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Science is one of the most significant creative pursuits of humankind. How 

can we understand, and account for, the epistemic accomplishments of sci-

ence given that scientists are limited beings and the natural world is vastly 

complex? I have been occupied with this problem in various formulations 

starting from when I was an aspiring theoretical physicist and then as a 

philosopher of science but also, in addition, as a cognitive scientist. Science 

is an activity with many dimensions, and for the last twenty years I have 

been following out my conviction that the answer lies in fathoming how 

these are integrated in the problem-solving practices scientists create to get 

a grip on the world.

By “many dimensions” I mean that there is, obviously, a cognitive side to 

science (there’s no way to do science without using your mind/brain), but, 

equally obviously, also a social side (lab organizations, academic institu-

tions, how people work together, and so forth), a material side (for example, 

computers, pipettes, instruments, cells, and chemicals), and a cultural side 

(for instance, locally maintained traditions). In each of these dimensions, 

scientists create resources through which to think. I mark these jointly as 

“cognitive-cultural” to indicate that in scientific practice these dimensions 

are integrated.

Scientists’ problem-solving practices comprise a range of activities that 

are of great interest to philosophers as well as to cognitive scientists. Such 

activities include, among others, the manner in which scientists reason, 

how they make representations of phenomena, how they construe “under-

standing,” how they use their imagination, and how they work together on 

a day-to-day basis. The problem-solving practices of scientists on the frontier 

are exploratory; they are incremental in the sense of moving step-by-step; 

1  Investigating Practice: The Cognitive-Cultural Systems  
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and they are nonlinear in that they do not follow any obvious, let alone 

preexistent, pathway from original problem to final resolution. It is in the 

processes of developing and using these practices that scientists create com-

plex dynamical investigative systems of research in which cognition and 

culture are mutually implicated in epistemic practices. Thus, scientific dis-

covery and creativity need to be understood as system phenomena.

The route I have taken toward understanding what is going on in this 

vast multidimensional realm is to develop fine-grained examinations of 

those problem-solving practices, their origins and advances over time, 

and the epistemic principles that guide them. As a professor in philosophy 

of science and cognitive science at Georgia Tech, I was presented with an 

opportunity to learn what was going on in research undertaken there in 

laboratories working at the exciting intersection of biology and engineer-

ing. It seemed to me from even a cursory initial look that the bioengineering 

sciences, as frontier research areas, provide an excellent locus for examin-

ing cognitive-cultural integration. They are paradigmatic of the interdisci-

plinary aspirations of frontier twenty-first-century science. Researchers in 

these fields aim to bring engineering, technological, and computational 

resources to bear on understanding and controlling complex biological sys-

tems. To achieve their ambitions, they would need to “integrate” cognitive-

cultural resources in the form of concepts, methods, and materials from the 

domains of biology and engineering, which requires understanding their 

affordances and limitations, and to train new kinds of researchers.

I had no prior understanding of the domain, and the selection of labs 

to investigate was largely a matter of chance. Each specific field was under-

taking research on complex biological systems about which there was little 

scientific understanding. In each lab, the members self-consciously referred 

to themselves as pioneering researchers on the frontiers of engineering and 

science. They expressed excitement at being on the forefront of research. As 

one told us, “What we are doing right now is the most exciting thing I can think 

of, and I think most people know that too when they hear about it.” We began 

with a lab where engineering techniques are applied to cells and tissues that 

constitute the blood vessel wall, simply because the director approached 

me in my role as director of the Program in Cognitive Science. He, along 

with other senior colleagues, wanted to explore what cognitive scientists 

might contribute to the development of a new educational vision they 

had: to train the emerging field’s researchers as truly integrative, hybrid 
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“bio-medical-engineers.” I immediately saw in this offer the opportunities I 

had been seeking to both extend my research from historical studies in phys-

ics to ethnographic investigations, now, on frontier research in the bioengi-

neering sciences, and to extend my advocacy that scientists should “preach 

what they practice” (Nersessian 1995) to an innovative educational program 

as it was being developed. However eager I was to join their endeavor, I 

responded that I needed first of all to develop some understanding of their 

research problems and their practices in attempting to solve them. I put 

together a research group that was (in gradually changing compositions) to 

investigate their research and learning practices for more than fifteen years.1 

We began to investigate the tissue engineering lab, and three subsequent 

labs, by conducting a pilot study. We interviewed the lab director about his 

background and the lab’s history and current research, toured the lab while 

the director and the lab manager described artifacts and activities, and met 

with the group of researchers who would participate in the investigation. 

This preliminary research enabled us to focus our research project better.

That is how it began. This book is where it ends. I have two main goals 

with it. One goal is to establish how the modeling practices of bioengineer-

ing research labs exemplify, and work within, the cognitive-cultural frame-

work.2 I cast research labs and the problem-solving activities within them 

as what I call distributed cognitive-cultural systems with epistemic aims—that 

is, roughly, a complex system comprising researchers, artifacts, social struc-

tures, and practices through which specific epistemic aims are advanced. 

Within that special frame, which I discuss at some length in section 1.2. 

below, I examine the building of models (that is, of material and compu-

tational artifacts) as what drives the creation and evolution of these sys-

tems. On my analysis, models are loci of cognitive-cultural integration. The 

processes of model-building make a researcher a part of “the lab” socially, 

culturally, and cognitively.

The other goal is to build on my previous work to further articulate, and to 

develop the rationale for, the integrative cognitive-cultural framework itself. 

This framework is applicable to scientific practice, in a broader, more general 

sense, as well. That is, although my exploration is of the bioengineering sci-

ences that provide my case material, the analytic framework, along with my 

methodological approach, applies to scientific research as such.

In this introduction, I first lay out the reasoning underlying the integra-

tive framework, and also the methodological approach my research group 
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and I have followed—what I call “cognitive ethnography of research labs.” 

Next, I describe the four labs we have investigated over many years, and 

how we adapted and used ethnographic methods for our specific purposes. 

Finally, I sum up the themes of the successive chapters of the book.

1.1  A Cognitive-Cultural Framework for Investigating Practice

Thomas Kuhn’s The Structure of Scientific Revolutions (Kuhn 1962) was a 

major impetus in the flourishing of case studies of the investigative prac-

tices of scientists since the 1970s. From the start of the “practice turn,” 

accounts of scientific practices have tended to focus on either “cognitive/

rational” or “cultural/social” factors, where these are taken to be separate—

often mutually exclusive—interpretive categories. There have been, on the 

one hand, philosophical and cognitive studies of science, both of which 

focus on individuals and on the cognitive representations and processes 

they use in problem-solving and, for philosophy, on the epistemic stan-

dards they employ in carrying out experimental or theoretical practices.3 

But there also have been, on the other hand, social and anthropological 

studies of practice (STS), which focus instead on interests, motivations, and 

a range of social, cultural, and material factors in play within communi-

ties of scientists. Both kinds of analyses have certainly produced valuable 

insights about scientific practice. Even so, their oppositional stances have 

prevented fruitful interaction. STS accounts have programmatically con-

strained relevant explanatory factors to social and cultural, thus downplay-

ing (or denying entirely) the relevance of rational and cognitive factors. On 

the cognitive side there have been two main objections. Philosophers reject 

STS accounts for their epistemic relativism. In addition, both philosophers 

and cognitive scientists are opposed to the social reductionism, likewise 

characteristic of STS studies, that completely omits cognitive and rational 

factors from explanations of how science produces knowledge. Such reduc-

tionism was most famously announced in the “ten-year moratorium” on 

cognitive explanations issued first in 1986 by Bruno Latour and Steven 

Woolgar (Latour and Woolgar 1979, 280; Latour 1987, 247).

The moratorium is long over, but one still needs to ask: What, besides 

a penchant for rhetorical flourish, could explain such a pronouncement as 

the ten-year moratorium? One can agree that scientists have interests, moti-

vations, and sociocultural loci in conducting research, but they also have 
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human cognitive capabilities and epistemic aims. Scientists develop and 

use artifacts (“material culture”), but they also articulate and use evaluative 

procedures and standards. These “both/ands” look like such truisms that 

only the investigation of a mix of complex issues can lay bare the roots of 

the moratorium in twentieth-century intellectual history. I have attempted 

such an examination elsewhere (Nersessian 2005), but there is no need to 

detail it here. For our purposes, it suffices to agree that any such divide, 

though at times analytically useful, is artificial. It imposes boundaries on 

dimensions that are inherently integrated in practice.4 What twenty-first-

century studies of science require is an analytical framework that facilitates 

theorizing the cognitive and cultural aspects of practice in relation to one another.

Here is how I articulate such a cognitive-cultural framework for investi-

gating practice. As with my previous methodological approach of cognitive-

historical analysis (Nersessian 1987, 1992a, 2008), I draw, primarily, on 

resources in both the philosophy of science and the cognitive sciences. From 

a philosophical perspective, the project of integration fits into a philosoph-

ical tradition of epistemological naturalism (Quine 1969; Nersessian 2008). 

My construal of that naturalism has the following requirements. First of 

all, the project needs to be informed by the best available scientific under-

standing of humans that the biological, cognitive, and social sciences have 

to offer. Next, it needs to be informed by a grasp of the actual investigative 

practices as they are created and used by scientists, including their epis-

temic warrant. Finally, we need to avail ourselves of appropriate empirical 

methods for determining these practices.

Already in my earlier work on the cognitive basis of model-based reason-

ing I have established the fruitfulness of thinking about scientific practices 

through the lens of specific research in the cognitive sciences (Nersessian 

1984, 1987, 1992a, 2002a,b, 2008). And, indeed, for the case at hand, there 

is a line of research that can provide important insights of an empirical, 

but also theoretical and even methodological, nature—insights that are 

most helpful if we want to attain an integrative study of scientific problem-

solving practices as located with complex cognitive-cultural systems.

Within contemporary cognitive science, there is a movement across the 

disciplines it comprises that has advanced and persuasively argued for an 

integrated understanding of cognition and culture. This understanding did 

not begin with science as a specific object of investigation—that is where 

much of my own work over past decades, and also the present book, comes 
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in. Even so, this specific direction in cognitive science has much to offer 

by way of a starting point from which to tackle the problem of integration 

in science. Indeed, participants in the movement have, themselves, advo-

cated that cognitive science study real-world practices because, “it is in real 

practice that culture is produced and reproduced. In practice we see the 

connection between history and the future and between cultural structure 

and social structure” (Hutchins 1995a, xiv).

The argument in cognitive science begins from a critique of traditional 

research that locates and studies cognition in terms of what goes on “in the 

head,” without taking into account the role of environmental resources 

(social, cultural, and material) in shaping and participating in cognitive 

processes. What I have called “environmental perspectives” (Nersessian 

2005) are grounded in empirical evidence from a range of research in the 

cognitive, biological, and social sciences. Environmental perspectives com-

prise accounts of cognition as an embodied, artifact-using, and situated 

process that the social, cultural, and material environment does not just 

scaffold, but also provides resources that are integral to cognitive process.5 

Advocates for environmental perspectives contend that analyses of cogni-

tive processes need to determine and incorporate salient dimensions of the 

contexts and activities in which cognition occurs.

Traditionally, the environment is construed as providing mental content 

on which “internal” cognitive processes operate. In contrast, pioneers of 

the new approach have argued that “cognition” and “culture” both need to 

be seen as processes that are integrated in human activity (Hutchins 1995a; 

Shore 1997). This construal points away from the traditional perspective 

that regards cognitive and cultural factors as independent variables in an 

explanation of intelligent behavior. Instead, human cognition is under-

stood to be inherently cultural, as being shaped in ongoing processes of 

the evolutionary history of the human species, of the development of the 

human child, and of the various sociocultural environments in which learn-

ing and work take place—processes that are integral to intelligent behavior.

The route to attaining analytical integration for scientific practice fol-

lows a path similar to environmental perspectives in that it, too, moves 

the boundaries of scientific problem-solving beyond the individual to com-

prise complex cognitive-cultural systems. The grain size of the system—

individual, group, groups of groups—depends on the focus of analysis. Here 

the analytical framework of “distributed cognition” proves particularly use-

ful, in that it incorporates all of the dimensions of an integrated analysis 
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advanced by the range of environmental perspectives. From that perspec-

tive, scientific researchers are understood to be embodied agents situated 

in problem-solving contexts. That is why I have adopted this analytical 

framework as the starting point of a cognitive-cultural analysis of scientific 

practice. In this project, we analyze scientific problem-solving as situated 

within contexts and distributed across researchers and specific artifacts. 

Extremely fruitful as it is for starters, the framework of distributed cogni-

tion is itself, however, in need of further development. What, for present 

purposes, it needs in particular is to think about what adjustments and 

enrichments are required to accommodate scientific practice.

