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Abstract

Scientific thinking is one of the most creative expressions of human cognition. This paper discusses
my research contributions to the cognitive science of science. I have advanced the position that data on
the cognitive practices of scientists drawn from extensive research into archival records of historical
science or collected in extended ethnographic studies of contemporary science can provide valuable
insight into the nature of scientific cognition and its relation to cognition in ordinary contexts. I focus
on contributions of my research on analogy, model-based reasoning, and conceptual change and on how
scientists enhance their natural cognitive capacities by creating modeling environments that integrate
cognitive, social, material, and cultural resources. I provide an outline of my trajectory from a physicist
to a philosopher of science to a hybrid cognitive scientist in my quest to understand the nature of
scientific thinking.
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The whole of science is nothing more than a refinement of everyday thinking.
Albert Einstein, Physics and Reality

1. Introduction

Scientific thinking is one of the most sophisticated expressions of the creative potential
of human cognition. It demonstrates what it is possible to accomplish when people attempt
to solve complex problems in materially, socially, and culturally rich environments with
critical and reflective use of their cognitive capabilities. Yet, how scientists think has thus
far played a limited role in research in cognitive science. By and large, our understanding of
human cognition has not been informed by thinking of the complexity, sophistication, and
reflectiveness seen in science. The study of human cognition has been largely confined to
and shaped by controlled experimental research on the cognitive development of children.
These studies investigate such phenomena as core cognition, conceptual change, executive
functions, and social cognition. Such investigations are designed to provide data on how
children reason, represent, imagine, understand, solve problems, learn, and so forth. If
we accept, with Einstein, the hypothesis that scientific thinking lies on a continuum with
mundane thinking (see also Langley, Simon, Bradshaw, & Zytkow, 1987; Nersessian, 1984b,
2008a), we can, indeed, learn some things about the cognitive basis of scientific thinking
from such studies, as well as from the experimental research on mundane problem-solving
(mostly by undergraduates). But we can also learn things about the potentialities of ordinary
cognitive capabilities by studying the nature of the “refinement” at the scientific end of the
continuum. The study of how scientists think provides a novel window on the mind—on
what is possible at the highly creative end of the human continuum.

Scientific thinking is best studied in the context of problem-solving, which implicates
numerous cognitive processes such as how scientists reason, represent, remember, decide,
imagine, plan, understand, and learn. As with cognitive development in children, the domain
of scientific thinking affords an opportunity to study cognitive processes that involve major
changes in representation and understanding. Further, it provides significant data on metacog-
nition, as evidenced in the articulation and reflective refinement of methods, reasoning strate-
gies, and representational issues by scientists. Scientific investigation requires complex and
integrated cognitive processes, that have most often been studied in isolation from one another
in research on mundane thinking. It is also highly dependent on scientists creating and using
artifacts through which to extend their possibilities for thinking about the world, and often
requires coordinated collaboration among members of a research team. On the frontiers of
science, especially, it addresses ill-defined problems and takes place in unstructured task envi-
ronments that are created as the research moves along. In sum, investigations of how scientists
think as they solve complex problems can yield valuable insights into the full potential of the
human cognitive system.

In what follows, as a contribution to the Fellows Topic, I focus on my near 50-year
research program that has aimed to contribute to a cognitive science of science. Philosophers
have been participants in the field of cognitive science since its inception. Most cognitive
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scientists, when they think about philosophy’s participation, point to the philosophy of mind
and its important contributions to understanding the foundations of mind, as well as to clar-
ifying central concepts of cognitive science. There have, however, also been significant con-
tributions made by philosophers of science, who do not reflect on the foundations of mind or
of cognitive science; rather, they aim to understand the nature of scientific cognition. William
Bechtel, Lindley Darden, Ronald Giere, David Gooding, and Paul Thagard, for instance, have
been philosophical contemporaries in this endeavor. Scientific thinking has also been studied
in other fields within cognitive science, viz., cognitive psychology and Artificial Intelligence
(AI). The experimental and AI studies, while valuable, have low ecological validity in that
they leave out the material, social, and cultural resources that enable sophisticated scientific
thinking (Klahr & Simon, 1999). Importantly, they also leave out the thinking that goes into
formulating and reformulating scientific problems, into determining or developing methods
that might address them, and into devising the requisite infrastructure for problem-solving.

A richer, more accurate account of scientific thinking requires the study of the actual
problem-solving practices of scientists and the cognitive processes that are their bases. How-
ever, both the contents and the contexts of real-world scientific thinking pose challenges for
cognitive science research. Study of scientific thinking requires methodological innovation,
since it is not possible to use standard methods of controlled experimental design to gather
and analyze these data. Specifically, it requires adapting the qualitative methods of social sci-
ences, such as historical analysis or ethnographic methods, which have their own standards
of rigor, to investigate real-world scientific thinking. Furthermore, something of the content
and methods of the science needs to be understood, which presents more of a challenge for
researchers than, for instance, to grasp the conceptual and methodological aspects of the sci-
ence problems that children or undergraduates attempt to solve. But these challenges are not
insurmountable, as the recent wave of research by psychologists in other areas toward the
development of a general psychology of science demonstrates (see, e.g., Feist & Gorman,
1998; O’Doherty, Osbeck, Schraube, & Yen, 2019; Osbeck, Nersessian, Malone, & Newstet-
ter, 2011). Philosophers of science often have the advantage of having a background in the
physical or biological sciences. But, even without that, it is possible to develop conceptual
knowledge sufficient to understand what scientists are thinking about, without being able to
do the science. This form of expertise is what the sociologists Collins and Evans have called
“interactional expertise” (Collins & Evans, 2015; Collins, Evans, & Weinel, 2016).

My own cognitive science research is situated in the philosophy of science. Although I was
trained as a physicist and a philosopher, I developed into a hybrid cognitive scientist because
the aim of my research to understand scientific thinking required that I draw on concepts,
methods, and theories or frameworks from philosophy of science, history of science, cognitive
psychology, AI, cognitive anthropology, and learning sciences, and reflexively, engage with
these fields by feeding back into them analyses and hypotheses about cognition in the context
of science. I have advanced the position that to understand the nature of scientific thinking
requires an integrative analysis of authentic problem-solving by scientists.

“Integrative” here has a dual meaning. It signifies the use of an integrative method—
drawing from the fields listed above—to create an account of scientific thinking as a system
phenomenon that integrates cognitive, material, social, and cultural dimensions (hereafter
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“cognitive-cultural”) of problem-solving. Such an account requires the researcher to gather
data on the real-world problem-solving practices of scientists, which can only be obtained
through detailed case analysis of the records, archival and public, of past science (“cognitive-
historical” analysis) or through in situ studies that use ethnographic methods of data collection
and qualitative analysis (“cognitive-ethnographic” analysis), each with their affordances and
limitations. Importantly, for the cognitive scientist, the data provided by the case studies are
not collected to provide an analysis, for instance, in support of a particular historical claim
(although such an outcome is possible), rather they provide a basis for determining features
of cognition in the context of a kind of human activity: scientific problem-solving. The way to
understand the relation between the specific cases and the general hypotheses is not as that of
inductive generalization. Generality is produced in a bootstrapping method commonly used
in the sciences. In such bootstrapping processes, hypotheses are made within a context of cur-
rent understanding, and then “are refined, made more specific, modified, or rejected in light
of more constraining data… Surviving hypotheses are then tested against other data and other
hypotheses to determine the extent of their validity” (Nersessian, 1991, 683). Bootstrapping
is an incremental and iterative, open-ended processes of working back and forth between data
and hypotheses/theory until a satisfactory accommodation is achieved.

