivalent to =TT \™.
What is important for present purposes is that the derivation makes crucial use only of SWeak,
SRef, Cut, =1, =-E, 1-E, T-I, and T-E. Solution types correspond to which rule is dropped from
CLT to avoid triviality, where K3T is the solution dropping —|—IH

Let L7p be L7 augmented with a paradoxicality predicate, Par. And let K3TP be K3T with the
following rules added:

Lov-o=_1 I'= Par™¢" A= oV
ar- Par-

T = Par ¢’ T,A= L

E

M&R’s central result is the triviality of K3TPE] The proof relies on a sentence, p, provably equivalent
to T"p' — Par"p'. Standard Curry reasoning derives p V —p = Par" p’. From this together with

5M&R use multisets rather than sets, in order to accommodate non-contractive approaches. Since I am setting
these aside, I will work with sets.

5Note that without =-I, —-I is no longer derivable. This is important, since one may also derive triviality using
—-I/E in place of —-I/E, via a Curry sentence x provably equivalent to "™ — L.

"M&R also add two ‘recapture rules’:

Fo=1¢ o Fe¢=1
ToV-p=6—v " T,6V-p=>-¢
However, given a material ‘—’, both these rules are derivable in K3.

Ty
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pV —p= pV -p (given by SRef), we can derive pV —p = L (by Par-E), from which we can then,
by Par-1, derive = Par" p'. From this and the definition of p, we can derive = p, from which we
get = pV —p by V-1. This together with = Par" p? derives = 1 by Par-E.

3 The motivation

3.1 Initial considerations

To a K3T theorist, Par-I/E will seem immediately suspect. Consider that if we replace Par" ¢
with =(¢ V =¢) in Par-1/E, the result is —-I/E restricted to sentences of the form ¢ V —¢. In
other words: the introduction and elimination conditions for Par™ ¢ are just those which —-I/E
respectively give for negations of ¢V —¢. But K3T theorists reject —-1 outside of classical contexts;
and it is a familiar part of the view that sentences of the form ¢ V —¢ can fail to be classical. To a
K3T theorist, then, Par-1/E look like a smuggling in of a negation that conforms to both —-1/E for
instances of ¢ V —¢. That is, the proposed account of ‘¢ is paradoxical’ appears to be something
like ‘NOT(¢ V =¢)’ for some such ‘NOT’]|

So long as their argument is otherwise sound, M&R can surely bite this bullet. They claim to
demonstrate an expressive need for a predicate satisfying Par-1/E. If it turns out that this predicate
is inferentially equivalent to a negation that satisfies =-I/E for instances of ¢V —¢, then, well, there’s
an expressive need for that. And if such a negation is incompatible with the K3T approach, so
much the worse for the expressive adequacy of the latter.

This response is fine, as far as it goes. But it highlights the importance of M&R’s burden to
demonstrate such an expressive need. Without it, K3T theorists have a good story to tell about
why any concept governed by Par-1/E is incoherent.

M&R’s case for Par-1/E begins with the observation that any extension, S, of K3T, is closed under
all rules of CL for all ¢ such that its LEM instance (= ¢V —¢) is derivable in S. Because of this, the
derivability of = ¢ V —¢ seems to be a good characterization, for K3T theorists, of the classicality
(and so, perhaps, unparadoxicality) of ¢. As for paradoxicality, M&R say that “¢ is paradozical-
in-S if and only if L follows in S from the assumption that ¢ satisfies [LEM]”. Murzi and Rossi
[2020}, p. 162] In other words: ¢ is paradoxical-in-S iff ¢ V —¢ = L is derivable in SH

This proposal ought to strike one as prima facie unmotivated. If the derivability of = ¢ V —¢ is
a good account of ¢’s unparadoxicality, then the underivability of = ¢ V —¢ is the most natural
account of its paradoxicality. Indeed, M&R seem at times to assume that for all ¢, either = ¢V —¢
is derivable in a given extension of K3T or ¢V —=¢ = L is. As we’ll see in §4.1, this is not the case,
at least given certain rather weak assumptions.

Be that as it may, as I noted in §1, all M&R need is that there be some (coherent) notion of
paradoxicality that satisfies Par-I/E. To be sure, the derivability of ¢ V —¢ = L indicates some

8This is not to say that K3T theorists should respond to M&R’s paradox by rejecting Par-I. While K3T theorists
reject —-1 for negation, they very well might accept a rule like —-I for some other concept. The point is that they
would never accept a concept that conforms to analogues of both —-1/E, even when restricted to instances of ¢ V —¢.

9Since we're working with sequent calculi, one might naturally translate “L follows in S from the assumption
that ¢ satisfies LEM” as the condition that = L be derivable from = ¢ V —¢ in S; or as the condition that ¢ V ¢
derive L in a sentential deduction system that corresponds to the sequent proof procedure of S in the obvious way.
Given uncontested structural rules, the two readings are equivalent to the derivability of ¢ V =¢ = L in S.
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unusual property of ¢ in extensions of K3T; and even if it did not, we surely have independent
reason to be able to express derivability claims in general.