1.2  Broadening the Framework of Distributed Cognition

The framework of distributed cognition (from here on, D-cog) has its roots 

in concerns that arose, starting in the mid-1980s, from the sense that tra-

ditional cognitive science had put too much of what goes on in cogni-

tion “in the head.” Clearly humans are able to do some simple reasoning 

and problem-solving in the absence of external resources, but we are able 

to accomplish much more by drawing on those resources—either using or 

creating them as needed. As Daniel Dennett has remarked, “Just as you 

cannot do very much carpentry with your bare hands, there’s not much 

thinking you can do with your bare mind” (Dennett 2000, 17). Thinking 

requires doing with resources in the mind and in the world. One ques-

tion is how the mind incorporates external resources in thinking. Several 

streams of research, much of it using ethnographic methods, converge on 

the notion of cognitive processes as distributed across people and artifacts, 

including distributed cognition, distributed intelligence, activity theory, 

situated action, and extended mind theory.6 Of these various approaches, 

Edwin Hutchins’s research has been most influential on my project of inte-

gration because he has focused on the roles of representational artifacts in 

problem-solving processes (“tasks”) situated in technologically rich envi-

ronments (“socio-technical systems”). Although not themselves science, 

these systems have features that do align well with science. Further, I agree 

with Hutchins in that I understand D-cog to be a framework for analyzing 

cognitive-cultural processes, not an ontological thesis.7

The primary unit of analysis is what Hutchins calls a distributed socio-

technical system. It consists of people working either together or individu-

ally to accomplish a task, along with the specific artifacts they use in the 
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process. Cognitive artifacts are the artifacts that have been designed to per-

form cognitive functions and are used in problem-solving tasks by groups 

of people (e.g., piloting a ship, Hutchins 1995a) or individuals (e.g., piloting 

a plane, Hutchins 1995b). The classic exemplar is that of the speed bug on 

the airplane cockpit instrumentation panel. It eliminates the need for the 

pilots to remember the range of minimum maneuvering speeds while tak-

ing off and landing a plane and, when there are copilots, enables them to 

have a coordinated perspective (Hutchins 1995b). What makes the speed bug 

artifact “cognitive” is that it provides a representation that “remembers” the 

speed constraints for the pilots, thus reducing their cognitive load at a critical 

juncture in flying a plane. On Hutchins’s account, cognitive artifacts, gener-

ally, are material media that possess the cognitive properties of generating or 

manipulating or propagating representations. D-cog analyses, then, focus on 

the functions of these representational artifacts in human activities.

Science, however, differs in significant ways from the socio-technical 

systems Hutchins has investigated. Therefore, to accommodate it to our 

purposes, the D-cog framework needs to be broadened.8 The framework 

of distributed cognition has been developed largely from investigations of 

contexts quite different from research laboratories and of practices quite 

different from those of scientific problem-solving. In the sections that fol-

low I elaborate on these differences.

First, much of the research that has contributed to the initial frame-

work of D-cog has focused on highly defined task environments with well-

defined problems and goals and ready-to-hand cognitive artifacts. Scientific 

environments, in contrast, are continually evolving along all dimensions.

Second, initial D-cog research has focused on the way artifacts/technolo-

gies, as “external” representations, contribute to accomplishing cognitive 

tasks, especially how they reduce internal cognitive load by “off-loading” 

cognitive processes, such as memory, to the environment. Scant attention 

has been paid to the nature of the resources the mind/brain, especially 

“internal” (human memory) representations and processes, contribute to 

problem-solving tasks.9 If we wish to understand scientific problem-solving, 

we need to pay attention to how these two kinds of representations—

artifact and memory—interact.

Third, unlike other practices that have been investigated in a D-cog frame-

work, science is an epistemic practice that needs to justify its outcomes. A sci-

entist cannot just say, “I have discovered this or that.” She is bound to offer 
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arguments grounded in the observations made, in the theories employed, 

and in the methods followed, for why she regards her discovery claims as 

justified. In D-cog analyses so far, attention to this dimension has, by and 

large, been lacking.10

In these three distinct (though naturally overlapping) regards, then, 

the D-cog framework needs to be extended: science as a process of ongo-

ing growth and change; science as marked by ongoing interaction between 

memory and artifactual representations; science as standing in ongoing need 

of an epistemic warrant. I now successively discuss in more detail these three 

dimensions to be incorporated into the D-cog framework, always with a 

view to making it the best possible analytical tool for our investigation of 

present-day science, in general, and, in particular, bioengineering epistemic 

practices.

1.2.1  Scientific Task Environments

The distributed cognition framework was developed to analyze cognitive 

processes in complex problem-solving environments in which there are 

well-defined problems and tasks for which the requisite salient artifacts 

and technologies for problem-solving are already at hand. In these stud-

ies of environments, for instance the cockpit (Hutchins 1995b) or a naval 

ship (Hutchins 1995a), the problem-solving situations change in time, but, 

for instance, how to land a plane is a well-defined problem. Situational 

features of the problem faced by the pilot or crew can change in the pro-

cess of landing the plane or bringing a ship into the harbor, and creative 

solutions can arise in novel situations. However, the technology (cognitive 

artifacts) required to accomplish the problem-solving, such as the alidade 

or the speed bug, the practices surrounding them, and the knowledge the 

pilot and crew bring to bear in those processes, are relatively stable. Even 

though the artifacts have a history in the field, as Hutchins documents 

for the instruments of ship pilotage, they do not change in the day-to-day 

problem-solving processes on board. Thus, this kind of cognitive system is 

dynamic but largely synchronic. By contrast, the cognitive systems of scien-

tific problem-solving are not only dynamic but also diachronic.

Scientific problem-solving environments have open, ill-formed prob-

lems and goals, and tasks for which methods and artifacts for problem-

solving often need to be created, depending on the science and its state 

of development. Although there are loci of stability, the salient artifacts, 
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methods, knowledge, and the problem formulations themselves can all 

undergo development and change during problem-solving processes. This 

is especially so in frontier science environments. A bioengineering research 

lab provides a good example. Not only does this environment have open, 

ill-defined problems and goals, but novel methods are under development, 

and the most salient cognitive artifacts—in this case, physical and compu-

tational simulation models—need to be created. Indeed, one could say the 

lab itself needs to be built in the process of articulating its problems and 

goals (Nersessian 2012).

Further, university labs are sites of situated learning within a community 

of practice (Lave and Wenger 1991). In the labs we investigated, the research-

ers are primarily graduate students, who are “researcher-learners” with devel-

opmental trajectories that intersect with the trajectories of development of 

the technological resources and other dimensions of the problem space. Of 

course, problem-solving on the frontier requires everyone—including lab 

directors and managers—to be learning continuously, but student research-

ers have the additional challenge of acquiring the knowledge and skills 

to become scientists. A further challenge for everyone in interdisciplinary 

communities is that interactions among concepts, knowledge, practices, 

norms, and so forth from more than one field need to be formed into new 

cognitive-cultural practices. The dynamic and diachronic nature of research 

labs has led us to characterize them as evolving distributed cognitive-cultural 

systems (from here on to be abbreviated as cognitive-cultural systems or, 

simply, D-cog systems). Research labs, as problem-solving environments, 

provide the framework of D-cog with the opportunity to attain what 

Hutchins has called its “most ambitious goal”: to investigate “a system in 

which adaptive processes that are continually operating are responsible for 

the production of both stability and change” (1996, 67). Lab researchers 

build their cognitive-cultural systems as the research moves along, espe-

cially through building the artifacts necessary for the activities he singles 

out: generating, manipulating, and propagating representations within the 

system.

Much of the work within D-cog has focused on constructing detailed 

descriptions of the way artifactual representations are used and how they 

change the nature of the cognitive tasks, especially by reducing cognitive 

load through “off-loading” memory to the environment. Less understood 

are the processes of generating/building artifacts to alter task environments 
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in the course of problem-solving.11 Indeed, as Daniel Schwartz and Thomas 

Martin have observed, “most cognitive research has been silent about the 

signature capacity of humans for altering the structure of their social and 

physical environment” (Schwartz and Martin 2006, 314). Rogers Hall et al. 

have also noted the lack of attention paid to the practices through which 

people actively distribute cognitive processes to the environment (Hall et al. 

2002; Hall et al. 2010). Yet, a central premise of D-cog is precisely that. As 

Hutchins has succinctly stated, “Humans create their cognitive powers by 

creating the environments in which they exercise those powers” (1995a, 

169). Scientific practices provide an especially good locus for examining the 

human capability to create or extend cognitive powers. After all, distributing 

cognition through creating problem-solving environments is a major com-

ponent of scientific research. The problem-solving environments scientists 

create include material and conceptual artifacts, methodological practices, 

and communities of researchers (whether working together or alone), such 

as labs. By examining the processes through which these environments are 

built, we can begin to understand how the artifactual resources, in particu-

lar, are incorporated into problem-solving systems, and are not just external 

representations “used by” the mind/brain. In our analyses of the interac-

tions between the mental and the artifactual components of the D-cog sys-

tem in model-based reasoning processes, we cast the relationship as one of 

“coupling,” rather than “off-loading” and then “using.” This distinction 

will become clearer in the chapters of this book, but for present purposes, in 

general, we use the notion of coupling to indicate that in problem-solving 

processes, each component of the D-cog system—mental model and mate-

rial model—interacts in a manner that can create change in the other. But 

to extend the D-cog framework in this way requires we attend to the nature 

of the resources the mind/brain contributes to problem-solving. That is our 

second missing dimension, to be taken up now.

1.2.2  Mental Modeling

To date in D-cog research there has been scant discussion on the nature 

of the mental resources the human component of the system contributes 

beyond attending to how the people involved perform coordinating func-

tions. There are, however, many cognitive capacities that come into play in 

problem-solving. Important examples are memory, representation, reason-

ing, imagination, and executive functions. Hutchins is explicit that his is 
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a representational view of cognition, in which intelligent behavior results 

from interactions among “internal” (human) and “external” (artifact) rep-

resentations in cognitive processes. His analyses track what he calls the 

generation, manipulation, and propagation of representations in the D-cog 

system. However, Hutchins focuses primarily on the nature and function 

of the artifact representations, while remaining silent about the human 

representations.

Jaijie Zhang and Donald Norman (Zhang and Norman 1995) provide a 

rare analysis from a D-cog perspective of the interactions among external 

and internal representations, in this case, solving insight problems (e.g., 

tower of Hanoi) and reasoning in games (e.g., tic-tac-toe). They assume, on 

the basis of a substantial experimental literature, that the internal represen-

tations are mental models; however, they do not elaborate on their nature. 

In earlier work I have developed an account of the capacity for mental mod-

eling, as it provides a cognitive basis for model-based reasoning practices 

in science (Nersessian 1992a,b, 2002, 2008). My pathway to constructing 

that account was to synthesize a wide range of cognitive science research 

from what are usually viewed as separate areas, but which I came to see as 

interrelated from the perspective of scientific thinking, and to add data 

from investigations of scientific model-based reasoning practices. I have 

argued that the cognitive basis for these practices lies in the mental abil-

ity to imagine real-world, counterfactual, and impossible situations, and to 

make inferences about future states of these situations through manipula-

tion of a model of the situation. The remainder of this section provides the 

basic features of that account, by way of a brief summary of the full analysis 

to be found in chapters 4 and 5 of Nersessian (2008).

Several important lines of theoretical and experimental research concern-

ing mental models started with the 1967 reissue of the book on explanation 

by Kenneth Craik (Craik 1943). One specific line focuses on working-memory 

processes of dynamic and mechanistic mental modeling. My analysis draws 

on this strand of research in the literature that, like Craik’s, examines the 

processes of constructing and manipulating a mental model during reason-

ing and problem-solving. Inferences, on this account, are made by means of 

manipulating both static and dynamic features of the model. That literature, 

including my own contribution, addresses working memory representa-

tions and does not make any claims about the nature of long-term memory 

representations, which some have claimed to be mental models as well. I 
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have argued that to accommodate the complex nature of scientific reason-

ing requires an account of model-based inference to move beyond the men-

tal modeling literature per se, so as to construct a synthesis of an extensive 

range of experimental literature that consists of research on a whole range 

of issues that implicates mental modeling. These issues comprise discourse 

and situation modeling, mental animation, mental spatial simulation, and, 

finally, perceptual simulation in embodied mental representation.12 When 

taken together, this research supports a “minimalist hypothesis” that “in 

certain problem-solving situations humans reason by constructing a mental 

model . . . ​in working memory that in dynamic cases can be manipulated 

by simulation” (Nersessian 2002, 143). That is, people have the capacity to 

perform what I call simulative model-based reasoning. Such a mental model 

“is an organized unit of knowledge that embodies representations of spatio-

temporal relations of situations, entities, and processes, as well as represen-

tations of other pertinent information, such as causal structure” (Nersessian 

2008, 128).

Mental modeling is subject to the representational and processing con-

straints/capacities of the brain, chief among which is memory. Thus, men-

tal model representations are limited in how much detail they can contain, 

and for how long. The experimental research associated with mental model 

simulations of physical and mechanistic representations (for instance, pul-

ley systems) identifies specific features of these as being qualitative (DeKleer 

and Brown 1983; Roschelle and Greeno 1987) and with animation/simu-

lation being piecemeal (Roschelle and Greeno 1987; Hegarty 1992, 2004; 

Schwartz and Black 1996). Long-term memory provides background knowl-

edge to support mental model-building and simulation processes (Roschelle 

and Greeno 1987). Information in various formats can be used to construct, 

manipulate, and revise a model. Such formats may cover language but also 

formulae, pictures, sounds, and kinesthetic phenomena.