In the following sections, I discuss important findings from each kind of analysis that I
have carried out in research on scientific thinking in physics and in bioengineering sciences.
After first sketching my origins as a cognitive scientist in Section 2, I briefly discuss selected
findings from analyses directed toward two of the problems central to my research program:
the nature of model-based reasoning and its role in conceptual change in Section 31 and
the nature of cognitive-cultural integration in scientific problem-solving in Section 4.2 My
first problem is pertinent, especially, to the long-standing interests of cognitive science in
analogical reasoning and in conceptual change. The second problem is pertinent to the more
recent cognitive science interests in what might be called cognition in context: embodied,
situated, and distributed cognition and, relatedly, cultural cognition. There are many insights
about how scientists think that I could discuss, but by focusing on these main themes, I hope
a wide range of cognitive scientists will see the value and importance of promoting research
on scientific cognition for a richer understanding of cognition. More extensive analyses can
be found in Creating Scientific Concepts (Nersessian, 2008a) and Interdisciplinarity in the
Making: Models and Methods in Frontier Science (Nersessian, 2022), and in publications by
other contributors to the cognitive science of science.

2. My origins as a cognitive scientist

I characterize the interdisciplinary path my research had taken in the quest to understand
scientific thinking as “following the problem,” coupled with leveraging some serendipity in
that quest. As the philosopher Karl Popper noted, “We are not students of the same subject
matter but students of problems. And problems may cut right across the border of any sub-
ject matter or discipline.” (Popper, 1962, 67) Interdisciplinary research is a problem-driven
enterprise. I would add that formulating the problem and determining the resources needed
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to advance the problem-solving are a major part of the process. My problem, as I would
formulate it now is

Science is one of the most significant creative pursuits of humankind. How can we under-
stand and account for the epistemic accomplishments of science given that scientists are
limited beings and the natural world is vastly complex?

This problem is itself complex and my research has focused on two interrelated compo-
nents: representational innovation and methodological innovation. In unfolding the various
dimensions of those, I have found that advancing the problem requires at least the combined
resources of philosophy, psychology, history, and anthropology. How I came to be this kind
of cognitive scientist is a long story and I highlight just a few transition points along the way.

I have always loved and been intrigued by science. I started out to be a theoretical physi-
cist. I was passionate about math and science for as long as I can remember. I have a vivid
recollection of my fifth-grade teacher telling us about Albert Einstein. What I recall is that he
used Einstein to introduce the idea that mathematics could be used to understand the universe.
What he said must have been inspirational, since I know from that point onward, I wanted to
understand what Einstein had done. I wanted to be a theoretical physicist. In college, I was
quite a good physics student, but I was disappointed that it was difficult to get my professors
to discuss with me the conceptual issues I was interested in, notably about Einstein’s work
on general relativity.3 I stumbled into philosophy of science through my choice to get an AB
rather than a BS. The only problem was that the degree required the dreaded Introduction
to Philosophy, which was notoriously difficult and which my fellow science students found
not to their liking. I chose a course that fit an open time slot. It turned out to be an introduc-
tion like none other on offer. It was taught by Milič Čapek, a noted philosopher of space and
time, and instead of the usual Plato, Aristotle, and Descartes, we read Poincaré, Einstein, and
Reichenbach. I found nirvana. I realized there were also physicists in philosophy departments.
Since my physics professors offered me no encouragement to pursue a career in theoretical
physics, and philosophy offered another avenue to pursue my interests, I set off to study the
foundations of the general theory of relativity in a philosophy department.4

The next bit of serendipity came when I became frustrated with graduate philosophy of
science courses which seemed to have much to do with language, but little to contribute to
understanding the nature of the science I was working on. My advisor, Howard Stein, gave
me the advice that unfolded the rest of my saga: read the scientists who have worked on
the frontiers and have made fundamental transformations in our understanding of nature—in
the process they articulate and address deep epistemological, conceptual, and methodological
issues. As a physics student, I had only read textbooks or recent publications, but reading
the historical scientists, especially their more speculative archival materials: drafts, letters,
diaries, and so forth, opened a whole new dimension of what philosophers now call scientific
practice to me. Although the works I read by scientists, from its inception onward, were
peppered with analogies, visual representations, and thought experiments, it was the works
directly relevant to the origins of field theory, those of Michael Faraday and James Clerk
Maxwell, that occasioned my “aha” moment about the critical importance of these. Their
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6 N. J. Nersessian / Topics in Cognitive Science 00 (2024)

works were seminal contributions to the development of the field concept, and so directly
pertinent to the origins of gravitational field theory. A scientific formulation of a field concept
required scientists to determine the nature and production of the forces taking place in the
space surrounding and between matter. The notion that forces are transmitted continuously,
with a time delay, through space and time, rather than acting instantaneously at a distance
was a completely novel concept in the context of 200 years of Newtonian physics and its
development was essential to the creation of the non-Newtonian theories of electromagnetism,
relativity, and quantum mechanics.

As I worked through Faraday’s reasoning about his experimental findings, especially in his
Diary (Faraday, 1932), I was struck by all the sketches that filled the margins, and puzzled
about the role they played in his thinking, as well as the thought experiments he presented
in addition to his laboratory experimental research. In working through the various phases
of Maxwell’s reasoning, he, too, made extensive use of Faraday’s visual representations,
while constructing his own, and made extensive use of analogies in the derivation of the
field equations, along with providing commentary on how he was using analogy to develop
novel mathematical representations. All these heuristics were present in the work of other
field theorists, including Einstein. At the time (early 1970s), these heuristics were widely dis-
missed by both philosophers and historians of science as ancillary—mere aids—to scientific
reasoning, understood as logical manipulations of propositional representations. However,
the archival data, coupled with published records, provided evidence in favor of my hypoth-
esis that these so-called “aids,” themselves, constitute a genuine form of reasoning integral
to the scientific problem-solving. This insight led to my quest to develop an explanation of
how they function to create or deepen understanding, how they lead to novel insights, and,
in some instances, lead to conceptual change. It was at this point I realized I was now more
interested in understanding the nature of how scientists think than in what the science they
developed said about the nature of the world. But an explanation had to wait, on the one hand,
until I could work out more fully both the details of a highly complex process of concept
formation and change over nearly a 100-year period (Nersessian, 1984b), and on the other,
how analogy, visualization, and thought experimentation (generalized to mental simulation)
could work together, in processes of what I called “model-based reasoning,” to promote
concept formation and change (Nersessian, 1988, 1992, 1999, 2002a, 2008a). The latter led
to my interaction with the newly developing field of cognitive science. I will discuss this
research in the next section, but before that, I set the problem situation in epistemology and
philosophy of science, with which cognitive scientists might not be familiar.