But this is just the problem: for all that’s been said thus far, we have no motivation for anything
other than a derivable-in-S predicate. Assuming the set of S’s derivations is decidable, S’s deriv-
ability relation is arithmetically definable, so there is no need to introduce a new predicate into the
language. Furthermore, any paradoxicality predicate defined in terms of a definable derivability
predicate will fail to satisfy one of Par-I/E. Assuming the consistency of arithmetic, this follows
from M&R’s triviality proof[[|

3.2 The cases

M&R are aware that a definable derivability predicate will not serve their purposes. For this reason,
they insist that we must introduce a primitive paradoxicality predicate. The predicate is supposed
to facilitate the reasoning featured in the following two cases (where S is, again, some extension of
K3T):

The logic student: Lois is a logic student who is learning how to reason in S. She
(mistakenly) assumes A V =A. As a result, she carries out the Liar reasoning in S and
derives 1. She concludes that assuming that A satisfies LEM trivializes S. As she puts
it, A is paradoxical: that is, Lois asserts Par™ \™.

Misguided reasoning: Clark reasons in S and assumes that everything that Lois
says is paradoxical. Lois asserts that ¢. As a result, Clark infers that ¢ is paradoxical.
However, Clark also proves that ¢ satisfies LEM, and hence all of the principles of
classical logic. From his claim that ¢ is paradoxical (that is, such that ¢ V —¢ entails
1), and his proof of ¢ V —=¢, Clark concludes L.

— Murzi and Rossil [2020] p. 163]

Since M&R’s argument for a primitive predicate satisfying Par-I1/E rests almost entirely on the
need to accommodate the reasoning in these two scenarios, it is important to be clear about what’s
going on in them.

First: the cases are relative to a system of reasoning SE We should not infer from this that
paradoxicality is a system-relative notion. Rather, what is going on is as follows. Clearly, the
sequent ¢ V —¢ = L is in some sense meant to characterize the paradoxicality of ¢. Now, if
¢V ¢ = L is not derivable in S then, so long as we're reasoning in S, we ought not be able to
infer that ¢ is paradoxical—even if that sequent is derivable in some other system. This does not
mean that the predicate ‘is paradoxical’ is itself indexed to a system.

Now, one can reply that all that matters is what we can infer about paradoxicality in the system
S we ought to reason in. I will address this reading of the paradox in §4.2. Until then, I'll proceed
leaving S unspecified.

10Which one fails depends on exactly which extension of K3T we are defining derivability for and which we are
reasoning in. See |Field| [2017} §8] for a related discussion.

HME&R call S a theory, not a system. However, given that a theory is just a set of sentences, it’s not clear how
one can ‘reason in’ a theory. So as to avoid letting anything turn on this, let a system S be a pair of a derivation
procedure (i.e. a set of axioms and rules), D, and a theory, T, such that T is a superset of the set of theorems of D.
We can then talk of reasoning in S and of the derivability relation of S even when that derivation procedure doesn’t
derive all the truths of S (i.e. doesn’t derive every element of T from ).
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Second, note that though we’ve been working with sequent calculi, Lois and Clark are reasoning
with sentences, not sequents. The obvious interpretation here is that they are reasoning in a system,
S’, equipped with a sentential derivation procedure in which T’ derives 1 iff I' = 1 is derivable
in S. I will proceed with this interpretation and use ‘I' F ¢’ as a metalinguistic abbreviation for
‘T" derives ¥ in S” (given some implicit system S). Obviously, I - ¢ iff I = ¢ is derivable (in

$)[

With this in mind, two initial observations about the reasoning in the cases are in order. The first
is that if “The logic student’ is to motivate Par-I, it must be that Lois derives (in S) Par™A7. If
she merely inferred it in some informal way not restricted to what’s derivable in S’, the move from
¢V ¢ = 1 to = Par” ¢ sanctioned by Par-1 would not be motivated by the case.

Second, the reasoning in ‘Misguided reasoning’ only seems at all compelling if we assume that if
¢ is paradoxical, then ¢ V =¢ = L. It would otherwise be entirely mysterious why Clark goes
on to derive L. It is presumably to emphasize this that M&R included the parenthetical in the
description of the case.

It seems to follow from the cases, then, that = Par"¢ ' iff ¢ V =¢ - L. This is unsurprising since,
given Cut and SRef, Par-E is inferentially equivalent to the bottom-up direction of Par-I (which
T’ll call Par—E*)H So M&R’s two rules can alternatively be given as:

Fov-o=1
I'= Par™¢"

Par-1/E*

The instances where I' = @ correspond to the equivalence between = Par"¢' and ¢V —-¢ - L
suggested by the cases.