In line with Dennett’s comment, simple mental simulations might be 

possible “in the head” alone, yet mental modeling of any complexity needs 

to be carried out in the presence of real-world resources. For example, con-

sider a mundane case. It is much easier to mentally simulate how to get 

an awkward piece of furniture through the door when it is in front of the 

reasoner in the doorway, rather than recalled from a visit to the furniture 

store. This is even more true in the case of science. A wide range of data, 

which comes from historical records, from protocol studies, and from 



14	 Chapter 1

ethnographic investigations, establish that many kinds of external repre-

sentations are integral to reasoning in scientific problem-solving processes. 

Such representations can be linguistic (descriptions, narratives, written and 

oral communications), or mathematical (equations), or visual (diagrams, 

graphs, sketches, computer). They also include gestures, physical models, 

and computational models.

How might the capacity for mental modeling interface with the relevant 

resources in the external world? Much of the experimental research on this 

interface has been directed toward the use of diagrams and other visual 

representations. The research noted above by Zhang and Norman, for 

instance, analyzes diagrams as external representations that are coupled as 

information sources with mental models in problem-solving. Mary Hegarty 

(Hegarty 2004) has argued that the corpus of research on mental animation 

in the context of external visual representations leads to the conclusion 

that these and internal representations form a coupled system in inferential 

processing (see also, Gorman 1997; Greeno 1989b). Although limited, the 

experimental research on scientific reasoning, in particular with computa-

tional representations, promotes the coupled system view as well (Chris-

tensen and Schunn, 2008; Trafton et al. 2005; Trickett and Trafton 2007). 

Our research extends the notion of mental model and external represen-

tational coupling to include physical and computational models in pro-

cesses of simulative model-based reasoning (Osbeck and Nersessian 2006; 

Nersessian 2008, 2009; Chandrasekharan and Nersessian 2015; Nersessian 

et al. 2003). Diagrams and other visual representations (with the exception 

of computational) considered in the experimental literature are static, but 

our analyses concern also the interface between dynamic representations: 

physical model simulations, computational model simulations, and mental 

model simulations. Unlike most cases examined in the experimental litera-

ture, our research looks at cases in which each part of the system is sub-

ject to change in inferential processes—mental models can improve from 

interaction with material models and vice versa. We understand “coupling” 

on analogy with how it is understood, generally, in mechanics as heteroge-

neous components interacting dynamically in a feedback loop to improve 

the function of a system, in our case, model-based reasoning in a D-cog 

system.

One way to accommodate this notion of coupling would be to expand 

what is understood as memory to encompass external representations and 



Investigating Practice	 15

cues. If memory is so distributed, problem-solving affordances and con-

straints in the environment are ab initio part of cognitive processes, which 

now incorporate both kinds of representations (see, e.g., Donald 1991). In 

this case, during model-building processes, mental and real-world models 

iteratively develop correspondences among - their features, and in reason-

ing, information is co-processed in human memory and in the environ-

ment. Although cognitive science stands in need of an account of the 

nature of the mechanisms of internal/external representational coupling 

(see, e.g., Chandrasekharan and Stewart 2007; Rahaman et al. 2018), we 

contend that coupling provides a better metaphor than off-loading (itself 

in need of such an account of mechanisms), since coupling intimates that 

cognitive artifacts become incorporated into a D-cog system. We would not 

want to say that reasoning processes are off-loaded to an artifact model 

as memory processes are to the speed bug; rather the model and modeler 

form a dynamic, coupled system that performs reasoning, and, over time, 

and in interaction with other elements in the system, changes in one lead 

to changes in the other. Indeed, we have been arguing and I will show in 

this book, building coupling between mental and artifact models in a D-cog 

system is a major means through which scientists “create cognitive pow-

ers,” which extend beyond enhanced memory. To paraphrase Hutchins, 

one way in which scientists create their cognitive powers is by creating modeling 

environments.

1.2.3  Scientific Practice Is Epistemic

Finally, unlike most other practices that have been investigated within the 

D-cog framework, science is an epistemic practice. Research labs, and other 

configurations of scientific practice, can be cast as what Karin Knorr Cetina 

has called epistemic cultures (1999). These “are cultures that create and war-

rant knowledge” (Cetina 1999, 1). She chose that designation to contrast 

with the customary terms of “discipline” and “specialty,” which typically 

refer, in the social sciences, to institutional organizations of knowledge. 

“Epistemic culture” is used to shift the focus of attention to “knowledge-in-

action” (Cetina 1999, 3), or practice. As an approach to the study of science, 

according to Cetina, to analyze an epistemic culture requires one attend 

to the differences of “knowledge-making machineries” in different scien-

tific cultures and subcultures (Cetina 1999, 3). Her case studies of practices 

in particle physics and molecular biology make clear that “machineries” 
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comprise sociocultural practices as well as the technologies of research. 

Her analysis of these epistemic practices, however, is too limited. It largely 

omits the cognitive and rational dimensions of the practices.13 In particular, 

she does not attend to how a culture provides, or develops, warrant for its 

practices, including its “machineries.” What makes science epistemic, how-

ever, is not only that it makes claims to create knowledge, but also that it 

provides warrant for those claims and the investigative methods leading to 

them. Nor does she attend to differences in epistemological assumptions, 

norms, and values among cultures, which Evelyn Fox Keller has pointed 

out are equally significant for individuating scientific cultures and under-

standing their practices (Keller 2002). My understanding of an “epistemic 

culture,” and use of that designation, include all of these dimensions.

In the context of extending the framework of D-cog to accommodate 

science, it is important underscore the normative dimension of a practice. 

Joseph Rouse’s general analysis of practice is useful to understand what 

this means. Rouse characterizes practices as “situated patterns of activity” 

(Rouse 1996, 150). Such a pattern “constitutes a practice rather than some 

other kind of regularity to the extent that it is a pattern of correct or appro-

priate performance” (Rouse 1996, 137). So, the idiosyncratic activities of a 

pilot or a scientist do not constitute a practice. Rather, a practice has correct 

and incorrect performance standards, and is evaluated in light of these. 

Unlike other practices investigated by D-cog, however, science makes epis-

temic claims on the basis of its practices. Just as a claim to scientific discov-

ery is not a “discovery” until it has been accepted as justified by something 

approaching consensus in the relevant field (see, e.g., Arabatzis 2006), a 

scientific practice is not a “practice” until it is acknowledged in the field as a 

warranted means of investigation. As Helen Longino has pointed out in her 

analyses aimed at bridging what she calls the “rational-social” divide, the 

normative dimension of practice is inherently social, in that it relies on the 

critical scrutiny of the relevant scientific community (Longino 1990, 2001).

The decision to warrant a scientific practice or system of practices is 

based on an assessment of the reasons advanced in favor of the practice or 

the system, and on a history of reliable success at achieving its epistemic 

aims. In developing novel practices, researchers are required to advance rea-

sons for why their specific application is warranted, and also for their more 

general applicability in the field. For instance, the computational systems 

biologists we studied provided reasons in support of the abstractions they 
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used to represent biological interactions while they were building specific 

models. They came up, likewise, with arguments to account for why their 

practice of building certain midlevel (“mesoscopic”) models with less fidel-

ity to the biological details than the field customarily aims at is warranted. 

They argued, and demonstrated, that such models can produce significant 

understanding and possibilities for intervention (e.g., to create biofuels or 

kill cancer cells), while also providing insight into how one might build in 

fidelity as capabilities for modeling develop in the field.

In our investigations of problem-solving in research labs, we consider 

“normativity,” in its most general sense, to mean that there are specific 

constraints on practice. These constraints are of three kinds. Some are mate-

rial, in that they are tied to the composition and behavior of entities and 

objects. Others, of a cognitive nature, are imposed by the processes and 

structures by which humans, for instance, categorize and make inferences. 

Again, others are imposed socially, in accordance with standards of research 

and of professional conduct. All these constraints can be shared by other 

kinds of practices, but science alone is subject, in addition, to constraints 

that are imposed by the epistemic aims and justification of the practice. 

That is why our examinations of innovative methodological practices for 

modeling attend to how warrant is built for novel practices in the course 

of their development, as well as for specific models, which are intended to 

function epistemically.

We, of course, realize that the wider community is always implicated in 

the development a practice. Even so, for practical reasons we limited the 

scope of our investigations mainly to the participants in our labs, includ-

ing external collaborators, where present and feasible. We did nonetheless 

attend to how the researchers expressed the norms and values of their com-

munities, and also to how their work was received and critiqued in com-

munity responses, notably in the context of conference presentations and 

of reviewer responses to publication submissions and grant proposals (see, 

e.g., Osbeck et al. 2011, chapters 5 and 6).

1.3  Cognitive Ethnography of Research Labs

To determine how warrant is built for practices, and indeed to move beyond 

the perceived cognitive-cultural divide more broadly, requires more than 

theoretical argumentation of the kind broached above. It requires likewise 
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fine-grained empirical investigations of the epistemic practices of scientists 

to determine how integration takes place in these practices. Until quite 

recently (and definitely when we began our investigations), philosophers 

out to determine practices have been relying primarily on historical data of 

two kinds—archival records and publications. Historical records, however, 

leave us at the mercy of “what’s left behind”—a problem even more signifi-

cant with late twentieth and early twenty-first-century science—and rarely 

are they sufficient to provide details on the day-to-day research problems 

and paths to solution implicated in what become discoveries. Established 

canons of modern science also require that such details be omitted from 

published accounts of research. Impasses and obstacles encountered along 

the way, in particular, rarely make an appearance in published accounts, 

which frame the problem-solving processes and reasoning as linear and rel-

atively straightforward (Bazerman 1988). Historical data do afford a means 

to contextualize the practices of scientists with respect to their historical 

situatedness from the viewpoint of the problem situations of the traditions 

in which scientists carried out their work, and so can advance the project of 

integration (Nersessian 2008). But full analysis of integration requires more. 

It necessitates that we move beyond exclusive use of historical records, 

which by their nature place limitations on thinking about the interplay 

of cognition and culture, to carrying out empirical investigations of prac-

tices as they are enacted in situ in order to determine the range and kind of 

resources that contribute to the epistemic accomplishments of science. In 

other words, we need to move beyond historically informed philosophy to 

ethnographically informed philosophy.

What understanding philosophers of science have of ethnography 

derives, primarily, from how it has been portrayed and used in STS. STS 

researchers have established that ethnography, which comprises field 

observations and interviews, provides a fruitful means of collecting data 

on day-to-day scientific practices in research labs.14 The main objection of 

philosophers to STS accounts has been, and still is, their tendency toward 

epistemic relativism, which stems from their alignment with the so-called 

strong program of the “sociology of scientific knowledge (SSK)” (see, e.g., 

Bloor 1991). Since their inception and in line with the “ten-year mora-

torium” mentioned above, these accounts have programmatically con-

strained relevant explanatory factors in their analyses to social and cultural 

factors, including personal motivations and interests, while downplaying 
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or denying entirely the relevance of rational and cognitive factors.15 There 

is nothing in principle, however, about ethnographic methods as such that 

would prohibit addressing those aspects of practice. Indeed, a major contri-

bution of STS ethnographies of research labs is that they have demonstrated 

repeatedly the value of ethnographic methods for investigating scientific 

practices across a range of sciences. I began the project presented here with 

the conviction that philosophers need not cede this important method-

ological tool to sociocultural science studies fields, but that it could be 

adapted and used to address philosophical issues (Nersessian and Macleod 

2022). This conviction was supported by its use by cognitive scientists to 

investigate other kinds of problem-solving practices in D-cog. Ethnography 

conducted for philosophical objectives can be placed within the perspec-

tive of what is called “cognitive ethnography” within the D-cog framework.

1.3.1  Cognitive Ethnography of Scientific Practices as a Method

D-cog has been using ethnographic methods to move the study of human 

cognitive processes out of the experimental psychology lab and into real-

world settings, ranging from ordinary activities to sophisticated work 

practices. As Edwin Hutchins argued, “We need to look in the wild, not 

because that is where cognition is, but because it is a place where it is easier 

to see the cultural nature of cognition” (Hutchins 1996, 67).16 Originally, 

ethnography was developed by anthropologists as a method by which to 

study and interpret cultural and social practices of indigenous communi-

ties. In the late 1970s, it began to be used to study the practices of other 

kinds of communities as situated in their natural settings. As methods of 

“qualitative analysis” began to develop, Egon Guba, a pioneer in promot-

ing ethnographic educational research, characterized ethnography, gener-

ally, as a form of “naturalistic inquiry” (1978; Lincoln and Guba 1985). 

This characterization was introduced to contrast it, and qualitative meth-

ods, with empirical inquiry by means of controlled experimental design. A 

naturalistic inquiry aims to collect in situ data and extract information on 

practices and their relations to context through an intensive and detailed 

description and systematic analysis of those practices and their contextual 

relations. A naturalistic inquiry is ecologically valid in that there is at most 

minimal manipulation of existing settings, and no strict constraints, such 

as predetermined categories of interpretation, are placed on outcomes. 