My training as a physicist made me skeptical as a philosophy student about the value of
using only the tools of abstract philosophical analysis to address problems about the nature
of the epistemic practices of scientists. The proposal to “naturalize” epistemology by W.V.O.
Quine (Quine, 1969) provided some license to recruit resources from history and the sciences
to address epistemic issues in conjunction with philosophical analysis. A naturalist stance in
philosophy of science holds, basically, that (1) a philosophical account should be informed
by the best available scientific understanding of humans that the biological, psychological,
and social sciences offer; (2) it should be informed by data on the actual investigative prac-
tices, as they are created, used, and justified by scientists; and (3) it should make use of
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appropriate empirical methods to determine these practices. My research began in a context
where the problem of conceptual change was a major issue in philosophy of science. The
“historicist” philosophers, notably, Thomas Kuhn (Kuhn, 1962) and Paul Feyerabend (Fey-
erabend, 1962, 1970), were leading the charge against positivist conceptions of science that
were based on logical analysis of the language of science and of “rationally reconstructed”
science. They argued that to understand conceptual change in science, philosophers needed
to draw from the records of the history of science and from theories of human psychology.
Their approach, while moving in the right direction, seemed limited to me in at least two ways
(Nersessian, 1979, 1984a, 1984b). First, their claims about the seriousness of “incommensu-
rability” (roughly, the inability of scientists committed to the theory before, and those to the
theory after a “revolution” to understand one another) in conceptual change appeared to be
based on a decidedly unhistorical approach. To substantiate their claims, they only looked at
the endpoints, that is, at the initial and final products of a major conceptual change in science,
rather than the processes through which the change came about. For instance, they noted the
noncomparability of the concept of “mass” as constant in Newtonian theory and the con-
cept of “mass” as varying with velocity in the special theory of relativity. Kuhn advanced the
notion that the process of change consists of the collection of a series of anomalies, and then
a new theory appears. Second, Kuhn and Feyerabend used the notion of a “Gestalt switch,”
drawn from the Gestalt psychologists’ theories of human problem-solving (Köhler, 1929;
Wertheimer, 1959), to support their claims about the sudden, nonrational nature of the change.
This notion, however, is not compatible with fine-grained historical investigation. Investiga-
tion of archival and published records provides data, in the form of the reasoning, arguments,
and justifications put forth by scientists, that establishes the reasoned nature of conceptual
change. To get to relativity theory, for instance, scientists, trained in the Newtonian tradition,
had first to develop electromagnetic field theory, and a fine-structure analysis shows this to be
a reasoned, complex problem-solving process, spanning the work of many scientists.

In this context, I saw the problem of how novel concepts are formed as a fundamental,
but neglected, dimension of conceptual change. To address this problem required not only
a different kind of historical analysis but also a different kind of psychological theory. In
looking for research that might be helpful, I came across Plans and the Structure of Behavior
(Miller, Galanter, & Pribram, 1960), a formative contribution to cognitive science, which led
me to track literature in that field as its research was developing along with my own. It was in
this context I dubbed the approach I was using a “cognitive-historical method” (Nersessian,
1987), which other researchers interested in scientific thinking had begun to use as well (see,
e.g., philosophers [Darden, 1991; Gooding, 1990; Thagard, 1992] and cognitive psychologists
[Gorman & Carlson, 1990; Tweney, 1985]).

3. Model-based reasoning and conceptual change

I have used cognitive-historical (Nersessian, 2008a) and cognitive-ethnographic (Nerses-
sian, 2022; Nersessian & MacLeod, 2022) methods to carry out investigations into the reason-
ing and representational practices of scientists, especially those leading to innovation. On the
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8 N. J. Nersessian / Topics in Cognitive Science 00 (2024)

one hand, to understand scientific thinking requires a fine-grained examination of problem-
solving practices as evidenced in data from historical records or from detailed study of in situ
practices of contemporary scientists. The historical dimension of cognitive-historical analysis
examines the extant records, published and archival, of the research of one or more scientists
over the pertinent period. For instance, in my analysis of the formation of the field concept, I
examined the records of scientists who contributed to this representational problem from Fara-
day through to Einstein (Nersessian, 1984b).5 The method locates scientists within the prob-
lem situations (intellectual, social, cultural, material) of their local communities and wider
cultural contexts to understand their accomplishments, to the extent possible, as a cognitive-
cultural product of a problem-solving system distributed in time and across individuals and
artifacts. However, more detailed, contemporaneous data are required to establish how such
cognitive-cultural integration takes place during the processes of problem-solving. To this
end, a cognitive-ethnographic method enables, first, collection of as comprehensive a data set
of in situ problem-solving as time, human, and financial resources allow and, second, offers
the potential to examine how scientists think with artifacts and together with others in ongoing
problem-solving processes. For instance, to investigate innovative modeling practices under
development in bioengineering sciences, I was fortunate to be able to build a research group
that could collect and analyze extensive data sets from four research labs.

The cognitive dimension of both methods begins with a determination of what and how
human cognitive capacities might underlie, facilitate, and constrain scientists’ investigative
practices, given current cognitive science understanding. It starts from the premise that despite
clear differences, the cognitive practices scientists have created and developed for solving
problems are rooted in cognitive practices humans employ all the time in more mundane
forms of problem-solving to meet the challenges of everyday life and work. The pertinent
research on mundane cognition is used to provide insight into both how the scientific prac-
tices accomplish problem-solving and how they diverge from the mundane findings. Assump-
tions, methods, and results from both kinds of research are subjected to critical scrutiny, with
corrective insights and wider implications moving in both directions. In this way, the findings
and theoretical analyses that derive from the investigation of real-world scientific practices
not only provide insight into the highly creative end of human thinking, but also reflect on
the more mundane end of the spectrum. For instance, within other fields in cognitive science,
findings from my research on model-based reasoning in science have been used in research on
conceptual change in cognitive development and learning, as well as in the National Academy
of Science’s Next Generation Science Standards, which promotes a model-based approach to
science learning.

One way in which the study of scientific thinking makes an especially valuable contribu-
tion is that its complexity calls for accounts that integrate and unify cognitive processes that
customarily have been treated as separate research areas in cognitive science (see Nerses-
sian, 2008a, chapter 4). For instance, although analogical, visual, and simulative reasoning
and representational processes require specific cognitive accounts, there is ample evidence
in both the historical and contemporary cases that in scientific problem-solving they work in
combination (model-based reasoning), and thus also require an integrated account. A simple
example serves to motivate the need for a unified account.
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Fig. 1. Newton’s rendering of a projectile thrown from a high mountain with increasing velocity. He provided
text to direct the reader on how to mentally simulate the paths of the moving projectile (Newton, 1687, vol II,
book III, 3).

Newton’s famous analogy between the moon and a projectile provides a demonstration of
how all three—visualization, analogy, and imaginative simulation—work together. Newton
created an analogy between the motion of a cannon ball, shot with successively greater veloc-
ity from a mountain rising high above the surface of the earth, and the orbit of the moon. Here,
Newton used his prior analysis of projectile motion as a source analogy. Newton provided a
diagram (Fig. 1) that represents the analogy in a visual format, along with text, that guides the
reader through a thought experiment in which one imaginatively simulates successive paths of
the projectile, as its velocity increases, ending with the escape velocity where the projectile,
too, would orbit the earth under the effect of centripetal force (gravity). Although the diagram
is specific, it is understood to represent generic structures and processes that can be repre-
sented mathematically. The inference that the forces which keep the moon in orbit and the
projectile directed toward the earth are the same marked a radical departure from prior con-
cepts of earthly and celestial bodies as different in kind and contributed to Newton’s creation
of the mathematical concept of universal gravitation, which conceives all bodies as made of
the same materials as earthly bodies, and, for analysis, casts all bodies as point masses.

The focus of my initial cognitive-historical research was on the formation of the con-
cept of electromagnetic field, especially the contributions of the Faraday–Maxwell pair. It
was the work on Faraday and Maxwell that first made me realize the need for a unified
account. Briefly, one analysis I conducted showed, how, using the sketches in the margins
of his research diary, Faraday reasoned about the deflection of a magnetized needle hung near
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10 N. J. Nersessian / Topics in Cognitive Science 00 (2024)

a current-carrying wire by means of analogy and imaginative simulation through ongoing
modifications of these sketches (visual representations) (Nersessian, 1984b, chapter 3). The
sketches instantiated a model of the motion, which was refined through iterative interaction
with the experiment. In the experiment, the motions appeared to be linear back and forth
movements. However, Faraday used his sketching process to arrive at the hypothesis that the
needle was in fact rotating around the wire. With considerable further work, this hypothesis
contributed to the development of his field concept, as well as to the first electric motor. In the
case of Maxwell, I constructed a detailed analysis of how, through iterative model-building
processes Maxwell used resources from continuum mechanics and machine mechanics, in
conjunction with known experimental findings on electricity and magnetism, to construct
a series of hybrid analog models. These were accompanied by diagrammatic representations
and written instructions for how to animate them mentally (Nersessian, 2002b, 2008a, chapter
2). They are hybrid in that they integrate information abstracted from analyses of mechanical
phenomena and of electromagnetic phenomena. Through this process, Maxwell was able to
construct a set of unified mathematical representations of the electromagnetic field concept,
and put forward the hypotheses that electromagnetic actions are transmitted continuously
through space at the speed of light, and that light, itself, is an electromagnetic phenomenon.
As with the case of Newton, Maxwell’s electromagnetic field concept radically transformed
the accepted understanding of electric and magnetic forces as different in kind, and are thus
not interactive, actions-at-a-distance, and unrelated to light.