3.3 Side antecedents

Taken literally, however, ‘The Logic student’ and ‘Misguided reasoning’ do not in fact support
Par-1/ E*E At best, they might support their restrictions to instances in which I' = &:

oV =1

Par-1, /EZ,
= Par' ¢

Though M&R’s triviality proof relies only on an instance of Par-I that is also an instance of Par-1,,,
the same is not true of Par-E*. M&R’s proof makes crucial use of an instance with side antecedents.
It will be instructive to examine the instance of the extra strength of Par-E* relative to Par-E;,
that is relevant for M&R’s proof. This will be more perspicuous if we work with a model-theoretic

12Though it does not really fit the reasoning in the cases, I will consider interpretations of ‘=’ in terms of validity
instead of derivability in §4.3.
3The derivations proving the equivalence:
I'= PCLTrqs—l SRef
— " ParE* e 2 Z
T oV L ar A= GV s I'= Par¢ OV =V ¢ ParE
A= L Lpv-é=1

147t will sometimes be useful for purposes of presentation, especially throughout this subsection, to work with
Par-E* rather than Par-E. Since Cut and SRef are not under contention, this is harmless.
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1

account of K3T, in which interpretations map sentences of our language to {0, 5, 1}. Interpretations

are constrained as follows{]

=gl =1— ¢

¢V Y| = maz{|¢], [¢[}
¢ A | = man{[g], [¢]}
TT¢7 = |9

[L] =0

I' = ¢ iff every interpretation in which |y|=1 for every v € I is an interpretation in which |¢| = 1.
So = v iff || =1 in every interpretation. For the purposes of this subsection, let us suppose we
are working with a system S whose derivation procedure is complete, such that ' = ¢ iff T = ¢ is
derivable (iff I' F 9).

Note that I have not given a clause for the interpretation of Par sentences. This is because I want
to compare the constraints that would have to be placed on interpretations of Par sentences in
order to validate Par-E;, versus those needed to validate Par-E.

Since ¢ — v is defined as —¢ V 9, the sentence featuring in M&R’s triviality proof, p, is provably
equivalent to =17 p"'V Par"p?. It is easy to check that in every interpretation, as a result of the
truth, negation, and disjunction clauses, |Par"p?| = 1 iff |p| = 1; and |Par"p?| # 1 iff |p| = %
(this is so regardless of whether we admit of interpretations in which |Par™p?| = 3). So, for every
interpretation, |p| # 0.

Now, suppose we wish to validate Par-E;,. Here’s the instance for p:

= Par"p’

—— Par-Ej,
pV-p=_1

Given the equivalence of ‘=’ claims and the derivability of corresponding sequents, this instance of
Par-E} requires that either = Par™p™ and pV —p |= L, or [~ Parp”. Now consider the instance
of Par-E* M&R need for their proof:

pV —p= Par'p
pV-p=_1

Par-E*

Since in every interpretation |p| # 0, it follows that |pV —p| = 1 iff [p| = 1 iff |[Par"p7| =1. As
a result, pV —p = Par™p”, regardless of how Par sentences are interpreted. So this instance of
Par-E* requires that p V —p = L. Therefore, adopting Par-E* forces us to accept that pV—p = L
(i.e. that p V —p never takes value 1), whereas we can allow interpretations in which |pV —p| =1
while still validating Par-E; . Since the Clark scenario only justifies Par-E;,, the instance of Par-E*
M&R need for their proof is unwarranted.

One might object to this as follows. Suppose p V —p £ L. Plausibly, Par™p? is meant to be an
object language rendering of pV —p = L. If so, it follows that =Par"p™, and so that |Par™p™| =0
in every interpretation. But then |p| = 1 in every interpretation, so p V —p = L (vacuously).
Contradiction. So pV —p = L, regardless of whether we adopt Par-E*.

Interpretations should also be constrained by quantifier rules and rules of arithmetic or syntax sufficient to
generate self-reference, but we need not make this explicit for present purposes. Setting that aside, we may take
there to be an interpretation for every mapping of sentences of L7p to elements of {0, %7 1} that satisfies the listed
constraints.
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The problem with this objection is, of course, the move from —Par™p™ to in every interpretation,
|Par”p?| = 0. The argument can adapted to show that (supposing one interprets Par™p™ as the
object language rendering of pV —p = L) =Par"p7 is in fact true and that we must therefore reject
p (and its negation) and p V —p (and its negation). But the generalization to all interpretations is
unwarranted. Similarly, supposing instead that p vV —p - L is meant to be equivalent to - Par p™
implies that from p VvV —p & L we may infer = Par"p”. That falls short of implying = —~Par™p™,
which is what is needed for the objection.

And so, if we restrict ourselves to rules warranted by M&R’s cases, the argument so far suffices to
block the full Par-E.