Such studies are principally inductive rather than hypothetico-deductive. 
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An ethnographic investigation is geared toward the open exploration of 

practices, rather than the testing of hypotheses. The scope and focus of an 

inquiry are, of course, framed by its research questions, which serve to focus 

the ethnography.

Ethnography is interpretive research. The anthropologist Clifford 

Geertz characterized a main objective of ethnographic analysis as “thick 

description”—a term he claims to have borrowed from the philosopher 

Gilbert Ryle (Geertz 1973). Thick descriptions interweave description and 

explanation of an observed phenomenon or practice by unpacking it layer 

by layer with respect to its context. In general, ethnographic investigations 

are built around a family of tools for gathering data, mainly field observa-

tions and interviews, and around interpretive data analysis methods, such 

a grounded coding (Corbin and Strauss 2008) and thematic analysis (Braun 

and Clark 2006). Ethnography provides systematic methods of data collec-

tion and analysis, some of which are discussed in section 1.3.2, in order to 

establish that the interpretations are robust and consistent across a range 

of evidential sources (“triangulation”), thereby establishing warrant for the 

claims advanced from the investigation (see, e.g., Guba 1981).

“Cognitive ethnography” (dubbed thus by Hutchins 1995a) is used to 

gather data in real-world settings on how conceptual, social, and material 

resources are integrated in cognitive processes. What makes this “cogni-

tive” is, among other things, that the focus of the ethnography is on how 

individuals and communities solve problems by reasoning about them, by 

seeking to understand them, by altering the concepts they use, by working 

together, by using their imaginations, and by learning. These practices are 

investigated as situated in contexts, with their attendant resources, which 

include, importantly, material artifacts. For example, one pioneer in the 

approach, Jean Lave (1988), rooted her critique of traditional experimen-

tal cognitive science in her own ethnographic investigations focused on 

mathematical problem-solving by “just plain folks” in their natural envi-

ronments, such as home and the grocery store. Her studies showed in what 

ways people integrate environmental resources into their mathematical 

reasoning and problem-solving, which has the effect of making them gen-

erally much more competent at these tasks in the real world than they dem-

onstrate as subjects in experimental psychology labs or in traditional school 

settings, where they are usually deprived of such resources. Meanwhile the 

most widely influential cognitive ethnographic research, and the one best 
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known among philosophers, is Hutchins’s research on technologically rich 

and well-defined problem-solving environments, where he extends “natu-

ral” to comprise specific work contexts. In keeping with the traditional cog-

nitive science framing, Hutchins conceives of problem-solving as a form of 

information processing that uses representations and reasoning in pursuit 

of goals. However, his conception diverges from the traditional framing in 

that, from the D-cog perspective, the relevant representations and reason-

ing processes are located not only “in the head” of an individual, but also 

situated in the problem-solving environment and distributed across one or 

more individuals and select artifacts.

“Naturally occurring culturally constituted human activity” (Hutchins 

1995a, xiii) of any kind can, in principle, be investigated with ethnographic 

methods. Research labs like the ones we have investigated certainly consti-

tute such natural environments of scientific practice. In a cognitive ethno-

graphic investigation, philosophers of science, too, are likely to focus on 

problem-solving contexts. These contexts can provide detailed information 

on many issues of interest to philosophers, including the nature and struc-

ture of scientific problems; how these are modified in the course of research; 

how scientists develop and use methods and concepts; how they create and 

evaluate claims and explanations; and how they communicate results.

Another way in which D-cog ethnography is “cognitive” is that a cen-

tral aim of analysis besides providing richly nuanced thick descriptions of 

the particularities of a given case is to advance a more general, theoreti-

cal account of cognitive processes. As Hutchins has framed this objective, 

“There are powerful regularities to be described at the level of analysis that 

transcends the details of the specific domain. It is not possible to discover 

these regularities without understanding the details of the domain, but the 

regularities are not about the domain specific details, they are about the 

nature of cognition in human activity” (quoted in Woods 1997, 177).17 

Cognitive ethnography, although rooted in the concrete, can make use of 

several kinds of qualitative data analysis methods to abstract to the extent 

warranted beyond the details, such as “grounded theory” and “thematic 

analysis” (see, e.g., Corbin and Strauss 2008; Patton 2002; Braun and Clarke 

2006). Such analyses aim to move from the specificity of the case to build 

a broader interpretive account by using systematic procedures to abstract 

and coalesce interpretive categories and, where appropriate, formulate can-

didate hypotheses to transfer and assess across cases, using multiple cases to 
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work back and forth between data and theory to attain a warranted degree 

of generality. This is a different kind of process from inductive generaliza-

tion. Insights from philosophy of science on how to use case-study material 

to build theory help to illuminate the difference.

As with cognitive science, philosophy of science, too, is interested in 

using empirical insights from data on scientific practices to develop or 

examine theoretical notions, while avoiding unwarranted generality. Early 

critiques, including my own, of a simple inductivist perspective on case 

data advocated that the way to understand the relation between specific 

cases and theory is as a bootstrapping method customarily used in the sci-

ences (Nersessian 1991a), which we will see ample examples of in the case 

studies developed in this book. Roughly, in such bootstrapping processes, 

“hypotheses are made within a background of beliefs and problems. . . . ​

They are refined, made more specific, modified, or rejected in light of more 

constraining data (a detailed case study). Surviving hypotheses are then 

tested against other data and other hypotheses to determine the extent of 

their validity” (Nersessian 1991a, 683). Bootstrapping entails working back 

and forth between data and theory, until a satisfactory accommodation is 

achieved. It is an iterative and incremental, open-ended process.

Recently, in thinking about the use of qualitative data on scientific prac-

tices, such as from ethnographies or interview studies, Erika Mansnerus 

and Susann Wagenknecht (Mansnerus and Wagenknecht 2015) follow up 

on a recommendation of Hasok Chang (2012, 111) to construe the rela-

tion between historical case studies and philosophical theorizing in terms 

of the “concrete” and the “abstract” instead of the customary inductive 

categories of the “particular” and the “general.” They use this suggestion 

to further articulate the bootstrapping account and argue that the way 

philosophers can arrive at “limited generalizations,” while they “avoid 

unwarranted generality,” is to “create a dialogue between the abstract and the 

concrete” (emphasis original). That is, to work back and forth between data 

and theory, which they, too, note is a bootstrapping procedure. Further, 

they contend, such “productive interplay” (Mansnerus and Wagenknecht 

2015, 40) makes it possible to examine and further develop philosophical 

concepts and theories with qualitative case study data, while avoiding the 

pitfalls philosophy has often succumbed to of fitting the data to the theory. 

With ethnographic studies of scientific practice, the context for “produc-

tive interplay” is established in the way philosophers of science frame the 

investigation, how and what data are collected, and how analysis proceeds. 
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Such dialogue is in line with traditional practices in ethnographic analysis. 

As Geertz has emphasized, “one does not start intellectually empty-handed. 

Theoretical ideas are not created wholly anew in each study. . . . ​They are 

adopted and refined from other, related studies, and, refined in the process, 

applied to new interpretive problems. If they cease being useful . . . ​they 

stop being used. . . . ​If they continue to be useful, throwing up new under-

standings, they are further elaborated and go on being used” (1983, 57).

To consider here, in general, how ethnography can be adapted from its 

social science roots to serve as a method of philosophical investigation, in 

line with philosophers’ interests, goals, and values, would take us too far 

afield from the subject of this book. I have undertaken that analysis else-

where in order to promote an ethnographic approach in philosophy of sci-

ence (Nersessian and Macleod 2022). Instead, I next detail, specifically, how 

we framed and developed the multiyear ethnographic investigation of epis-

temic practices in bioengineering sciences research labs that is discussed in 

this book. The chapters that follow provide the fruits of our investigation.

1.3.2  Our Own Cognitive Ethnography of Bioengineering Labs

The “wild” of our ethnographic investigations is the university bioengineer-

ing sciences research lab and the researchers within it. We have been mak-

ing use of cognitive ethnography and the broadened framework of D-cog 

to investigate scientific labs and the problem-solving practices within them 

as distributed cognitive-cultural systems. As such, “the lab” is not simply a 

physical space existing in the present, but a dynamic problem space that 

reconfigures itself as the research program moves along in time and takes 

new directions in response to what occurs both within the lab and in the 

wider community of which the research is part.18 My choice to study spe-

cific research labs was largely serendipitous, but once the opportunity pre-

sented itself it was apparent they were ideal loci in which to investigate how 

cognitive-cultural integration proceeds in the reality of everyday research. 

The bioengineering sciences are a hotbed of creativity and innovation, 

including of ways to go about doing research on complex biological sys-

tems. The pioneering, interdisciplinary nature of the research offers a perfect 

opportunity to study investigative practices as they are created, as well as 

how they are used.

The central epistemic practice across all labs is building some kind of model 

of a complex biological system to use as a basis for inference and understand-

ing about the system. Our approach to cognitive-cultural integration was to 
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frame these labs and the problem-solving configurations within them as 

D-cog systems and to examine the various components these comprise and 

their interrelationships. The project of cognitive-cultural integration is rich, 

multidimensional, and difficult. I do not claim that the analyses presented 

here fully cover this richness or dimensionality in the problem-solving 

practices of the labs we investigated. Among the specific components of 

a distributed cognitive-cultural system we attended to are conceptual and 

methodological resources, artifacts central to the research, and epistemic 

norms and values. We carried out several kinds of analysis with respect to 

these, as will be discussed throughout the book.19 In the analyses I present in 

the chapters of this book, I first attend to the specific nature and configura-

tion of these aspects, as well as the interactions among them, in each lab. I 

then examine specific epistemic affordances of each D-cog system. Epistemic 

affordances, as I characterize them here, are those features of the D-cog 

system that enable or facilitate epistemic access to the phenomena under 

investigation.

The bioengineering sciences are inherently complex in at least three 

ways: how researchers think, what technologies they work with, and how 

they work together. Researchers in these fields make use of a range of con-

ceptual, methodological, theoretical, and material resources drawn not 

only from various engineering fields but also from the biosciences and from 

computational sciences—resources they use to conduct groundbreaking, 

basic biological research in the context of potential application. It is a field 

initiated largely by engineers, who are recasting specific biological prob-

lems as bioengineering problems. For example, they recast the problem of 

changes in functional properties of endothelial cells in the cardiovascular 

system in terms of the effects of mechanical forces on them. They aim, 

ultimately, to get a grip on complex biological systems in both senses of the 

word “grip”: to understand and to control. The understanding they aim at 

is to develop a model of a complex biological phenomenon, for instance, a 

model of its underlying mechanism or a mathematical model of the inter-

actions among the components of a system. Researchers in bioengineering 

sciences hope that such a model will offer the possibility to control spe-

cific processes, such as disease processes (usually by others, for instance, 

medical researchers). However, given the frontier nature of the research, 

the initial aim of the researchers is to develop, understand, and control a 

physical or computational model that has the potential to be informative 
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about the behavior of the biological system, as was the case in the labs we 

investigated.

The movement of engineering into biology has given rise to a multifac-

eted interplay of quite disparate conceptual frameworks, methodological 

approaches, and epistemic values (see also Boon 2011). Figuring out what 

resources to draw from and how to adapt them is in no way straightfor-

ward. For instance, concepts developed in the context of engineered sys-

tems, such as robustness, modularity, and noise, are being transferred to the 

study of biological systems, but their attempted transfer has required not 

only modification, but often conceptual innovation (Knuuttila and Loett-

gers 2011; Loettgers 2007; Nersessian 2012a,b). Further, mathematical engi-

neering theories and frameworks, as well as engineering methodologies, are 

being imported and adapted to perform as tools of biological representation 

and analysis (Wimsatt 2007). Along with these tools, bioengineers transfer 

certain values embedded in the practices of the engineer, such as precision, 

control, isolation, and abstraction—values that often conflict with assump-

tions and epistemic values of their collaborators in the biological sciences.

At the outset, bioengineering scientists face a major challenge in that they 

usually cannot experiment on biological systems directly. The complexity of 

the real-world (in vivo) phenomena makes experimentation too difficult, or 

even impossible, to control. Also, to intervene on in vivo systems often pres-

ents significant ethical issues. Thus, researchers in these fields need to devise 

means to model the phenomena in sufficient measure to enable experimen-

tation on the model to yield plausible understanding of the in vivo system. 

Physical simulation models (in vitro) and computational simulation mod-

els (in silico) are artifacts designed to function as epistemic tools (Boon and 

Knuuttila 2009; Knuuttila 2011). They are part of the epistemic infrastructure 

through which bioengineering scientists manage and probe the nature of 

complex biological systems. But to devise an appropriate modeling practice 

as well as specific models faces all of the challenges of biological-engineering 

integration noted above. Thus, by investigating specific practices we are also 

laying out the basic epistemic structure of biological engineering; namely, to 

bring the conceptual, methodological, technological, and material resources 

of engineering to bear on the problem of managing the complexity of bio-

logical systems so as to be able to study them.