The data provided by their historical records, especially the archival materials—drafts, let-
ters, diaries, notebooks, artifacts, and so forth—opened an entirely new perspective on scien-
tific reasoning and conceptual change, which, after years of research, can be summarized as
follows. In this case, as in numerous others across the sciences, the processes underlying the
accessible phenomena pertaining to complex, dynamical systems scientists wish to investigate
are often inaccessible, either practically or in principle. Instead, they create models that pro-
vide a means of thinking and making inferences about the target phenomena. These models
(conceptual, physical, or computational) provide structural, behavioral, or functional analog
representations of the phenomena of interest. Scientists reason about the target phenomena by
manipulating the models. I have argued that the human capacity to construct and manipulate
iconic mental models provides the cognitive basis for this scientific problem-solving prac-
tice (Nersessian, 1992, 2002a, 2008a; Nersessian, 2008b). The mental models are schematic,
partial representations that have correspondences with the real-world models, and interact in
problem-solving processes to create reciprocal modification. Here, I can only highlight one
important feature of such model-based reasoning: models are created specifically to serve as
analogical sources for target phenomena.

This analogical practice in science is quite unlike any considered in the philosophical and
cognitive science literatures. Usually, analogy is cast as a process of making sense of what
we do not understand (target) in terms of what we do (source). In the scientific case, often
little is understood about either the source (model) or target (real-world phenomena) at the
outset. In analogical problem-solving, as customarily understood, the reasoner retrieves a
previously solved problem that, with some modification, provides a source analogy, deter-
mines a mapping between source and target, transfers features from source to target, and
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evaluates inferences with respect to the target domain. What we customarily understand as
analogy does, of course, occur in science. However, when scientists grapple with complex,
novel phenomena, it is often the case that no ready-to-hand analogical source exists to
provide a model. Instead, scientists need to “build” the source analogy through iterative and
incremental processes of design, construction, manipulation (simulation/experimentation),
and redesign in interaction with the goals and constraints of the target problem. Such model-
building is a bootstrapping process that furthers the articulation of the problem as well as a
potential solution. Each iteration of the model provides data and these insights to be worked
into the next iteration. In this fashion, the modeling process serves to continually improve the
creation of the source analogy until a satisfactory mapping is established.

There are several sources of data on scientific problem-solving, including historical,
think-aloud protocol, and ethnographic that provide ample evidence of this important
representation-building aspect of analogy (see, e.g., Nersessian, 1995; Nersessian, 2008a,
2022; see also Clement, 2008; Clement, 2022). For instance, our research on modeling meth-
ods in various fields in bioengineering sciences analyzed how, as one respondent expressed,
researchers “build models to predict – or you hope will predict – what happens in real life.”
These analog models take the form of either living in vitro simulation models, which are
composed of selected tissues or cells and nonliving engineered materials, or computational
simulation models that are built with data from biosciences and engineering methods for
modeling human-made systems, adapted to the requirements of biological systems. Impor-
tantly, our analyses showed how in conducting experiments (simulations) with the various
source models, novel structures and behaviors can emerge, which, when represented can
lead to novel concepts, and processes of conceptual change. Of course, there is no recipe
for how to build a source model or any guarantee that model-building will lead to viable
candidate problem solutions, but there are numerous cases in which these processes have led
to profound and verified scientific achievements.

There are many interesting features of model-based reasoning in service of building the
analogical source. But given space limitations, what follows is a general account, derived
from analyses of data from studies across the sciences, of the most salient features:

1. building processes are goal-directed
2. models are built toward instantiating features germane to the epistemic goals, and are

evaluated on this basis
3. omitted or negative features can provide resources for further development
4. elements used in building models derive from the target, one or more source domains,

and from the model itself
5. various abstractive processes are used to select features to be instantiated and to inte-

grate data, constraints (mathematical, physical, computational), or materials from fea-
ture 4 into a model

6. several iterations are usually needed to build a satisfactory model
7. each iteration provides insights that serve to improve the analogy until a satisfactory

mapping is established or shown not to be feasible
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12 N. J. Nersessian / Topics in Cognitive Science 00 (2024)

8. interaction between target domain, source domain(s), and model is ongoing in the
building process

9. mappings between the model and the target are established during the building pro-
cesses, so in most cases, mappings develop over time

Some of these features need a bit of explication in this abbreviated context. With respect to
5, although “abstraction” is commonly used for a separate process alongside “idealization”
and other abstractive notions, it is preferable, in general, to use the term as a comprehensive
notion comprising various processes, including idealization, approximation, simplification,
omission, limiting case, and generic modeling. All these abstractive processes can play a role
in building analogical sources. With respect to 9, although for structural analogies, such as
in the Maxwell case, mapping relational structure is important for the productivity of the
analogy, as well as its evaluation (Gentner, 1983), for behavioral or functional analogies,
replication of the behavior or function of interest is it what makes for a good and productive
analogy. For example, with an in vitro model of an artery, the selected tissues and cells in
the model need to replicate salient real-world features such as gene expression when exposed
to blood forces. Finally, 4–8 are significant for my bootstrapping account of how problem-
solving through model construction can lead to conceptual change. Iterative incorporation
of elements from multiple domains into models creates novel, hybrid representations that
can provide the basis for concept formation and conceptual change (see Carey, 2009; De
Benedetto & Poth, 2024; Nersessian, 2008a; Nersessian & Chandrasekharan, 2009).

4. Cognitive-cultural integration

To understand how scientists think, it is necessary to consider the contributions of the
material, social, and cultural environments that enable such sophisticated cognition. As the
philosopher Daniel Dennett has succinctly stated about cognition, generally, “Just as there is
little carpentry you can do with your bare hands, there is little thinking you can do with your
bare mind” (Dennett, 2000, 17). Having worked for some time at the interface of philosophy
of science, history of science, social studies of science, and cognitive science, in the 1990s,
I began to think about ways of bridging “the cognitive-cultural divide” (Nersessian, 2005).
Accounts of scientific practices have tended to focus on either “cognitive/rational” factors or
“social/cultural” factors. On the one hand, philosophical and cognitive science studies focus
largely on individual scientists, the rational practices and standards they use to carry out and
justify experimental and theoretical research, and the cognitive representations and processes
they use in problem-solving. On the other hand, historical and social studies of scientific
practice focus instead on interests, motivations, and a range of social, cultural, and material
factors in play within communities of scientists. This interpretive divide lies in a mix of
complex issues rooted in 20th-century intellectual history. Here, it suffices to agree that any
such divide, though at times analytically useful, imposes boundaries on dimensions that are
inherently integrated in scientific practice.
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My endeavor to develop an analytical framework that facilitates analysis of these dimen-
sions in relation to one another led me to examine “environmental perspectives” in cognitive
science—accounts of cognition as an embodied, artifact-using, and situated process. Envi-
ronmental perspectives seek to understand cognition as inherently cultural, that is, as being
shaped in ongoing processes of evolutionary history, of the development of the human child,
and of the various sociocultural environments in which learning and work take place. In
reading that literature in cognitive psychology, cognitive anthropology, learning sciences,
and philosophy of mind, I was struck by a statement by Edwin Hutchins: “Humans create
their cognitive powers by creating the environments in which they exercise those powers”
(1995, 169). It led me to think that a way to analyze cognitive-cultural integration in scientific
problem-solving would be to investigate in situ how scientists create environments to build
the cognitive powers they need to realize their epistemic aims.