A natural thought is that M&R. can respond to this by simply generalizing ‘Misguided reasoning’
so as to warrant the full Par-E. The generalization might go as follows:

Misguided reasoning (generalized): Clark reasons in S and assumes (for whatever
reason) that I derives that ¢ is paradoxical. However, Clark also derives ¢ V —¢ from
A. From his claim that I' entails that ¢ is paradoxical (that is, that I' entails that
¢ V —¢ entails 1), and his derivation of ¢ V —¢ from A, Clark concludes that I', A
derives 1.

Though less immediately intuitive, Clark’s reasoning here seems to be a generalization of his rea-
soning in the original ‘Misguided reasoning’. This generalized form is just as unobjectionable as
the special case used by M&R (the argument goes), so we have just as much reason to adopt Par-E
as we did to adopt Par-E,,.

There is at least one sense in which this generalized form is not as unobjectionable as the special
case: we've just worked through a counterexample to this general form—viz. where ¢ is p and
I'=A = {pV —p}—that does not arise for the special case. But appealing to this to motivate re-
jection of Par-E arguably begs the question in the present context. Supposing ‘Misguided reasoning
(generalized)’ really does seem (upon sufficient reflection) like good reasoning, then the presence
of counterexamples in extensions of K3T would support M&R’s claim that K3T is expressively
inadequate, rather than challenge the coherence of ‘Misguided reasoning (generalized)’.

What we must now do, then, is investigate whether or not we have compelling reason to think that
there is a coherent sense of ‘paradoxical’ for which ‘The logic student’ and ‘Misguided reasoning
(generalized)’ both do seem like good reasoning. It is important to stress that without some such
reason, the K3T theorist can and should maintain that M&R’s own triviality proof shows any
concept governed by Par-1,,/E to be incoherent.

4 What is paradoxicality?

4.1 If the truth of Par"¢' does not imply its derivability

Part of the difficulty in evaluating M&R’s cases (and the rules they’re meant to justify) is that they
only tell us how we ought to derive paradoxicality claims in S. But we cannot evaluate proposed
derivation rules for a concept without an independent account of what that concept is. It is
unhelpful to reply that it is the derivation rules that give the meaning of the concept. For whether
these rules correspond to a coherent concept at all is the question at issue. In any case, we’re able
to debate the derivation rules for say, negation, in part because we have an independent concept
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of negation against which we can evaluate the adequacy of the rules—whether or not those rules,
when adequate, ‘give the meaning’ of negation. But in the case of paradoxicality, it’s not clear
what this independent concept is.

To get past this difficulty, we should first recall that the cases require that = Par™ ¢ iff oV -¢ F L
(where, again, I' - ¢ iff ' = ¢ is derivable in S). So any sense of ‘paradoxical’ that is to do the
work of justifying the reasoning in the cases cannot violate this equivalence.

With this observation in place, we can proceed by considering the inferential relationship between
the truth (in S)m of Par"¢" and F Par"¢'. Assuming the derivation procedure of S is sound,
Par" ¢ whenever - Par™ ¢. But what about the other direction? If = Par"™ ¢ whenever Par™ ¢,
then, since = Par" ¢ 'iff vV —¢ F L, it follows that Par™ ¢ 'iff ¢V —¢ F L. We may then take this to
be (at least extensionally) the needed independent account of paradoxicality. Indeed, I suspect this
to be the notion of paradoxicality M&R have in mind. However, securing that - Par"™ ¢ whenever
Par™ ¢ requires S to have certain properties that must be considered carefully. I'll return to that
option in §4.2.

For now, let us suppose it not to be the case that = Par™¢' whenever Par"¢"'. Then, since
F Par"¢iff ¢ v ¢ F L, it follows that there are ¢ such that Par™ ¢ but ¢ V -¢ ¥ L. What,
then, might the paradoxicality of ¢ amount to?

Here’s perhaps the most plausible account that meets these conditions: Parm ¢ iff ¢ V —¢ - 4 for
some 1 that is false (or indeterminate) in S. Given such an account, there are guaranteed to be ¢
that are paradoxical though ¢ V —¢ I/ L. For example: suppose ¢ V —¢ = 1) for a 1 that is false in
S but not derivably so (perhaps because 1 is a mathematical claim that is undecidable in S, or is
otherwise contingent relative to the proof procedure of S). Then ¢ I/ L, so there is no guarantee
that ¢ V =¢ F L. In fact, assuming we have such false-but-unprovably-so ¢ in S, we are guaranteed
cases where ¢ V —¢ I/ L. One such is the Curry sentence k., provably equivalent to 1" k' — 1.
In extensions of K3T, Ky V —ky = ¢E though ky V —ky I/ J_E

Note that on this account of paradoxicality, it will never both be the case that = Par"¢' and
F ¢V —¢. If it were so, then one could derive some 9 that is false (or indeterminate) in S. But if S
is sound, this cannot happen. As a consequence, any sequent rule with = Par" ¢ and = ¢ V —¢
as sole premises will be vacuously valid, including Par-E,,.