Generally speaking, bioengineering scientists investigate biological sys-

tems in either of two ways. They work through iterative and incremental 
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processes of designing, constructing, redesigning, evaluating, and experi-

menting either with surrogate in vitro physical simulation models, which 

comprise biological and engineering materials, or with in silico computa-

tional simulation models. We refer to these basic processes as building to dis-

cover. The processes themselves, and the question of how they advance their 

epistemic goals, have been the focus of our research on cognitive-cultural 

integration. It would not be far-fetched to conclude that understanding in 

bioengineering sciences, and engineering sciences in general, derives largely 

from building. It is no accident that the famous saying attributed to Richard 

Feynman, “what I cannot create, I do not understand,” is misquoted by bioen-

gineering scientists as “what I cannot build, I do not understand” (famously 

encoded in the first synthetic cell by Craig Venter; see also Voit et al. 2012). 

However, this process of building to discover has not received much atten-

tion in either philosophy of science or cognitive science. Our research shows 

that—and how—building simulation models is a major means through 

which bioengineering scientists build understanding of complex biological 

phenomena. Model-building is the means by which they actively distrib-

ute cognition in their environment, thereby creating complex distributed 

cognitive-cultural systems of people, practices, and artifacts.

The bioengineered models thus function as cognitive artifacts, which 

participate in the reasoning processes and the representational processes of 

a distributed cognitive system. They function equally as what researchers 

in STS studies of science refer to as the “material culture” of communities, 

which participate in social and cultural processes. Our research demon-

strates on a day-to-day basis that it is simply not possible to fathom the epis-

temic work such models enable by focusing exclusively on one or the other 

aspect. Bioengineered models are representations, and as such they play a 

role in reasoning processes. They are central to social practices related to 

community membership, such as mentoring and identity formation. They 

are sites of learning. They embed epistemological norms and values. They 

are repositories of lab history. They perform as cognitive-cultural “ratchets” 

(Tomasello 1999) in an epistemic community, which enable one generation 

to build on the results of the previous, and so serve as loci of stability in the 

context of innovation, while moving the problem-solving forward. In sum, 

models are central components of the cognitive-cultural fabric of creative problem-

solving in bioengineering sciences. Examining how that fabric is built in specific 

cases provides insight into how cognition and culture are intertwined in 



Investigating Practice	 27

scientific practice. It is for all these reasons that we have focused our inves-

tigations on the modeling practices we have encountered in the research 

labs.

1.4  Four Cognitive Ethnographies: An Overview of Our Bioengineering 

Sciences Project

Our investigational settings comprise four pioneering university research 

laboratories. Two labs work in biomedical engineering (BME)—tissue engi-

neering and neural engineering, respectively. The other two specialize in 

integrative systems biology (ISB)—one solely computational, the other a 

combined computational and wet experimentation lab. We chose univer-

sity labs because they are largely populated by graduate students, who are 

pioneers in research and at the same time learning to become scientists. 

Many of the graduate students were in an educational program aimed at 

moving beyond collaboration between engineers and biologists through 

producing hybrid biomedical engineering researchers. The educational pro-

gram was itself under development at the time, and we were assisting the 

faculty in this undertaking. As a central part of our NSF-funded project 

on the labs, we had proposed not only to investigate the nature of emerg-

ing practices in these fields, but also to determine important requirements 

for learning them, and to work with bioengineering faculty to “translate” 

findings from our research into educational experiences. Our investigations 

taught us, and the faculty as well, that the forms of interdisciplinarity prac-

ticed in BME and in ISB are quite different, leading to different environ-

ments, requirements, and challenges for problem-solving and learning.

We chose to investigate interdisciplinary fields at the intersection of 

biology and engineering, but the selection of labs was largely a matter of 

chance, and we had no prior understanding of the fields. Each field was 

conducting research on complex biological systems about which there was 

little scientific understanding. In our first pilot research, the tissue engi-

neering lab, we were surprised that its physical space had the look of a 

biology wet lab, with pipettes, flasks, sterile hoods, and cell cultures, but 

also included strange-looking engineering artifacts, which members were 

referring to as “devices.” We quickly realized that these artifacts were the 

focal point of the research life of the lab, as they provided the means of 

what the director called “taking the research in vitro.” These lab-built models 
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are intended to replicate selective processes of complex biological systems. 

We also quickly realized that conducting physical simulation experiments 

with these hybrid models—part living tissue and cells and part engineered 

materials—constitutes a novel modeling practice not previously inves-

tigated in the philosophical literature. We made these models and the 

practices surrounding them our focus in BME. Similar pilots with each lab 

directed our attention to the salient modeling practices that became the 

focus of our data collection and analysis.

What labs? Now that we had discovered the novel practice of building 

in vitro physical simulation models, we wanted a second BME lab with that 

practice in a different domain. We also thought that a newly established lab 

would be good for contrast, which is why we chose the neuroengineering 

lab. We began our ISB study because we wanted to move into a pioneer-

ing area in computational modeling and simulation of biological systems, 

and the director of the purely computational lab was interested in how we 

might assist research and learning in that area. By then we had established 

an excellent reputation in the department, and lab directors often asked if 

we could “do” their lab. In addition to our contributions to the develop-

ment of their educational programs, the faculty began to notice that the 

researchers in the labs we studied had become more reflective about their 

research. Indeed, the researchers, themselves, told us that our interviews 

always provided an opportunity to reflect on their research problems and, 

on occasion, served to rekindle motivation when they were tired and lag-

ging. As one researcher told us, “talking about it is good ’cause it also rein-

forces what you’re doing. So, I can go back and feel motivated about it now.” For 

a second ISB lab we sought one that conducted experimental research as 

well as computational modeling, and also was newly established. When 

an assistant professor offered her lab, we concluded from her description 

that it would contain experimentalists as well as modelers. In our pilot we 

were surprised to discover that the modelers themselves were being trained 

to conduct the experimental work. Since the challenges of the dual nature 

of the practice were novel and interesting, we decided to stay with that 

lab. We coded the practice as that of the “bimodal strategy” (MacLeod and 

Nersessian 2013).

In both BME labs, the researchers tackled problems of bringing cells and 

tissues together with engineered materials in processes of building living 

hybrid models to simulate in vivo processes of complex biological systems. 
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Their aim was to understand basic processes within the biological systems, 

with the hope of providing a basis for future application, chiefly in medi-

cine. Their research problems required little collaboration with researchers 

outside the lab.

Both ISB labs aim to understand biological systems that comprise inte-

grated and interacting complex networks of genes, proteins, and biochemi-

cal reactions. When this is achieved in sufficient measure, they expect it 

will allow collaborators to attempt interventions such as to produce a bet-

ter biofuel or to make cancer cells receptive to treatment. Solutions to the 

problems they tackle require that they construct computational simulation 

models in need of rich experimental data, which creates an essential epis-

temic interdependence with their collaborators in the biological sciences.

1.4.1  Research Questions and Data Collection

Our objective in data collection can be summarized as follows. Starting 

from an open and broad stance about what might prove relevant to our 

research questions, we aimed to conduct a systematic longitudinal investi-

gation involving numerous bioengineering scientists across a broad range 

of perspectives, problems, and lab organizations. In each case we aimed to 

collect a range of data from different sources with which to triangulate the 

analyses.

Our investigations in each lab began with a basic set of questions moti-

vated by our combined philosophical and cognitive science interests:20

•	 What are the representational and reasoning practices used in problem-

solving in this community?

•	 How is epistemic warrant developed for novel practices?

•	 What are the epistemic assumptions, values, and norms at play in each 

of these interdisciplinary communities?

•	 What concepts, methods, and theories are being used from engineering, 

and how? Ditto from biology? What is the nature, or are the results, of 

their interaction?

•	 In what ways might cognitive, social, cultural, and material “factors” be 

mutually implicated in these epistemic practices?

These questions enabled us to focus our research while remaining open 

in sufficient measure to guide, but not totally constrain, our data collection 

and our analysis. Within the course of the investigation, we intended that 
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specific issues to be addressed with respect to these questions would emerge 

from our findings, as indeed they did.

We investigated each lab for approximately five years. We collected data 

between 2000 and 2014, and data analysis continues in the present. Data 

collection in all labs comprised the following main items:

•	 audio-taped open and semi-structured interviews

•	 participant field observation with note-taking

•	 lab tours (given for us and for visitors)

•	 arranged demonstrations of experimental procedures and technologies 

involved in the lab researchers’ data collection and analysis

•	 video and audio recorded lab meetings

•	 “journal club” meetings in which pertinent articles were discussed

•	 photographs of white boards

•	 diagrams of the spatial layout of each lab and photographs of how lab 

space changed over time

•	 artifact collection: grant proposals, paper drafts, presentations, disserta-

tion proposals, emails, diagrams/sketches, and so forth

For each lab we compiled an extensive “technology document” that sur-

veyed all the technologies in the lab, which researchers used them, and 

what their functions were within the research.

The extent of our interview and observational data is summarized in 

table 1. All interviews and some (or parts of) meetings we thought espe-

cially significant have been transcribed. In our interviews and discussions 

with the researchers, we probed the nature of their research, how they 

went about doing their research, what problems they were encounter-

ing, how they responded to those, how and what kind of learning was 

needed as they went along with their research, and how they positioned 

their research with respect to the broader field. We began with unstructured 

interviews, with the initial ones focused on their background, motivation 

for choosing that bioengineering science, and an overview of their research. 

As we gathered more information on their projects and as we developed a 

better understanding of the scientific/engineering content and methods, 

we conducted more targeted interviews both to probe their reasoning as 

they were working on specific problems and to probe specific issues that 

arose as we began to analyze the transcripts and other data. We learned a 
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great deal about their practices and about the content and context of the 

research. Often, when making field observations and when it would not 

interfere with the research, we were able to ask questions about what they 

were doing at that time and why. They also were willing to set up meetings 

with us to demonstrate procedures they used in model-building and data 

analysis. In return, as I noted, our probing provided the opportunity for 

them to articulate and reflect on their research. One student likened our 

interviews to “research therapy” appointments, and several even expressed 

the desire to have them more frequently. Finally, we had many informal 

interactions with them. Our student researchers went along on their group 

hikes and bike rides when invited, and sometimes ate lunch with them. We 

were all invited to holiday parties and to dissertation defense celebrations. 

Some students asked for career guidance or letters of recommendation.

1.4.2  Research Sites

I now provide a brief overview of the makeup and the kinds of problems 

addressed in each lab in order to aid the reader in understanding the differ-

ent challenges of interdisciplinary problem-solving faced by the researchers 

as they attempt to integrate engineering and biology in these environments. 

All the labs we investigated were conducting research for which there was 

little or no precedent when they began. The members repeatedly told us 

about the pioneering nature of their research, using expressions such as “it 

had never been done before” or “no one has approached it this way before” 

or “no one was thinking this way” or similar such expressions.21

In the two BME labs we conducted intensive data collection over the first 

two years. For approximately five years, we further continued data collection 

on selected dissertation projects up until they were completed, including 

Table 1.1
Data summary

Laboratory Interviews Meetings Field observations (hours)

BME A 72 15 ~350

BME D 75 40 ~450

ISB G 44 7 ~40

ISB C 62 22
(plus 2 joint C and G)

~250
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additional interviews.22 We began data collection in lab D approximately a 

year after we began collecting in lab A. In all, we worked on the BME project 

for ten years, before moving on to ISB. As noted before, both labs designed, 

built, and conducted experiments on hybrid living physical models, locally 

called “devices,” which is the shorthand they use for “bioengineered mod-

eling devices.”23 Given the distant nature of their respective research, there 

was little interaction between the directors of these labs, beyond the atten-

tion and the informal mentoring one would expect a quite senior member 

of a department (lab A) would provide to a quite junior member (lab D) of 

his department.

Lab A was a tissue engineering lab. Its overarching research problems were 

to understand mechanical dimensions of cell biology, such as the effects of 

the forces of blood flow on morphology, proliferation, and gene expres-

sion in cardiovascular endothelial cells. The researchers saw their research 

also as a contribution to the eventual medical application goal of creating 

a living substitute blood vessel to implant in the human cardiovascular 

system. Examples of intermediate problems that contributed to the daily 

work included constructing specific living tissue models (“constructs”) that 

mimic properties of natural blood vessels; using biomechanical forces to 

create endothelial cells from adult stem cells and progenitor cells; design-

ing environments for mechanically conditioning constructs; and designing 

means for testing their mechanical strength and functionality.

When we entered lab A, it had been in existence for thirteen years. It 

closed ten years after our study, when the director retired. During our study, 

the main members included a male director, a male laboratory manager, a 

female postdoctoral researcher, seven PhD students (two male, five female, 

two of whom, one male and one female, graduated early in our study, the 

other five after we concluded our formal data collection), two MS gradu-

ate students, and four long-term undergraduates. Additional undergradu-

ates from around the country participated in summer internships, and 

international graduate students and postdocs visited for short periods. The 

laboratory director was a senior, highly renowned pioneer in the field of 

biomedical engineering, who had started his career as a mechanical engi-

neer in aeronautical engineering. Near the end of his career, he liked to 

characterize its trajectory as “from astronauts to stem cells.” All of the 

researchers had engineering backgrounds, mainly in mechanical or chemi-

cal engineering, and some were currently students in the BME program that 
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was just starting. Some had spent time in industry before joining the lab. 