Since the inception of what we now know as “science,” scientists have created artifacts
through which to think about, investigate, and represent nature (e.g., Newton’s calculus or
Galileo’s inclined planes or Maxwell’s diagrams). They have also worked together with other
scientists, either locally or through correspondence to think about research problems. How-
ever, as a source of data, historical science is limited in the extent to which it is possible to
unearth and examine how the cognitive-cultural resources that scientists create are integrated
in formulating, refining, and solving problems. The material dimension is largely confined to
textual and diagrammatic representations, or, for an experimentalist such as Faraday, instru-
ments that might be left behind. As for the social and cultural dimensions, one can locate
scientists within their historical problem situation, such as Maxwell in the context of Cam-
bridge physics. However, richer, contemporaneous data are required to establish how integra-
tion takes place in ongoing problem-solving. With cognitive-ethnographic research, one can
develop a rich data archive on scientific problem-solving as it is occurring. Interdisciplinary
science provides a particularly good locale in which to study the creation of scientific environ-
ments because concepts, methods, materials, and epistemic norms and values from different
domains need to be fit together to formulate and address research problems of interest to
the participatory domains. My research group has conducted cognitive-ethnographic studies
of four bioengineering research labs in different areas. These are pioneering labs that bring
together resources from the quite disparate fields of engineering, biological science, and com-
putational science to address problems the researchers claim “no one has attempted before.”

4.1. Extending the framework of distributed cognition to science

The analytical framework of distributed cognition (hereafter “D-cog”) provides a good
starting point for a cognitive-cultural analysis for the kinds of problem-solving that take
place in science. It incorporates all the dimensions advanced by the range of environmental
perspectives, and so scientists are cast as embodied agents who create and work within
complex distributed cognitive-cultural systems. The D-cog perspective offers an analytical
framework for studying scientific problem-solving practices, in general, in all the contexts in
which science is and has been done. The grain size of the system relevant to the analysis—
individuals, groups, or groups of groups with their attendant artifacts and sociocultural
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structures—depends on the focus. I began research within this framework in the philosophy
and history of science in the late 1990s. Work in cognitive anthropology and the learning
sciences also examines scientific practices from a D-cog perspective and helps to establish
the broader fruitfulness of this approach for a cognitive science of science (see, e.g., Alac
& Hutchins, 2004; Becvar, Hollan, & Hutchins, 2008; Charbonneau, 2013; Goodwin, 1995;
Hall, Stevens, & Torralba, 2002, 2010). However, the D-cog analytical framework has
developed largely in contexts quite different from those in which scientists work (see, e.g.,
Hutchins, 1995; Lave, 1988), and there are ways the framework needs to be broadened to
accommodate scientific practices, especially for the philosopher of science. I note three main
ways, although more might be identified as research on science develops.

First, much of the research that has contributed to the initial framework has focused
on well-defined task environments, with problems and goals specified from the outset and
cognitive artifacts ready-to-hand. Scientific environments, by contrast, are in ongoing devel-
opment along all dimensions. For instance, in the environment of the cockpit, features of the
problem-solving situations change in time, but how to land a plane has well-defined problems
and goals, and the technological artifacts, the practices surrounding them, and the knowledge
the crew brings to bear are relatively stable. Scientific environments, however, have open,
ill-formed problems, tasks, and goals. Methods, knowledge, and problem formulations can
all change in the course of problem-solving. Additionally, in the university setting, graduate
students are conducting research as they are learning to become scientists. Such ongoing
development is especially evident in frontier science environments, where not only are the
problems and goals ill-defined, but the methods, artifacts, and social organizations needed
for problem-solving are under development.

Second, as with all problem-solving, there are many cognitive capacities that come into
play in science, for instance, memory, representation, reasoning, imagination, abstraction,
and executive functions. Much theoretical and empirical work remains to be done on how
these function within D-cog systems. For science, the interaction between representation and
reasoning is especially important to thinking about the integral roles of artifact representations
in problem-solving. Such external representations can be linguistic, mathematical, or visual,
and they include gestures, physical models, computational models, and dynamic visualiza-
tions. Cognitive processes of mental modeling or mental simulation (which implicate many
other mental resources) are especially relevant to thinking about the interaction between
mental and artifact representations in inferential processes. One bioengineering researcher
aptly characterized the relationship between mental representations and the artifact models
they create as “putting a thought into the benchtop to see if it works.” There are several liter-
atures in cognitive science that can aid our understanding of their interaction within a D-cog
framework (see Nersessian, 2008a, chapter 3). For instance, as with research on qualitative
physics and on mental animation (see, e.g., DeKleer & Brown, 1983; Hegarty & Just, 1994;
Schwartz & Black, 1996), the notion of internal–external representational coupling is useful
for characterizing the relationship between scientists’ mental models and artifact models.
Customarily, D-cog has characterized cognitive processes, such as memory, as “off-loaded”
to the representational artifacts. “Coupling” is a more apt metaphor for representational inter-
action in scientific thinking, where each part of the system, mental model and artifact model,

 17568765, 0, D
ow

nloaded from
 https://onlinelibrary.w

iley.com
/doi/10.1111/tops.12777, W

iley O
nline L

ibrary on [11/12/2024]. See the T
erm

s and C
onditions (https://onlinelibrary.w

iley.com
/term

s-and-conditions) on W
iley O

nline L
ibrary for rules of use; O

A
 articles are governed by the applicable C

reative C
om

m
ons L

icense



N. J. Nersessian / Topics in Cognitive Science 00 (2024) 15

can improve as a result of inferential processes. “Coupling” can be understood on analogy
with mechanics: heterogenous components interacting dynamically in a feedback loop to
improve the function of the system, in this case, model-based inference in a D-cog system.

Third, unlike most other practices investigated in the D-cog framework, science has epis-
temic goals. Scientists need not only to solve problems, but also to justify their methods and
outcomes. Although one can study problem-solving in cognitive science for various purposes
without attending to its epistemological dimension, philosophical analyses of scientific think-
ing need to attend to the epistemic norms and values within the D-cog system that guide the
principles and the considerations that warrant claims to have produced knowledge or under-
standing. Studying scientific problem-solving in the situations and contexts where it takes
place can provide valuable insights into features of the environment pertinent to how norms,
standards, and methods emerge, develop, and function in scientific communities.

4.2. The research lab as a problem space

“The lab” is often associated with the physical space that houses the research-specific
technologies, instruments, artifacts, and workbenches, along with the researchers who work
within it. For a D-cog system, however, the lab is not simply a physical space existing in the
present, but rather a problem space, extended in space and time, constrained by the research
program of the director that reconfigures itself continually as the research program moves
along and takes new directions in response to what occurs both in the lab and in the wider
community of which the research is a part. At any point in time, the lab-as-problem-space con-
tains resources for problem-solving which include people, technologies, methods, concepts,
knowledge resources (literature, the internet, data bases, and so forth), financial resources,
epistemic norms and values, problems, relationships, and lab history in the form of artifacts
and lore.