Furthermore, Par-1,, is extremely plausible. For, if ¢V —¢ derives | in S, then it derives something
that is provably false in S. So, given the account of paradoxicality at play, one ought to be able
to derive Par" ¢ in S. It follows that this account of paradoxicality supports both of Par-1,,/E,,,
and so the material equivalence between ¢ V =¢ = 1L and = Par" ¢™.

However, the account does not support the full strength Par-E, nor Clark’s reasoning in ‘Misguided
reasoning (generalized)’. Supposing I' = Par"¢" and A F ¢ V —¢, it follows only that T', A 1)
for some false or indeterminate . There is no way to argue for the stronger conclusion that

6For brevity, let ‘Par™¢™, when not preceded by ‘F’ or ‘=, hereafter abbreviate ‘Par™ ¢ is true in S’.

7Sequent calculus proof: From ky = ky we can derive xy = T kg by T-1. Ky = Ky is itself equivalent to
Ky = T"Kky ' = 1, so =-E and Cut deliver k¢ = 9. Since sy is equivalent to =17 ky 'V 1), we can derive ~ky = Ky
from —ky = —ky by o—-E, T-E, and (derivable) DeMorgan equivalence. —ky = 1 then follows by Cut, and
Ky V mky = 1 follows by V-E from Ky V 2Ky = Ky V Ky

8In the case where 19 is an undecidable mathematical claim, this can also be proved: Since k., is equivalent to
=TT ky ' V4, we can derive ) = Ky V —ky from ¢ = ¢ by two instances of V-I. If ky V —ky = L were derivable, it
would then follow by Cut that 1) = L is as well. But since % is undecidable, ¢ = L is not derivable. So kyV-Kky = L
is not either.
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I';AF L. On the contrary, as we’ve seen, so long as S contains undecidable falsehoods, there will
be counterexamples.

More generally: take any account of paradoxicality for which (i) = Par" ¢ iff ¢ V —¢ - L; and (ii)
it is not the case that F Par" ¢ whenever Par" ¢ . It follows that there are cases of Par" ¢ such
that ¢ V —¢ b L. If there are such cases, then we have no compelling reason to think Par-E valid.
We can put this in terms of Clark’s reasoning in ‘Misguided reasoning (generalized)’. Supposing I'
derives Par™ ¢ and A derives ¢V —¢, Clark needs some warrant to go on to infer that I'; A derives
1. In ‘Misguided reasoning (generalized)’, that warrant is provided by the parenthetical: “(...T
entails that ¢ V —¢ entails 1)”. However, we are by stipulation considering accounts on which
Par™ ¢ does not entail that ¢ V —¢ entails L. So without some alternative motivation, Clark’s
reasoning is simply unwarranted.

To be clear: I have not proved that there can be no account of paradoxicality that both satisfies
conditions (i) and (ii) and fills in the gap in Clark’s reasoning. It is, however, utterly unclear what
such an account might be. As we’ve seen, on perhaps the most plausible account of paradoxicality
that satisfies conditions (i) and (ii), there are counterexamples to Clark’s reasoning. In any case,
until a reason to think there is some such account is offered, K3T theorists can and should maintain
that M&R’s triviality proof shows that there simply isn’t any.

4.2 If Par" ¢ is true iff it is derivable

The argument above rests on the supposition that it is not the case that = Par™¢' whenever
Par™¢7. If we drop that assumption, we can consider the account of paradoxicality that seems
most in line with M&R’s argument, viz. one where Par" ¢ is (at least extensionally equivalent
to) ¢ V =¢ F L. On this account, Par-1,, is valid iff - Par™ ¢ whenever Par™¢". But why should
we take this to hold? The only natural answer is that it should hold whenever we are reasoning in
an S that can derive the facts about its own derivability relation@ Let us grant, then, that M&R
intend their rules to apply just for systems S that satisfy this condition.

There is now a problem. Let Der("¢™, 71 7) be the object-language rendering of ¢ - 1 (there must
be some such rendering if S is to derive the facts about its own derivability relation). Then Par™ ¢
iff Der("¢V -7, ’_J_T)@ This follows from how we’ve stipulatively introduced Der and the fact
that Par™¢7 iff ¢ V ¢ L. So the validity of Par-1,,/E implies the validity of:

OV = | I'= Der(TopV—=¢","L7) A= Vo
= Der("¢ VvV —¢," L7 A= 1

These are, of course, just special cases of the more general rules:

o= pot, L Do) A=g
= Der(T¢7, 77 " T,A= ¢

Now, if Der is arithmetically defined, then it is susceptible to Gddel’s theorems and their conse-
quences. The latter include Loéb’s Theorem: the result that F ¢ whenever - Prov™ ¢ — ¢ (for all

19What if S is just stipulated to be the correct system for reasoning about paradoxicality claims? This won’t
work because we cannot assume that even that system derives every true paradoxicality claim. The true theory of
paradoxicality may be unaxiomatizable.