The lab manager had an MS in biochemistry. The researchers frequently 

consulted with a histologist located in the building, and some traveled to 

other institutions for various purposes, including to collect animal tissues 

and to run gene microarray analyses. Lab meetings were held irregularly, 

when the director, who traveled a significant amount of time, would be in 

town (approximately every three to four weeks).

Lab D was a neuroengineering lab. Its primary research problem was to 

understand the mechanisms through which neurons learn as networks in the 

brain. Here, again, the researchers had dual scientific and engineering goals. 

They aspired to use this knowledge to develop aids for neurological deficits 

or, more generally (as the director liked to say), “to make people smarter.” 

Here are some examples of intermediate problems that contributed to the 

daily work. They developed ways to culture, stimulate, control, record, and 

image neuron arrays. They designed and constructed feedback environments 

(robotic and simulated) through which the main device (the model-system 

comprising a “dish” of cultured neurons) could learn. They used electrophys-

iology and optical imaging to study “plasticity.” One researcher developed 

a computational model of the dish model-system that played an unantici-

pated pivotal role in the research. All the projects centered around the “dish,” 

and, as the research unfolded, there developed significantly more interaction 

among research projects than we witnessed in lab A.

Lab D was just taking shape as we began our research. It closed when the 

director moved to another position, which was nine years after our study 

ended. During our study the main members included a male director, a 

male postdoctoral researcher, four PhD students in residence (one female, 

three male; one male left after two years to pursue neuroscience, and the 

remaining three graduated after we concluded formal data collection), one 

PhD student at another institution who occasionally visited the lab and 

was available via video link, one MS student, six undergraduates, and one 

volunteer for nearly two years, who was not pursuing a degree (already pos-

sessed a BS in engineering) but who helped out with breeding mice. Because 

the lab was new and had limited funding at the start, the director made 

more use of undergraduates, who usually had short-term research projects, 

which were supervised by the director for course credit.

When we began, the laboratory director was a new tenure-track assis-

tant professor, fresh from a lengthy postdoc in a biophysics laboratory that 
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develops techniques and technologies for studying cultures of neurons. He 

already had attained some recognition as a pioneer. His background was in 

chemistry and biochemistry, with his engineering knowledge largely self-

taught, though highly sophisticated. The backgrounds of the researchers 

in lab D were more diverse than those in lab A and included mechanical 

engineering, electrical engineering, physics, life sciences, chemistry, and 

microbiology; some were currently students in the BME program, but also 

in electrical engineering and mechanical engineering. The wet lab was in a 

separate room. The main lab had the look of a computer lab, with copious 

wires connecting the incubator for its main object of study—the dish—to 

computers, and with small robotic devices, connected with a dish, scattered 

(or rolling) around the lab. They held lab meetings and a journal club (to 

discuss recently published research) weekly. Unlike the traditional configu-

ration of a stand-alone lab, lab D was embedded in an open space designed 

to promote interdisciplinary collaboration among neuroengineering labs. 

It was shared by seven faculty members, their postdoctoral researchers, and 

graduate and undergraduate students.

The members of the two labs we studied in systems biology, lab G and 

lab C, preferred the name “integrative systems biology” (ISB) for the area 

in which they worked. They explained that “integrative” stressed both the 

integrating function of building a model of a biological system, as well 

as their research aim to integrate a range of resources from biosciences, 

engineering, and computational sciences in their investigations. In the ISB 

study we had less funding and fewer researchers for our project, so we con-

ducted intensive data collection in both labs over the first year and followed 

selected dissertation projects through to completion for a total of five years. 

We started data collection in the two labs at the same time. In both labs 

the primary focus was building computational simulation models. There 

was significant interaction between the directors of these labs, though not 

much among their students. There were few ISB researchers in the depart-

ment, and lab directors were hopeful they could build the area together, 

and possibly start an educational program aimed, specifically, at aspiring 

ISB researchers. They worked together with us to develop a graduate-level 

introduction to biosystems modeling course, which they co-taught. The lab 

G director provided some mentoring to the quite junior lab C director, even 

though, as we will see, they had quite different “philosophies” about how 

to conduct ISsB research and for what purposes.
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Lab G is a purely computational systems biology lab, with the clever 

motto, “where life becomes numbers and numbers come to life.” Its 

research problems focus on computational simulation modeling of biologi-

cal systems at the genetic, metabolic, and cellular levels. The focus of the 

modeling is on the interactions among different components of biological 

systems (such as metabolic and signaling pathways), rather than on struc-

tural properties of specific components (such as DNA and ribosomes). The 

problems addressed are wide-ranging, and usually brought to the lab by 

biological researchers from universities and industry because of the out-

standing reputation of the lab director as a pioneer in ISB. For instance, 

one of the problems tackled by the lab was to develop a model of the pro-

duction and transport of dopamine and of how this system is affected in 

Parkinson’s disease. In this research, the lab worked with experimental data 

provided by a medical research group specializing in neurodegenerative 

disorders. Another problem was to develop a model of ethanol production 

using algae, based on data provided by researchers at a biofuels company. In 

general, the domain-driven problems are provided by bioscience research-

ers of various kinds who approach the lab, asking the director to “model 

our data,” usually with little understanding of what that means or entails. 

The overarching focus of the lab’s own agenda is on methodological prob-

lems specific to computational modeling of biological systems, especially 

developing mathematical techniques and algorithms to improve the esti-

mation of model parameters and the optimization of these parameters.

During our study the main lab members included a male director, four 

postdoctoral researchers (two female, two male), and four PhD students (one 

female, three male). The members of the lab varied widely in terms of edu-

cational background, although most were from engineering (mechanical, 

electrical, telecommunications, biomedical, computer). Other backgrounds 

included pharmacy, applied physics, bioinformatics, and information sci-

ences. The main criteria for being accepted into the lab were applied math-

ematical and/or systems computational skills. A postdoctoral student who 

was from a collaborating experimental lab in Europe visited periodically for 

a month or so at a time; he had a PhD in biochemistry and was transition-

ing to modeling. A striking feature of the lab is that all members were from 

outside the United States. Eight were from Asia (China, Taiwan, Japan), 

two from Europe (including the director), and one from the Middle East. 

As a consequence of the sophisticated computational modeling skills the 
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research requires, there were no undergraduates. The lab director is a senior 

pioneer in ISB, with an undergraduate degree in natural sciences and math-

ematics, two master’s degrees (one in biology and the other in mathemat-

ics), a certification in philosophy and education, and a PhD in theoretical 

biology. The lab had been in existence for five years when we entered (the 

director’s previous lab ran for fifteen years at another institution). The lab 

space consisted of desks with computers, and was quite often empty, since 

lab members could just as easily work at home on their laptops. For this rea-

son, we stopped aiming for field observations after a few months. Research 

meetings were largely conducted one-on-one with the director, and they 

did not hold lab research meetings, though they did organize a few so we 

could get an overview of the research, and the researchers noted that these 

were beneficial to them as well. The lab researchers had a range of biosci-

ences collaborators external to the lab (some of whom we interviewed).

Lab C is an ISB lab that conducts both computational modeling and 

biological experimentation in the service of model-building. Its research 

is guided by an overarching biological problem: to understand the impact 

of redox (reduction-oxidation) environments on proteins through sys-

tems modeling approaches. Under normal physiological conditions cells 

maintain a reduced internal environment. However, oxidizing molecules 

and free radicals that are produced in the cell as a part of physiological 

processes, or that enter the cell, can react with cellular components such 

as DNA, cell membranes, and proteins. Such reactions have physiological 

consequences and have been implicated in several diseases. Lab C’s research 

focus is on the impact of alterations made by oxidants on proteins, which 

are part of signaling pathways, and on the dynamics and outcomes of these 

pathways. Based on her own training, the director has been training the 

graduate students, who have engineering backgrounds, to do biological 

experimentation in the service of building and testing their computational 

models. One student also engaged in engineering design through a collabo-

ration to develop a microfluidic device (“lab-on-a-chip”) to produce high-

throughput single-cell and population data, which are the time-series data 

more amenable to quantitative investigation. The lab’s overarching problem 

translates into specific research projects as varied as modeling chemothera-

peutic drug resistance in acute lymphoblastic leukemia cells and modeling 

senescence in T cells. However, everyone in the lab was aware of what the 

others were working on, and provided feedback on the research projects of 
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others in the weekly lab meetings and in weekly journal club meetings. We 

witnessed many instances of joint troubleshooting, in particular.

Lab C was just taking shape as we started our research. During our 

study the main lab members included a female lab director who was a new 

assistant professor, five PhD students, two of whom joined the lab after 

we started our observations (three male, two female), six undergraduates, 

and a female research technologist/lab manager with an MS in biology 

(who transitioned to a PhD student, while remaining manager, late in our 

study). A striking feature of this lab is that the researchers spanned four 

continents (North America, Europe, Africa, Asia). The lab director has an 

undergraduate degree in nuclear engineering (with a minor in biomedical 

engineering) and a doctoral degree in bioengineering, during which she 

first trained as a modeler and then as an experimentalist, followed by a 

postdoctoral period in a bioengineering lab that comprises both computa-

tional modelers and bioscientists. The graduate student backgrounds were 

predominantly engineering-related (electrical, biomedical, biotechnology, 

material science). A joint MD/PhD student had a background in chemis-

try and mathematics. The undergraduates mainly ran western blots and 

other experimental procedures for the graduate students. The lab’s experi-

mental biology research is conducted in-house, but they had a few exter-

nal engineering and bioscience collaborators and bioscientists with whom 

they consulted during the period of our investigation, some of whom we 

interviewed.

1.4.3  Data Analysis

Numerous qualitative methods can be used singly or jointly in cognitive 

ethnographic data analysis. We have been using a variety of mutually com-

plementary qualitative methods, specifically, qualitative data coding, case 

study analysis, thematic analysis, and cognitive-historical analysis. These 

are among a wide range of qualitative methods that have been developed 

and critiqued extensively over the last half century, especially in psychol-

ogy and sociology (for an overview, see Patton 2002).24 There are no for-

mulas or recipes for how best to apply those qualitative methods in any 

specific case, so we have needed to tailor and innovate our data analysis 

with respect to our research goals and questions—as is standard in quali-

tative analysis—while adhering to accepted canons of what constitutes 

“trustworthy” (Lincoln and Guba 1985) and “validated” data collection 
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and analysis procedures. Although “valid” is reserved in philosophy for log-

ical argumentation, it is often used to signify credible qualitative research 

in that field. I prefer to use Guba’s more neutral term, “trustworthy,” when 

considering issues of warrant.

To establish trustworthiness, we have, in particular, taken into account 

the American Psychological Association standards (see, e.g., Eisner 2003, 

who argues standards need to take into account that qualitative analysis 

is both science and an art). We have followed three standard principles in 

particular: structural corroboration, referential adequacy, and consensual 

validation (Eisner 2003). Structural corroboration requires that a sufficient 

number of data points converge on a conclusion to support an interpreta-

tion. Referential adequacy addresses the richness and clarity of the descrip-

tion and interpretation, and how it aligns with member understanding. 

Consensual validation refers to the level of agreement that can be reached 

among two or more researchers in developing and using the coding schemes 

(“interrater reliability”). Adherence to these principles required that we 

would systematically collect the range and kinds of data sufficient to tri-

angulate data from multiple sources in order to corroborate and determine 

the referential adequacy of interpretations. “Triangulation” in qualitative 

analysis refers to the processes of building warrant for an account through 

establishing consistency of findings across methods and sources of data col-

lection. Our research conducted long-term studies that provided a variety 

of longitudinal data, which (as noted) consisted of persistent observations, 

of multiple interviews of each participant, and of the kinds of archival data 

previously mentioned.

Data collection in an ethnographic study always risks the dual charge 

of being not representative and/or subject to bias stemming from the 

researcher’s own interests, values, and motivations. Ethnographic investi-

gation demands continual self-scrutiny so as to mitigate researcher bias, 

which is an issue in all empirical research. Such self-scrutiny, for example, 

would control for asking leading questions in an interview or for import-

ing favored notions into data analysis. In general, it is important to keep in 

mind that all ethnographic research is interpretive. As such, the researcher 

is the instrument of data collection and analysis, and, so, the researcher’s 

interests, values, and motivations are always present, and it is a necessary 

part of good research to be explicit about and confront these (Osbeck and 

Nersessian 2015, Nersessian and MacLeod 2022). We were aided in our 
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attention to potential researcher bias in data collection and analysis by the 

unusual approach we took to conducting ethnography. Unlike traditional 

practices, where the ethnographer is a single researcher, we decided to prac-

tice what we dubbed “team ethnography.” In each given lab, more than one 

ethnographer was responsible for observations and interviews, and our more 

senior members worked across the labs. As project director, I oversaw that 

in all labs we collected comparable data to the extent possible. Our research 

group varied in size and composition over time (undergraduates through 

senior faculty) but remained highly interdisciplinary and thus provided 

multiple lenses through which we could examine the data.25 Our weekly 

research group meetings provided the venue for scrutinizing and evaluating 

the ethnographic work together as it unfolded, and for reaching consensus 

on coding, theme development, and other forms of data interpretation. As 

data analysis progressed, we related our findings to the appropriate philo-

sophical and cognitive science theoretical frameworks. We also formulated 

hypotheses with respect to issues within these frameworks, and together we 

evaluated, revised, or refined these in comparison to our empirical analyses.