The overarching question of this part of my research has been how does cognitive-cultural
integration take place in research labs on the frontiers of bioengineering science, where that
environment is continually under construction as the research moves along. The frontier
university labs I have studied are adaptive problem spaces in that researchers are continually
in the process of merging resources from different fields to create the infrastructure to
enhance their natural capacities for problem-solving. The choice of labs in this area was
serendipitous. As Director of the Program in Cognitive Science, I was contacted by senior
biomedical engineers who were seeking assistance to develop a new educational program
suited to the aims and challenges of the 21st-century bioengineering sciences. I saw this as
an opportunity to pursue my own research goals, since to help them develop the curriculum,
I needed to understand the nature of their research problems and practices. Setting on a
cognitive-ethnographic program of research with this dual purpose enabled me to receive
sufficient funds from the United States National Science Foundation over a dozen years
to fund a highly interdisciplinary research group—unusual for a philosopher—focused on
“cognition and learning in interdisciplinary cultures.”

In what turned into a 20-year project, we investigated the epistemic practices of four uni-
versity labs working on the frontiers of the bioengineering sciences. Bioengineering scientists
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aim to make fundamental contributions to basic biological research, with an eye to the future
creation of novel artifacts and technologies for application, especially in medicine. In the
labs we studied in tissue engineering, neural engineering, and integrative/computational sys-
tems biology, researchers were focused on understanding complex biological phenomena at
the system level. For reasons of ethics or control, these phenomena need to be studied indi-
rectly, though in vitro models or computational (in silico) models that can simulate the target
phenomena under experimental conditions. Thus, the research centers on building models
to provide analogical sources, as discussed above, that, ultimately, can be used to develop
hypotheses about the behaviors of complex biological systems “in the real world.” Once a
model is evaluated to be a satisfactory source, an extended process which can take years of
research, outcomes of experiments with the models are transferred as hypotheses to target
phenomena, and evaluated to the extent possible given the state of science. Modeling meth-
ods are continuously undergoing improvement as materials, technologies, methods, and so
forth advance.

The problem spaces of the four labs differed significantly, which provided the opportunity
to focus on the roles of different environmental resources in our analysis of the problem-
solving systems in each lab. Importantly, despite the differences, in each lab, during all phases
of the building process—design, construction, evaluation, redesign, experimentation—the
model is the locus of cognitive-cultural integration. Each lab created an environment, orga-
nized specifically for the kind of model it needed to build. The primary model(s) of the lab
research are sites of intersection of biological and engineering concepts, methods, and materi-
als, and of epistemic norms and values. They are the artifacts through which researchers think
about and improve their understanding of the biological phenomena in repeated interactions
with mental models (coupling). They are sites where processes of mentoring, identity for-
mation, and learning take place, and where the history of the lab is learned and appropriated
hands-on. So, too, they are the basis for the interaction with members of the wider community
through presentations and publications, and efforts to gain funding and institutional support
for the research.

Briefly, in each lab, we used the method of cognitive ethnography to study in situ inves-
tigative practices. This form of ethnography was dubbed “cognitive” (Hutchins, 1995) in that
it focuses on problem-solving activities of individuals or groups as situated in real-world con-
texts, to determine the cognitive processes implicated in these. In our case, we investigated
problem-solving situated in the ongoing development of modeling environments in com-
munities of bioengineering scientists. In each lab, we collected ethnographic observations,
conducted open and semi-structured interviews, and collected a range of archival data (grant
proposals and papers at various stages of development, power point presentations, emails,
wiki contents, writing and drawings on lab whiteboards, and so forth) over the course of 5
years. Notably, by collecting data over a sustained period, we were able to track the formation
of problems and goals; to log the various methods, steps, and iterations of model-building;
to ascertain specific concepts, theories, methods, and materials in use, and changes to these;
to probe decisions and judgments behind the development and alteration of a specific model;
to examine how and what kind of inferences an experimental simulation with such models
enables; and to note interactions among the researchers relevant to problem-solving pro-
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cesses. Having multiple sources of data enabled us to corroborate findings (“triangulation”)
and construct robust, trustworthy accounts (Eisner, 2003; Lincoln & Guba, 1985). Finally, in
data analysis, we used a variety of mutually complimentary qualitative methods: interpretive
coding, thematic analysis, case study analysis, and cognitive-historical analysis. Such anal-
yses aim to move from the specificity of the case to construct a broader interpretive account
by using systematic procedures to abstract and coalesce interpretive categories, and, where
appropriate, formulate candidate hypotheses to transfer across multiple cases (Geertz, 1983).

My research group has published numerous richly detailed accounts of how such cognitive-
cultural integration take place as scientists create modeling environments in ongoing research.
Since most cognitive scientists do not study science, I think it is important to provide an
exemplar here, although only an overview is possible. As with all ethnographic research, the
details of the case are specific to it, but the generalities listed above transfer across our cases
in different labs with different kinds of modeling practices.

4.3. Creating a neural engineering modeling environment

The example I use to anchor the notion of building modeling environments to create
cognitive powers in a D-cog system took place over 5 years. It is drawn from a detailed
case study of a pioneering neuroengineering lab that was seeking to understand learning
in living networks of neurons. The full case study provides an examination of how the
researchers integrated conceptual, methodological, and material resources from engineering,
neuroscience, and computational science to create different kinds of distributed problem-
solving environments that enhanced their natural capabilities, for instance, for reasoning,
visualization, abstraction, imagination, and memory, to attain their epistemic aims. It is a
complex story that focuses on the development and interaction of two analog source models:
one, an in vitro “dish” model-system built to investigate learning in living networks of
neurons; the other a computational simulation model of the in vitro model-system built to
better-understand its dynamics. So, the in silico model provides a second-order analogy.
Chapters 2 and 3 of my 2022 book provide a detailed analysis of how these model-systems
were built, the D-cog systems they created, and the research they enabled.

Prior research on learning in living neurons had been conducted on single neurons. The
lab director argued that since learning in the brain involves dynamic processes of synaptic
growth in response to electrical signals, it needed to be studied in living networks. Before
setting up his lab, the director had done postdoctoral research in a lab that was building an
in vitro model-system to enable experimentation on, and real-time imaging of, living neuron
networks. The in vitro dish is a hybrid model-system, composed of embryonic rat cortical
neurons (approximately 40,000), dissociated, and plated on a specially designed grid of 64
electrodes, called a “multi-electrode array” (MEA). The neurons generate new connections
to become a living network. At the time the director established the neural engineering lab,
this was a completely new kind of model-system, and the lab was one of the first to investi-
gate its properties and behavior. They began by developing software to “communicate” with
the dish by sending and receiving signals from it (“open-loop physiology”) and proceeded to
develop computational and robotic “embodiments” through which the dish might learn from
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“sensory” feedback, as the brain does from the body (“closed-loop physiology”). All these
model-systems were designed to function as source analogies to develop an understanding
of the dynamics of learning in neural networks in the brain (target system). The researchers
hypothesized that although the dish provides a highly abstract analogy to the target, if they
could produce and control learning in the embodied dish model-system, this would provide
insights into the neural mechanisms in the dish network that might be transferred and evalu-
ated as mechanisms of learning in the brain in further research in neuroscience.

The lab conceptualized “learning” in terms of the Hebbian notion of learning as plasticity
(basically, changes in the brain from adding or removing neural connections or adding cells in
response to experience), the mathematical formulation known as the Hebbian rule (“neurons
that fire together wire together”), and the standard notion of memory, which is the ability to
retain and retrieve experiences. The researchers expected to modify the concept of plasticity
and the associated equation, since the original concerns two neurons and they were investi-
gating populations of neurons. They operationalized learning as “a lasting change in behavior
resulting from experience.” They argued that the research would contribute to understand-
ing learning in neuron networks if they were able to demonstrate that they could build dish
model-systems in which they could reliably create and control learning. Thus, their overar-
ching problem became to develop a control structure for supervised learning in the in vitro
embodied dish model-systems.