20 Again, read ‘Der("¢7,7%7)’, when not preceded by ‘> or ‘=", as ‘Der(T¢7,747) is true in S’.
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¢, where Prov is the defined provability predicate of the system in question). Supposing that (i)
Der claims satisfy LEM (which they presumably do, since they are claims of arithmetic); and (ii)
Prov™ ¢ := Der("T7,7¢7); it follows that, given Der-E, - Prov™ ¢ — ¢ for all gbﬂ Given Lob’s
Theorem, this implies the triviality of S. So Der-E cannot hold unrestrictedly for S.

M&R consider this objection and deny that Par is to be interpreted via a defined derivability
predicate. But this does not avoid the problem. If Par™ ¢ is extensionally equivalent to ¢ V —¢ F L,
and we are considering a system that derives its own derivability facts (expressed via the predicate
Der), then Der claims have to satisfy rules corresponding to the rules governing Par, even if Par
is a primitive. This fact cannot be stipulated away.

It does not help to insist that Der be a primitive as well, so as to avoid the problematic consequence
of Lob’s Theorem. If the derivability relation of S is a derivability relation in the usual sense—i.e.
the closure of a decidable set of axioms under a decidable set of rules—then it is arithmetically
definable, in the standard way. So, if the primitive Der really does express the derivability rela-
tion of S, then the validity of Der-I,,/E will imply the validity of the same rules for the defined
derivability predicate.

One could try to defend M&R’s position as follows. Suppose that we’re reasoning in an S whose
derivability relation is the relation of intuitive deductive reasoning. This, the argument goes, is a
derivability relation, albeit an informal one. However, it is not reducible to closure of a decidable
set of axioms under a decidable set of rules. So if we restrict M&R’s rules to systems S closed
under this derivability relation—these are presumably the systems of most interest for reasoning
anyway—the argument for the definability of derivability fails.

The problem with this suggestion is that it seems to be part of the concept of deductive demon-
stration that such demonstrations are effectively recognizable as such. This is part of what makes
(informal) mathematical proofs compelling: whether they really are proofs is something we can sys-
tematically check line-by-line via an effective procedure. Plausibly, it follows that the set of intuitive
derivations is decidable;@ and so that the intuitive derivability relation is deﬁnable@

But suppose that this reply is wrong and that the very fact that Der-E fails if the set of intuitive
derivations is decidable shows that it is not decidable. Now that we have settled on a specific
derivability relation, we must ask whether it is among those that derives its own derivability facts. It
is tempting to expect that it does, based on the following argument. Suppose that you (intuitively)
derive 9 from ¢. Then, from the very fact that you’ve made this derivation, you can infer that 1) is
intuitively derivable from ¢. In other words: you can (intuitively) derive the derivability fact.

Note, however, that this argument makes implicit but crucial use of the recognizability of deriva-
tions. To infer from an intuitive derivation of ¥ from ¢ that v is intuitively derivable from ¢, one
must be able to recognize that the derivation is a derivation. But if the set of intuitive deriva-
tions isn’t decidable, then derivations aren’t effectively recognizable as such. This makes Der-1,,
extremely dubious. Suppose, for example, that I intuitively derive L from AV —A. Under current

2'Proof: The SRef instance of Der("T7,7¢7) and = T derive Der("T,7¢7) = ¢ by Der-E. From
this we can derive Der("T,7¢™") V =Der("T,"¢") = Der("T",7¢") — ¢ (by —-I,). This together with
= Der("T,"¢") V =Der("T7,"¢™") derives = Der("T,7¢™") — ¢ via Cut.

22Gee [Priest| [2006, §3.2] for an elaboration of this argument.

230ne might worry that if intuitive derivability were arithmetically definable, we would be able to prove the Godel
sentence for it (by the same method that we intuitively infer the truth of Godel sentences in general). It would follow
that the sentence is both provable and not provable, and so that systems closed under intuitive deductive reasoning
are inconsistent. However, it is not clear whether one really could prove the Gédel sentence under these conditions.
I cannot go into this matter here, but see |Field| [2019] §6.7] and |Priest| [2019} §14.4] for discussion.
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suppositions, I cannot effectively recognize whether this derivation really is a derivation. As a
result, I should not be able to derive Der("AV =A7," L7) merely from that derivation.