Since coding is the first method through which one starts to make sense 

of the data, I next briefly describe a few of the procedures we used in our 

coding analysis of data. Although we used a variety of complementary meth-

ods of data analyses, as noted earlier, procedures that relate to systematic, 

fine-grained open coding and to grounded theory development (Corbin and 

Strauss 2008; Glaser and Strauss 1967; Strauss and Corbin 1998) provide the 

primary basis for our interpretations.

Coding is an interpretive procedure by which to partition the data by 

attaching descriptive categories to units of interview texts and field obser-

vation notes. Our approach to coding can be broadly characterized as 

“grounded” in the sense described by Corbin and Strauss (2008). We under-

stood this to mean, in particular, that we remain open to seeing what cat-

egories/themes might emerge from the data. While, obviously, our coding 

was guided by our research questions and objectives, it was by no means 

restricted by them. We developed our coding procedures in several phases. 

We established coding procedures to mitigate, to the extent possible, issues 

of subjectivity—we even hired an external coding auditor midway in our 

investigations, by way of a check on our procedures.

We began with “open coding” directed toward identifying, categoriz-

ing, and describing what the text of the interview is about. During this 
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process, coding pairs worked together on each transcript. We analyzed a 

subset of interviews progressively, line by line, with the aim to provide 

an initial description for as many textual passages or “meaning units” as 

seemed appropriate. In our research meetings, the entire group discussed 

the clarity, fit, and logic of the codes assigned. In early coding, we presented 

interpretations to the research lab members by way of checking whether 

their views aligned with our understanding. More than that, we used feed-

back from all pertinent sources to make adjustments.

We continued coding additional interviews, revisiting previous coding, 

and assessing descriptions for adequacy and for fit throughout the process, 

as is consistent with the goals of analytic induction (codes emerging from 

data and leading to hypotheses) and constant comparison (codes com-

pared against possible alternative interpretations) (Lincoln and Guba 1985; 

Corbin and Strauss 2008). After about 20 percent (the standard) of the 

interviews were coded intensively in this manner, we coded the rest more 

selectively, focusing on categories of most relevance to our research ques-

tions and building out those categories. During research group meetings we 

reviewed all codes, and further grouped and arranged codes into superordi-

nate categories and subcategories. We then related the codes to each other 

and developed the categories/concepts more directly with respect to our 

research questions as a start toward building “theory.” In this context, we 

understood this process, broadly, as formulating “a set of well-developed 

categories (themes, concepts) that are systematically interrelated through 

statements of relationship to form a . . . ​framework that explains some phe-

nomenon” (Corbin and Strauss 2008, 55) and allows forming hypotheses. 

Theory development in effect, then, took the form of developing increas-

ingly refined conceptual models.

We coded separately for each lab, and then assessed the candidates for 

transfer across the labs in BME and ISB. Exemplars of lower-level codes from 

the BME study include analogy; model-based reasoning, understanding, or 

explanation; problem formulation; anthropomorphism; epistemic values; 

and pragmatic focus. Exemplars of superordinate categories include model-

based cognition; seeking coherence; norms; and affect. In all, we devel-

oped seventy-three codes, and, with respect to codes that transferred across 

the BME practices, we organized these into thirteen superordinate catego-

ries. We did not use a coding software, preferring instead the traditional 

method of coding by hand. We developed our own coding database, using 
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MS Excel, which lists each category and code with an associated description 

and memo discussing it, and the codes have multiple exemplars from the 

interview texts attached to them from each lab. Codes can be easily orga-

nized and reorganized into categories with this software. We used codes 

and categories to create case analyses, which are finely detailed descriptions 

that follow practices of a specific researcher, or small group, as they worked 

toward solving a complex problem. We also developed longitudinal case 

studies specific to learning in the labs.

Code development, however, is more than mere description. It is an 

abstractive process, in which a code is both derived from and scrutinized 

in light of multiple exemplars across different interview texts within the 

study. Codes provide, also, the basis for cross-study comparison and for 

developing hypotheses to consider and assess for transfer, when detached 

from case-specific details. As our research progressed, we continued to 

assess transfer of selected major categories and themes across the labs. We 

were especially interested in what commonalities there might be in the 

general features of the model-building practices in these subfields of bio-

logical engineering and how these advance the epistemic goals of the sub-

fields, in practices developed to support learning in the context of research, 

and in the challenges presented by the kind of interdisciplinarity. A major 

example of a cross-cutting category—or “theme”—that emerged from 

the BME labs and is developed in the chapters that follow is the multidi-

mensional system notion of “interlocking models.” This notion serves to 

articulate how multiple dimensions of these interdisciplinary research labs 

are built and fitted together as cognitive-cultural systems. Models inter-

lock biological and engineering concepts, methods, and materials. They 

interlock in their design and construction and in experimental processes. 

Mental and material models interlock in model-based inference. In the lat-

ter instance, “interlocking models” is a specific kind of coupling between 

researcher mental models and artifact models as components of a distrib-

uted model-based reasoning system. Further, epistemic and sociocultural 

practices interlock in building models. We found the challenges of building 

systems of interlocking models to be central to research and learning for 

hybrid researchers. Table 1.2 provides a schematic overview of the major 

interlocking models with respect to the tissue engineering lab A, which 

is elaborated in chapters 2 and 4. The models interlock both within and 

across the categories.
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Finally, we never ceased using our codes and categories to analyze the 

data further and to examine them through various theoretical lenses in 

order to develop thick descriptions and analytical insights—in particular 

with a goal to extend, enrich, and critique philosophical concepts and the-

ories in “productive interplay.” As any ethnographer would agree, an eth-

nographic analysis is never complete. The greater the depth of the analysis, 

the more one sees what needs to be analyzed, as well as what additional 

data it would have been useful to have collected. This book presents yet a 

further analysis, which, hopefully, provides an exemplar of how to develop 

a conceptual model of the dynamics of cognitive-cultural integration in 

scientific problem-solving. Although undoubtedly there are other strategies 

to develop a cognitive ethnography, ours shows, in particular, that philoso-

phers are well able, and well positioned, to work with ethnographic norms 

while pursuing philosophical targets of investigation.

1.5  Overview of the Chapters

Chapter 2: Building Hybrid Simulation Devices: Distributed Model-Based 

Reasoning. This chapter focuses on the BME in vitro simulation devices as 

Table 1.2
Interlocking models in lab A

Interlocking models

Biological, engineering, medical models in the wider community
(as detailed in journals, textbooks, etc.)

cell biology	 electrical engineering
biochemistry	 mechanical engineering
fluid dynamics	 disease processes

Bioengineered in vitro artifact models

flow loop	 pulsatile bioreactor
construct	 baboon model-system

Researcher mental models

in vivo and in vitro phenomena
devices qua in vitro models
devices qua engineered models

Sociocultural models

Mentoring	 Identity	 History	 Epistemic values
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cognitive-cultural artifacts that enable distributed model-based reasoning. 

The chapter provides an analysis of the iterative and incremental processes of 

building: designing, constructing, redesigning, evaluating, and experimenting 

with in vitro devices. The devices are physical simulation models comprising 

part-living, part-engineered materials. One tissue engineer called the practice 

of building these devices “putting a thought into the bench top and seeing if it 

works,” which the chapter interprets as building “distributed model-based rea-

soning” systems. The hybrid model-systems simultaneously provide simula-

tions of biological processes, the researcher’s current understanding of these, 

and the epistemic culture’s norms and values. The chapter introduces the 

analytical theme of “interlocking models” and examines how devices provide 

hubs for interlocking many dimensions of practice. It further examines how 

these in vitro models are “built analogies” that are designed to simulate the 

behaviors or functions of selected in vivo biological processes. This form of 

model-building expands the epistemic practice of “building the source anal-

ogy” (Nersessian 2008), wherein analogies are designed for the purposes of 

scientific investigation by analogical displacement. It details several examples 

of how the researchers build epistemic warrant for in vitro devices, as well as 

for the methodological practice itself, in the processes through which they 

create the models, focusing, specifically, on the relationship between analogy 

and exemplification. (Lab A and lab D data)

Chapter 3: Engineering Concepts: Conceptual Innovation in a Neuro-

engineering Lab. This chapter focuses on the interplay between concep-

tual innovation and modeling practices. The pioneering nature of the labs 

leads to researchers investigating novel phenomena that have been con-

ceptualized only partially or not at all. Thus, frontier problem-solving often 

requires conceptual innovation. The chapter follows the researchers in lab 

D in their quest to understand and control the behavior of a living network 

of neurons. At the outset of the research, they transferred concepts from 

engineering and single-neuron studies to get a grip on the model. These 

resources both facilitated and hindered their problem-solving. Ultimately, 

the research led them to develop fundamentally novel concepts. The analy-

sis starts at the point where the researchers were failing to understand and 

control perplexing in vitro model behavior, which led one to introduce a 

novel practice for the lab: computational (in silico) modeling of the in vitro 

model. The epistemic affordances of the in silico model promoted concept 

formation and change as the researchers worked toward interpreting both 
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the in silico and the in vitro behaviors, including the relations between the 

models. The chapter details how, over the course of two years, the cross-

breeding of these two kinds of simulation models created a cluster of sci-

entifically novel (and potentially highly significant) concepts, while also 

building a D-cog system comprising all of the researchers. Armed with these 

new representations of the behavior, this system was able to leverage the 

affordances of both models to productively control the behavior of the dish 

model-system, and, ultimately, attain the lab’s goal to establish and demon-

strate that the in vitro network of neurons could learn. (Lab D data)

Chapter 4: Interlude: Building “the Lab.” This chapter focuses on the 

theme of how “the lab” builds itself as a cognitive-cultural system. It ana-

lyzes the dynamics of how, starting from broadly framed complex inter-

disciplinary problems, a research lab on the frontiers of science creates 

and develops the cognitive-cultural structures for productive research. It 

examines this building process in detail for the tissue engineering lab. The 

chapter examines how intersecting trajectories of problems, methods, and 

researcher-learners develop in relation to the practice of building in vitro 

devices, and details how the lab’s signature devices (examined in chapter 2), 

in particular, provide structuring constraints for articulation of the lab as a 

distributed cognitive-cultural system in ongoing flux. It ends with a brief 

look at the educational infrastructure developed to foster the BME goal of 

interdisciplinary hybridization. (Lab A data)

Chapter 5: Managing Complexity: Modeling Biological Systems Com-

putationally. This chapter focuses on the challenges of computationally 

modeling complex dynamical biological systems in the absence of domain 

theories that can provide significant resources for building models, such 

as for physics-based modeling. It examines how ISB researchers, engineers 

with limited biological knowledge, develop practices around computational 

modeling and simulation that enable them to manage the complexities of 

modeling biological systems. The analysis shows how a close examination 

of the processes of building models, rather than a focus on the finished 

products, is needed to fathom the epistemic achievements of this emerg-

ing approach to discovery in systems biology. The chapter details a case in 

which an engineer with little experience in biological systems modeling 

and little biological knowledge was able to make a fundamental discov-

ery in biology by means of his “adaptive problem-solving” processes. It 

examines, in particular, the epistemic affordances of in silico simulation 
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for building the model while also developing a close coupling between the 

modeler’s mental modeling processes and the biological system model. 

The developing modeler-model D-cog system provides another instance of 

what Hutchins called creating “cognitive powers,” which in ISB enables a 

modeler to make novel, verifiable inferences about the biological phenom-

ena that outstrip his own understanding. (Lab G data)

Chapter 6: The Bimodal Model-Building Strategy. This chapter focuses 

on a novel method for managing the complexity of building models of 

biological systems. In this practice, modelers conduct their own biological 

experimentation in the service of building their models. The chapter high-

lights the methodological flexibility available to ISB as an emerging field, 

which affords researchers the opportunity to tailor methods to manage 

complexity. The chapter develops two case studies of modelers following 

this strategy. The first examines, briefly, how a modeler collaborated with 

engineers to design a microfluidic “lab-on-a-chip device” (LOC) to integrate 

complex activities, actions, processes, and operations in wet-lab experimen-

tation that would usually be carried out in many steps, by many persons, 

and using a range of equipment. The modeler built the LOC to solve the 

difficult problem of collecting time-series data needed to develop her com-

putational model of T-cell signaling. The second case examines, in detail, 

how one modeler built a tightly coupled methodological system that used 

computational model-building and simulation to direct and focus her wet-

lab experimental investigation of a biological system, while also using the 

experimentation to further develop her model. The epistemic affordances 

of this D-cog system, in particular, helped her to triangulate uncertainties 

and missing elements in her models without having to deal with complex 

problem spaces of many open parameters. In both cases the novel method-

ological strategies enabled the modelers to manage a range of constraints—

data, computational, cognitive, collaborative—prevalent in ISB research. 