In the D-cog framework, the “cognitive powers” created by environments built for problem-
solving are analyzed in terms of the affordances of the specific artifacts or human interactions.
One of the affordances of the dish model-system are that as an abstraction, working with it
enables the researchers to selectively focus on synaptic dynamics in response to electrical
stimulation in various experimental setups. Others are that, with the neurons plated to an
MEA array, it is possible to develop a means to visualize the dish’s electrical signals, which
enables perceptual inferences, to record experimental sessions, which enables researchers to
revisit/recall the experiments, and to track the history of each dish, which provides a memory
of its development. The latter is important, because the dish is a living system and so continu-
ally undergoing development over the course of its life, which could be as long as 2 years. In
addition, the researchers could do optical imaging of real-time synaptic formation and, thus,
see connections as they formed, which supports making perceptual inferences about these
dynamics.

As part of the suite of software tools they developed to send, record, and analyze dish
electrical signals, the researchers decided to create a visual display of neuronal behavior as
electrical activity in a format similar to how engineers represent electrical signals on an oscil-
loscope, as an eight-by-eight grid that displays the electrical activity, as it is occurring over
time, in each individual MEA channel (Fig. 2). This visualization shows the electrical activity
of clusters of neurons around each electrode (64 electrodes, approximately 40,000 neurons).

Early on they encountered a problem: the MEAscope representation showed there to be
continual spontaneous electrical activity taking place across the dish. They borrowed the con-
cept of burst (spontaneous electrical activity) from single neuron studies, now generalized
to a population of neurons to interpret the phenomena. Fig. 2 exhibits a pattern of burst-
ing behavior as spikes in each electrode channel. They initially understood this behavior to

 17568765, 0, D
ow

nloaded from
 https://onlinelibrary.w

iley.com
/doi/10.1111/tops.12777, W

iley O
nline L

ibrary on [11/12/2024]. See the T
erm

s and C
onditions (https://onlinelibrary.w

iley.com
/term

s-and-conditions) on W
iley O

nline L
ibrary for rules of use; O

A
 articles are governed by the applicable C

reative C
om

m
ons L

icense



N. J. Nersessian / Topics in Cognitive Science 00 (2024) 19

Fig. 2. A screen shot of the MEAscope per channel visualization of the in vivo dish activity showing spontaneous
bursting (spikes) in the channels of the dish.

create a significant obstacle to their goal of getting the dish to learn. They used the engineer-
ing concept of noise to interpret the bursting behavior: “noise in the data – interference, it’s
clouding the effects of learning we want to induce.” Such bursting behavior does not occur in
a normally functioning adult brain, so one researcher, D4, focused her research on finding an
electrical stimulation pattern (sensory input) that would eliminate bursts. It took a frustrating
year, which included numerous failures to quiet the dish, but when she succeeded, a strange
thing happened. They still were unable to get the quieted dish to learn when they tried numer-
ous stimulation patterns. So, after 2 years of work, the learning research was at an impasse.

During this period, the other researchers were engaged in largely separate, but interrelated
activities aimed at developing the embodied model-systems (Fig. 3, before the dashed line).
D2 was working on the software module needed to translate signals between the dish and the
motor commands to control its computational and robotic embodiments. One of the real-world
embodiments, which was to figure prominently in the supervised learning research, was the
robotic drawing arm he designed in collaboration with another research group. D11 had been
working with him, but early in the burst-quieting period, he decided to branch away from the
work with the in vitro model-system and develop a computational model that could simulate
the behavior of the in vitro model. This computational dish model is a second-order model
(or second-order analogy) built to gain insight into the behavior of the living dish model.
Computational modeling had not been part of the practices of the lab because of the director’s
experience with the limitations of neural network modeling, but D11 believed the affordances
of this kind of model, in particular, that “you can measure everything, every detail of the
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Fig. 3. My representation of Lab D as a distributed problem-solving system. The boxes represent models or model
activity and researcher interactions with them. The arrows indicate interactions among the researchers. The period
after the dotted line shows how the in silico model coalesced the researchers into a highly interactive system.

network,” might provide “some new information about the problem [bursting and control] we
could not solve at the time.” In particular, he thought that the computational dish would enable
him to “see” the activity at the level of the individual neurons, make precise measurements
after every experiment, and run significantly more controlled experiments than were possible
with the in vitro dish.

Building the computational model took many iterations and the processes are too com-
plex to detail here (see Chandrasekharan & Nersessian, 2015; Nersessian, 2022). I highlight
one major affordance of computational simulation models, which, in this case, proved quite
instrumental to their effort to investigate bursting: the capacity for dynamic visualization. The
modeler has significant discretion about how to visualize the model dynamics, for instance,
D11 could have used the same kind of grid format they used for the in vitro dish (Fig. 2);
however, he chose to visualize it the way he imagined it: as propagation of synaptic weight
changes in a dynamic network of neurons, as shown in Fig. 4.

With this representation, as D11 expressed, you “can visualize fifty thousand synapses…so
you can see…after you deliver a certain stimulation, you can see those distributions of synap-
tic weight change.” He also made movies of the visualized behavior in numerous simulations
and showed them to the other group members (and to us), so that everyone could see the
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Fig. 4. A screen shot of the computational visualization of the burst activity of the in silico dish displayed on the
computer screen as the propagation of synaptic weight changes across the network of neurons. The actual dynamic
display would show how the activity moves across the computer screen.

behavior and come to an agreement that he might have discovered a remarkable feature of
bursting behavior. D11 noticed that there were repeated spatial patterns within the bursting
activity, which he characterized as “similar looking bursts,” that propagated across the net-
work. He was able to count, what the display showed to be, a limited number of what he
called “burst types.” The understanding he reached from these findings was that if the bursts
were stable, then it might be possible to exploit bursts as signals, rather than eliminate them
as noise in the data. The others agreed when they watched the videos, and they started work-
ing together to develop a way to track and mathematically formulate the activity of possible
limited and stable bursting across the network.

One implication of this insight was that the group’s understanding of bursts changed from
noise in the data to signals that might be exploited to control the behavior of the dish, and
indeed, with considerable further joint problem-solving through mathematical analyses and
experimentation on both the in vitro and in silico models, they were able to create and control
learning in the in vitro dish model-system. Again, this was a complex and extended problem-
solving process, which included the development of several novel concepts for understanding
neural network activity. They worked by first abstracting generic structure and processes from
the in silico dish that could be represented mathematically, and, then, using that model as a
source analogy for the target in vitro model, they were able, with appropriate adaptations,
to develop and evaluate mathematical representations for a range of embodied dish model-
systems. The researchers were able to combine these analyses and earlier stimulation tech-
niques developed in the burst quieting research to formulate a set of novel stimulation patterns
(a control structure), which led to the first instance of supervised learning in a living neuronal
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network in the field. As we were wrapping up, they began work to transfer this model-based
research to real-world systems; specifically, to investigate in mice, with medical researchers,
the hypotheses that Parkinson’s disease is a bursting phenomenon.