To summarize the overall argument: if it is not the case that = Par™ ¢ whenever Par™ ¢, then
Par-E is entirely unmotivated (this was shown in §4.1). But if it is the case, then, given the required
equivalence between ¢ V —¢ = L and = Par"¢", it follows that Par"¢ ' iff ¢ V -¢p = L. So the
validity of Par rules requires the validity of corresponding rules for a derivability predicate, Der.
If we are working with a system S whose derivability relation is definable, then, as a result of Lob’s
Theorem, the elimination rule for Der (of which Par-E is just a special case) must fail. If it is not
definable, it follows that we are working with an S whose set of derivations is not decidable—and
so whose derivations are not effectively recognizable as such. In this case, the introduction rule for
Der (of which Par-1,, is just a special case) is, at best, unmotivated and highly suspect.

4.3 Validity instead of derivability?

The preceding argument rests on reading the words ‘derives’, ‘infers’, ‘proves’, and ‘entails’ in
M&R’s cases uniformly as referring to derivation (in a sentential proof system corresponding to the
sequent calculus axiomatization M&R work with). I believe this is the intended reading. It would
not do to read them in a non-uniform way, for then the move from the cases to M&R’s sequent
rules would rest on equivocating on the interpretation of ‘=’. And since the cases are supposed to
exemplify reasoning that must be accommodated, derivation is by far the most natural option.

Nevertheless, it is worth noting that interpreting the derivability of I' = ¢ (in S) as the validity of
the move from I' to ¢ (in S) does no better at motivating M&R’s rules. Let ‘T' — ¢’ abbreviate
‘the inference from I' to v is valid in S’@ We may now ask whether — Par™ ¢ whenever Par™¢™.
If not, the same argument from §4.1 goes through, mutatis mutandis.

Matters are not quite as straightforward if it is the case, because the argument of §4.2 makes crucial
appeal to facts that are distinctively about derivability. However, a similar argument will work.
The supposition that — Par"™ ¢ whenever Par™ ¢ is only motivated if S’s validities are valid in S.
So S must contain a validity predicate, Val; and, since M&R’s rules now require that — Par"™ ¢ iff
¢V ¢ — L, it follows that Par™¢™ iff Val("¢V —¢7," L7). So the validity of Par-I,,/E requires
the validity of rules which are just special cases of rules, Val-1,,/E, exactly analogous to the Der

rules P9

However, if we're working with an S whose validity relation is set-theoretically definable, one of
these rules must fail. In particular, if S’s validities are themselves valid in S, Val-E must fail. This
follows from the consistency of set theory. But if Val isn’t set-theoretically definable, there’s no
reason to suppose Val-1 to hold. Recall that §4.2 featured an argument for Der-I, based on the
deductive closure of systems governed by informal deductive reasoning. But the only way to make a
similar argument for validity is indirectly, via the fact that intuitive derivability presumably implies
intuitive validity. This will of course just run into the same problem as the original argument for
Der-1. And while we can simply stipulate (as suggested in n. interest in systems which contain
all truths about validity (or paradoxicality), we cannot similarly stipulate a system in which all
truths about validity (or paradoxicality) are valid. There may be no such system.

24To make sense of ‘valid in S’, we must expand the notion of system introduced in n. We now work with
systems which are triples of a derivation procedure, a theory, and a validity relation.

25Note that on this reading, the paradoxicality paradox is just a special case of the validity Curry paradox. See
Beall and Murzi| [2013].
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5 A concluding thought on Der-E

The advocate of revenge has one more available move. Let us consider again the case where
sequents are interpreted via ‘+’ claims; where ‘+’ and its object-language counterpart ‘Der’ refer
to the relation of derivability by intuitive deductive reasoning; and where we accept the arguments
in favor of the definability of the latter. In this case, the argument against Der-E (and so Par-E)
was via Lob’s Theorem. Importantly, it was not against the intuitive appeal of Der-E.

One can object here that if we have an expressive need for Der-E, it is ad hoc to drop the rule instead
of weakening the logic yet do the opposite for the truth rules@ But, the objection might continue,
of course we have such an expressive need: it’s the need to detach on (intuitive) derivability claims!
So one ought to treat the paradoxes on a par: either keep classical logic and restrict both the Der
and truth rules, or else weaken the logic enough to avoid the consequences of Lob’s Theorem. Call
this the parity argument.

As stated, it is too quick. K3T theorists acknowledge and claim to fulfill the burden of demon-
strating an expressive need for the unrestricted truth rules (see |Field| [2008, §13]). Otherwise, they
would have no case to offer against classical logicians who restrict the truth rules but keep them in
ordinary settings. Analogously, what is needed to successfully run the parity argument is a demon-
strated expressive need for unrestricted Der-E. For this purpose, paradigm cases like ‘Misguided
reasoning (generalized)” do not suffice.

In fact, it’s doubtful whether there is any such expressive need. The expressive need to detach on
intuitive derivability claims would seem to be covered by a restriction of Der-E to instances where
the Der claim in question is true. After all, it is only in such cases that one may actually detach.
What’s more, there’s good reason to think Der-E should fail otherwise. This is because derivability
relations should not reflect false claims about them.

For example: let ¢ be some arbitrary contingent sentence and x be the claim ‘Adjunction is not
valid according to intuitive deductive reasoning’. Presumably, {¢,x} intuitively derives ¢ A ¥,
despite the content of y—precisely because x is false. Instances of Der-E where the Der claim
is false should fail by analogous reasoning. This is perhaps clearer when we consider the rule
¢, Der("¢7,"7) = 1, equivalent to Der-E given Cut and SRef. If Der("¢7,"¢7) is false, then it
together with ¢ should not suffice to derive »—that it precisely what its falsity comes to

One may object that what is now missing is the ability to reason (non-trivially) with counterlogicals.
But if having this ability requires that the turnstile reflect whatever object-language claims are
made about it in the premise-set, even when those claims are false, then no familiar rule of logic
can hold unrestrictedly. Those who reject the unrestricted Der-E can surely insist that if this is
what non-trivial reasoning with counterlogicals comes to, such reasoning is not coherent.

With this in mind, let me return to the parity argument. If it is sound, then K3T theorists bear
the burden of showing that a restriction of Der-E exists that is (i) weak enough to avoid paradox
in K3T augmented with Der-1,,; and (ii) strong enough to accommodate whatever expressive needs

26M&R briefly argue something in the neighborhood of this in their §6.1.

27 An argument like this is briefly pushed in |Zardini [2013, p. 636-7]. A similar point is made by Russell even as
far back as 1903: “It should be observed that the method of supposing an axiom false, and deducing the consequences
of this assumption. .. is not here universally available. For all our axioms are principles of deduction; and if they are
true, the consequences which appear to follow from the employment of an opposite principle will not really follow, so
that arguments from the supposition of the falsity of an axiom are here subject to special fallacies.” [Russell [2009}
p. 15-16].
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we do in fact have to reason with intuitive derivability claims. Though the suggestion still needs
to be worked out in detail, the considerations above strongly suggest that a restriction of Der-E
to instances featuring true Der claims can successfully discharge this burdenFE]

References

Saul Kripke. Outline of a theory of truth. Journal of Philosophy, 72(19):690-716, 1975. URL
https://doi.org/10.2307/2024634.

Hartry Field. Saving Truth from Paradoz. Oxford University Press, Oxford, 2008.

Julien Murzi and Lorenzo Rossi. Generalized revenge. Australasian Journal of Philosophy, 98(1):
153-177, 2020. URL https://doi.org/10.1080/00048402.2019.1640323.

Lucas Rosenblatt. Paradoxicality without paradox. FErkenntnis, pages 1-20, forthcoming. URL
https://doi.org/10.1007/s10670-021-00405-w.

Hartry Field. Disarming a paradox of validity. Notre Dame Journal of Formal Logic, 58(1):1-19,
2017. URL https://doi.org/10.1215/00294527-3699865.

Graham Priest. In Contradiction. Oxford University Press, Oxford, 2nd edition, 2006.

Hartry Field. Paraconsistent or paracomplete? In Can Bagkent and Thomas Macaulay Ferguson,
editors, Graham Priest on Dialetheism and Paraconsistency, pages 73—125. Springer Verlag, 2019.

Graham Priest. Some comments and replies. In Can Bagkent and Thomas Macaulay Ferguson,
editors, Graham Priest on Dialetheism and Paraconsistency, pages 575—675. Springer Verlag,
2019.

Jc Beall and Julien Murzi. Two flavors of Curry’s paradox. Journal of Philosophy, 110(3):143-165,
2013. URL https://doi.org/10.5840/jphi12013110336.

Elia Zardini. Naive logical properties and structural properties. Journal of Philosophy, 110(11):
633-644, 2013. URL https://doi.org/10.5840/jphi12013110118.

Bertrand Russell. Principles of Mathematics. Routledge, 2009.

28] extend a warm thanks to Graham Priest, Lorenzo Rossi, Julien Murzi, Marko Malink, Kit Fine, an anonymous
referee, and especially Hartry Field, for helpful comments and discussion on earlier versions of this paper.

Australasian Journal of Logic (19:4) 2022, Article no. 2


https://doi.org/10.2307/2024634
https://doi.org/10.1080/00048402.2019.1640323
https://doi.org/10.1007/s10670-021-00405-w
https://doi.org/10.1215/00294527-3699865
https://doi.org/10.5840/jphil2013110336
https://doi.org/10.5840/jphil2013110118

	Introduction
	The paradox
	The motivation
	Initial considerations
	The cases
	Side antecedents

	What is paradoxicality?
	If the truth of Par"4470470 "5471471  does not imply its derivability
	If Par"4470470 "5471471  is true iff it is derivable
	Validity instead of derivability?

	A concluding thought on Der-E