As with conceptual and physical models (in vitro, in this case), computational models,
as parts of D-cog systems, can provide environments for analogical, visual, and simulative
reasoning in problem-solving processes, which, as in the case at hand, can lead to the formu-
lation of novel scientific conceptual resources. However, computational models have cogni-
tive, manipulative, and experimental affordances not available to other kinds of models. For
instance, a computational model synthesizes a vast amount of data into a complex representa-
tion that can enact the dynamics of the target system. In effect, it provides the modelers with
a running literature review from which to derive inferences that might otherwise be hidden
in the disparate data. Researchers can run an unlimited number of experiments, which can
include counterfactual scenarios that support the modelers in “what if…?” reasoning (a kind
of thought experiment). They can take measures of significant variables at the level of detail
often not accessible with the in vitro or in vivo target systems. They can visualize the dynamic
behavior of the model in representations that support their thinking about the behaviors of
three-dimensional phenomena across time, and visualizations can be recorded and viewed
and compared repeatedly. Taken together, these affordances help researchers to form a global
perspective on the phenomena. This global perspective is what informs the claim modelers
often make to have developed “a feeling for the model,” which facilitates predictive inferences
about its behavior and, by analogy, about the potential behavior of the target system.

Specific to this case, the computational dish model provided a way for the researchers
to envision the structure and behavior of the real-time propagation of the dynamic network
activity. This visualization is significantly different from the per-channel MEAscope visu-
alization, which does not capture the network behavior. As D4 later put it, “he [D11] was
thinking like a wave, where we were thinking of a pattern.” Of course, because learning in
a network of neurons was the target of their investigation, everyone knew the dish activity
was network activity. But no one had seen the network activity or a representation of it, so
the computational visualization was built on a counterfactual scenario: “If we were able to
see into the dish…” Indeed, the researchers spoke of this visualization as enabling them “to
see into the dish.” The visualization of the network activity and the capacity of the in silico
model to run an unlimited number of simulations that could be recorded and played back
repeatedly provided affordances that enabled first D11, and then the research group to notice
the similar-looking patterns and work together to formulate their behavior mathematically.
The manifest nature of the visualization served to align the mental models of the researchers,
enabled the group to make and critique joint inferences, and facilitated joint exploitation
of bursts as signals. Analyses of the computational model behavior, in interaction with the
in vitro model, enabled them to modify and develop new conceptual resources. Finally, the
computational model served as a driving force that brought the researchers together to form a
highly effective distributed cognitive-cultural system. In particular, the in silico visualization
generated many types of lab activity, which when put together, led to a solution of the problem
of controlling the neuronal behavior, first in the computational dish model, then by analogical
transfer and suitable modification in the target dish model-systems, and, then, to an extension
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of their research findings as hypotheses to neuron networks in real-world brains (target mice
models).

Finally, there are many ways in which these two kinds of models provided a locus of
cognitive-cultural integration in the neural engineering lab. For instance, concepts and
methods from neuroscience, engineering (mechanical, electrical), optical imaging, and com-
putational sciences, as well as epistemic values and norms, were combined and adapted in
ways that enabled the researchers to build the various model-systems. Further, materials from
biology and engineering were integrated to build the ontologically and epistemically hybrid
in vitro models. And, as the research progressed, individual researchers who worked on dif-
ferent pieces of the research coalesced into a tightly connected distributed problem-solving
system that achieved a major lab research goal. Finally, these graduate students, who arrived
as an electrical engineer, a mechanical engineer, and a bioscientist, developed identities as
hybrid neuroengineers (Osbeck & Nersessian, 2017).

In sum, this case exemplifies (when developed in full) what we found across all the labs we
studied: one way in which scientists create their cognitive powers is by creating the modeling
environments in which they exercise those powers.

5. Conclusion

I conclude with the short answer to my title question: scientists think not only with their
minds/brains, but by creating environments rich in artifacts, developing problem-solving
methods, and building communities. The focus of my research program continues to be on
how scientists create various kinds of environments that enable them to think analogically
about complex real-world phenomena: modeling environments. The findings and theoretical
analyses that derive from research on real-world scientific problem-solving provide unique
insight into the human capacity to design and utilize resource-rich environments at the highly
creative end of the cognitive spectrum.

To conduct this research required my evolution from a physicist to a philosopher and
historian of science to a hybrid cognitive scientist. My evolution has been a combination of
following a continually developing problem wherever it led and a willingness to learn what-
ever was needed to tackle it. As a first step into cognitive science, as a fellow at the Pittsburgh
Center for Philosophy of Science, I approached cognitive scientists at the Learning Research
and Development Center there and at Carnegie Mellon University about a postdoctoral posi-
tion. Surprisingly, Herbert Simon had an abiding interest in the work of Maxwell, and that got
my foot in the door. He and Lauren Resnick worked out a postdoctoral position that opened
the unanticipated opportunity to bring my research on model-based reasoning in science to
bear on science education—work that has continued throughout my career. Since that time,
I have resided in various interdisciplinary units in history of science, psychology, media and
cultural studies, public policy, computing, architecture, and ultimately, the cognitive science
program I developed and directed at Georgia Tech. These different environments provided a
rich range of affordances I could make use of in my quest. At Georgia Tech, for instance, I had
the opportunity to work with graduate students from a wide range of backgrounds together
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with colleagues to develop AI models of scientific thinking with Ashok Goel (e.g., Griffith,
Nersessian, & Goel, 1996), to conduct psychological experimentation with Richard Catram-
bone (e.g., Craig, Nersessian, & Catrambone, 2002), to conduct problem-solving protocol
studies and ethnographic investigations of architectural design cognition with Craig Zimring
and Chuck Eastman (e.g., Dogan & Nersessian, 2012; Kasali & Nersessian, 2015; Yagmur-
Kilimci, 2010), and to conduct ethnographic investigations with Wendy Newstetter and Lisa
Osbeck (e.g., Nersessian, Kurz-Milcke, Newstetter, & Davies, 2003; Osbeck & Nersessian,
2006; Osbeck & Nersessian, 2017; Osbeck et al., 2011). Because of its location in an
engineering university, the program focused on cognition in real-world contexts of work and
of learning. As a result, I learned much not only about traditional cognitive science, but also
about environmental perspectives from my colleagues. All these experiences furthered my
contributions to the cognitive science of science. Finally, my research has enabled me to use
what I have been learning to contribute to the efforts of science and engineering faculty and
learning researchers to develop educational programs in science and engineering for students
across the educational lifespan, based on how scientists think in conducting their research.

Notes

1 As an interdisciplinary researcher, I have inhabited many academic positions in search
of a “home.” It took 18 years to find a tenured position. As requested by a reviewer, I
note the major institutions in which I was situated during various phases of my career.
The research in Section 3 was conducted mostly when I was a faculty member in the
Program of History of Science and Department of History at Princeton University. There
I also worked with Gilbert Harman (Philosophy) and George Miller (Psychology) to
develop a Program in Cognitive Science.

2 The research in Section 4 was conducted mostly when I was a faculty member with
a “cognitive science” position split among multiple Schools and Colleges at Georgia
Institute of Technology. I was hired to develop a Program in Cognitive Science.

3 I received my AB with a double major in Physics and Philosophy from Boston Univer-
sity. I supported my undergraduate education by working on the Apollo 11 project at
the MIT Instrumentation Lab, Displays and Human Factors Group. I note this because
working with engineers who were focused on the interactions among the astronauts, the
onboard computer guidance system, and the various ground control stations was a for-
mative experience that influenced my later thinking.

4 Case Western Reserve University had just started a new Ph.D. program funded by the
Rockefeller Foundation to train students with undergraduate degrees in the sciences or
mathematics in the “philosophy of” that subject. My Ph.D. research was focused on the
foundations of physics.

5 At this early post-Ph.D. point in my career, I was in the Netherlands, where I went with
as a Fulbright Scholar to Leiden University and the Museum Boerhaave to investigate
the contributions of physicist H. A. Lorentz to the formation of the field concept. After
that, I accepted a part-time position on the faculty at the Technical University of Twente
in the History, Philosophy, and Sociology of Science Unit.
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