The chapter illustrates and provides further insights into the possibilities 

for adaptive problem-solving in this emerging field and how they provide 

researchers with considerable flexibility to create different methodological 

strategies and lab organizations to manage the complexities of modeling 

biological systems. (Lab C data)

Chapter 7: Interdisciplinarities in Action. After providing a high-level 

summary of the major insights gleaned from the previous chapters, this 

chapter goes on to consider implications with respect to the epistemic 
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situation of interdisciplinary science as such. The analysis offers insights 

gleaned from all our investigations of what we call the “adaptive prob-

lem spaces” of biological engineering: spaces where interdisciplinarity is 

enacted in research and learning. It examines challenges, differences, and 

similarities across fields, and assesses their implications for broader applica-

tion to interdisciplinary practice. The chapter provides a nuanced account 

of two major kinds of interdisciplinary practices: hybridization and sym-

biosis (“epistemic interdependence”). It proposes specific characteristics, 

interdisciplinary epistemic virtues, that foster creativity and collaboration in 

twenty-first-century interdisciplinary science, at least of those varieties, and 

illustrates how these can be cultivated in different research communities 

with targeted interventions, such as those we developed for BME and ISB. 

Although the focus of the analysis is on the cases we have investigated, I 

hope the insights in this chapter, and the book as a whole, lay the ground 

for future research into interdisciplinary epistemic virtues in situations 

beyond those cases, and beyond science to interdisciplinary practice per se. 

(Data from all labs)



Research in biomedical engineering sciences (BME) has dual aims: to develop 

understanding of complex biological systems and to manipulate, control, 

or intervene in them. In this respect these fields aim at basic research while 

sharing the goal of application that Mieke Boon (2011, 2017) has claimed 

distinguishes the engineering sciences from the sciences. I concur that, 

unlike the sciences, which philosophy has traditionally understood to have 

the objective of creating knowledge, the primary objective of engineering 

sciences is what I call “getting a grip”—to understand sufficiently to manip-

ulate, control, or alter in specific respect(s)—a pragmatic, engineering goal. 

However, in many fields of BME, as in the labs we studied, the applica-

tion potentials are at most aspirational and in some instances do not even 

come into view until the research is significantly under way. This is because 

the basic biological phenomena are not yet sufficiently understood and, in 

some instances, have not been investigated at all.

Research in BME often confronts a problem that is not feasible, or would 

be unethical, to carry out experiments with animal or human subjects. 

Importantly, such studies, even if possible, would lack the requisite kinds 

of experimental control. Thus, in order for investigation to be possible, 

the biological system of interest must be reengineered in ways that man-

age the complexity of the biological phenomena. That is, researchers need to 

devise ways to emulate selected aspects of in vivo phenomena to a degree 

of accuracy sufficient to warrant their transferring outcomes of in vitro 

experimental simulation to in vivo phenomena in the form of provisional 

understandings and hypotheses. This is a complex interdisciplinary chal-

lenge. Our investigation examines how specific labs in the fields of tissue 

engineering and neural engineering address this challenge. The kinds of 

2  Building Hybrid Simulation Devices: Distributed  

Model-Based Reasoning
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practices we have been examining, however, are not unique to the labs 

we have investigated. Rather, our studies provide insight into the basic 

epistemic landscape of biological engineering: the use of engineering con-

cepts, methods, technologies, strategies, materials, and epistemic norms 

and values to reengineer biological phenomena so as to get a grip on com-

plex dynamical biological systems. This chapter examines, specifically, the 

processes through which in vitro simulation models of complex biological 

phenomena gain their capacities and credibility. These models are pared-

down representations of dynamical phenomena that have the capacity to 

enact selected biological processes under experimental conditions.

In our studies of two pioneering BME university research labs, we have 

found a common investigative practice is to create greatly, but appropri-

ately, simplified living in vitro systems that parallel selective features of 

the in vivo biological systems of interest. The features chosen are those 

relevant to the goals of the research. These hybrid systems comprise arti-

facts composed of living cells and tissues and engineered materials. They 

perform simulations of biological processes and afford various possibilities 

for experimentation. They are epistemically and ontologically hybrid. The 

researchers refer to their individual in vitro models as “devices.”1 In my 

analysis, devices are built analogue models, designed to exemplify specific 

in vivo biological processes. That features of a model exemplify selected 

features of the in vivo system is meant in the sense advanced by Nelson 

Goodman (1968) and extended to scientific practices by Catherine Elgin 

(2018). As introduced by Goodman, a representation exemplifies a certain 

feature if it “both is and refers to” that feature; that is, “exemplification 

is possession plus reference” (1968, 53). BME researchers strive to design 

in vitro models that both instantiate and refer to features of the in vivo 

biological system germane to their epistemic goals.  Specifically, a device 

exemplifies a selected feature of the in vivo system, such as the force with 

which the blood flows in a human artery, if it instantiates this feature, and 

it refers to this feature via its instantiation of it.2 But, unlike the original 

notion, which addresses finished representations, here I will show exempli-

fication to be a dynamic process in which models are built toward exemplify-

ing features of the target biological system. Researchers design and perform in 

vitro simulation experiments with devices in processes they claim “paral-

lel” or “mimic” salient aspects of in vivo situations, by which they mean, 

as we will see, the devices possess the features relevant to mimic in vivo 
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behaviors. Here, it is clear that similarity (however one cashes out that 

notion) could not be the appropriate representational relation. The model 

needs to instantiate the feature. Exemplification, then, provides the criteria 

by which to evaluate whether and in what ways a built model can serve as 

an analogical source through which to investigate the target in vivo phe-

nomena. That is, the building process not only establishes the reference of 

the model, but also enables the researcher to determine whether the model 

does or does not instantiate the target features relevant to the problem. 

These criteria assist researchers in their determination of what warrant they 

have to transfer inferences about the model to the in vivo system as provi-

sional hypotheses.3

The in vitro models provide the primary cognitive-cultural artifacts of 

the D-cog systems of the lab’s research; specifically, they are the part of 

the lab’s material culture that has epistemic functions. As we will see, the 

main epistemic dimension of BME problem-solving practices is building in 

vitro simulation models, and so it is important to be aware from the outset 

that these devices also instantiate culture-specific epistemological assump-

tions. In a different context, Evelyn Fox Keller has noted such assumptions 

include at least those that “underlie the particular meanings they give to 

words like theory, knowledge, explanation, and understanding, and even 

the concept of practice itself” (Keller 2002, 4). Significantly, in the BME 

case, the design of a device embeds norms, values, and assumptions pri-

marily associated with aims of control and intervention and the kind of 

quantitative analysis required by engineers rather than biologists. Many of 

the researchers in our labs characterized this epistemological difference in 

the following way: biologists focus on how “everything interrelates to every-

thing else,” while engineers “try to eliminate as many extraneous variables as 

possible.” In this epistemic context, a device, then, serves as a site of simula-

tion not only of biological processes, but also of the researchers’ epistemic 

assumptions, norms, and values.

I take the practice of in vitro model-building to be rooted in the engi-

neering practice of building prototypes, but in the BME case the practice 

is dependent on what it is feasible to do with biological materials using 

engineering materials, methods, and technologies. Building, I remind the 

reader, is the technical term we use to encompass iterative and incremental 

processes of designing, constructing, redesigning, evaluating, and experi-

menting with a model. Building in vitro models is a bootstrapping process, 
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which, to borrow a notion developed by Hasok Chang in a different con-

text, entails “epistemic iteration”: “a process in which successive stages of 

knowledge, each building on the preceding one, are created in order to 

enhance the achievement of certain epistemic goals” (Chang 2004, 45). In 

vitro model-building processes center on how the biology can be shaped by 

the engineering and vice versa to provide a legitimate source for displaced 

biological experimentation. As we have witnessed, obstacles that can lead 

to impasse or failure are ubiquitous, but researchers learn from each incre-

mental step. Importantly, through these incremental and iterative pro-

cesses, BME researchers develop reliable principles for building models of a 

specific type, as well as for the novel epistemic practice of in vitro modeling 

itself. The director of lab A was a pioneer in inventing the paradigm of in 

vitro modeling, and both he and the lab D director were pioneers in their 

respective modeling practices.

Although they are simplified biological systems, devices themselves are 

complex dynamical systems that are used in experimental processes either 

individually or in configurations with other devices. Researchers refer to 

the experimental systems, whether a single device or a configuration, as 

“model-systems.” As one researcher stated, “when everything comes together, I 

would call it a model-system. . . . ​I think you would be safe to use that [notion] as 

the integrated nature, the biological aspect coming together with the engineering 

aspect. So, it’s a multifaceted modeling system.”4 A specific model-system can 

be the locus of an experiment or just one step in a multi-model experimen-

tal process. From the perspective of cognitive-cultural integration, these 

hybrid in vitro model-systems are “multifaceted” in another respect: they 

constitute the material culture of these communities, they participate in 

epistemic goals, they give rise to interactive practices, and they perform as 

cognitive artifacts in their problem-solving processes. Developing skill at a 

specific building practice makes one part of the lab research cognitively and 

socioculturally. Further, as chapter 4 develops, building in vitro models not 

only creates understanding about biological phenomena; these processes 

also create “the lab” itself, both materially and as a way of doing science. 

Each generation of researcher (~five years in a lab) provides the methods, 

artifacts, and ways of thinking that serve as cognitive-cultural ratchets 

that scaffold the next generation of the lab’s problem-solving activities. 

This scaffolding not only provides stability but also affords creativity in a 

research program.
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In this chapter I introduce the primary devices of each lab. These figure 

in different analyses in chapters 3 and 4. Here, I describe the devices and 

unpack some of the epistemic affordances of these artifacts in the problem-

solving practices of the BME lab, which we understand as a dynamic ecosys-

tem of people, artifacts, and embodied skills (Hutchins 2011). Devices, as we 

have come to understand them, are sites of cognitive-cultural integration. 

They serve as hubs for interlocking biological and engineering concepts, 

methods, materials, values, and norms in mental and artifact representa-

tions, in design and lab history, and in research and learning. “Interlocking 

models,” as noted in chapter 1, is a system-level interpretative theme we 

developed to capture intersecting aspects of research practices that emerged 

from our coding categories. We use “interlocking” in these interdisciplinary 

contexts, rather than the customary “integrative,” to specify that integra-

tion in BME is a process of fitting things together. “Interlocking” signals, for 

instance, that researchers do not need to learn all the biology in an area of 

interest, just what fits their engineering and medical goals, or, for example, 

that in building a model-system, specific constraints of the biological and 

engineering components need to be fit together, as do the various compo-

nent models in the model-system.

In section 2.1, I provide a brief look at the history of the development of 

the signature devices of each lab and lay out some of the reasoning under-

lying the researchers’ choices of what to instantiate in a particular model. 

This reasoning is important for our objective to understand how such in 

vitro models can provide the basis for warranted inference. Section 2.2 

discusses how the processes of building the models interlock mental and 

artifact representations into D-cog systems that can perform distributed 

model-based reasoning. Section 2.3 considers how analogy and exemplifi-

cation work together to provide credibility for the researchers’ claims that 

the practice of in vitro modeling provides understanding and predictions 

about in vivo systems.

Section 2.1 might be difficult for some readers, but it is important to at 

least skim the details of the model-systems because, first, to my knowledge 

our research provides the only account of the modeling practice of experi-

mental simulation by means of building hybrid in vitro devices, which is 

central to major fields in biological engineering, and, second, the details are 

necessary to fathom how they function as analogue models that can sup-

port inferences about complex biological systems.
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2.1  “An Experimental Model That Predicts”: The Epistemic Practice of 

Building to Discover

Simulation by means of devices is an epistemic activity that forms the basis 

for understanding, explanation, and prediction in many areas of BME. 

Much of our research on the tissue and the neuroengineering labs has been 

directed toward trying to understand the nature of their in vitro models, 

their epistemic affordances and the sociocultural practices surrounding 

them, and, in general, how they relate to the epistemic and practical goals 

of the labs. In the BME labs we studied, devices are built mostly in-house. 

We refer to the primary devices as signature artifacts because references to 

the lab both internally and externally are often by means of that device, 

such as “the flow-loop lab” for lab A. Further, these devices often play a role 

in standardizing research in the area, for instance, flow-loop studies in tis-

sue engineering or neuron dish studies in neuroengineering.

Devices are in vitro models that, in the words of lab members selectively 

“mimic” or “parallel” in vivo biological processes of interest, either normal or 

aberrant, under experimental conditions. That is, they are dynamic physi-

cal systems that simulate biological processes. Although we have not been 

able to determine how and when the idea for the practice of building in 

vitro simulation devices arose, the practice does appear to extend to biology 

the engineering practice of building facsimile models that mimic engineered 

phenomena, such as the wind tunnels that have been used to experiment 

with different aerodynamics for at least a hundred years (now largely replaced 

by computational simulation models). Of course, researchers cannot control 

living model-systems as fully as inanimate engineered models.

BME researchers aim to build models that allow them to transfer infer-

ences that derive from experiments they conduct with in vitro models to 

in vivo phenomena as candidate understandings and hypotheses. As a 

researcher explained about her model-system: “We typically use models to 

predict what is going to happen in a system [in vivo]. Like people use mathemati-

cal models to predict . . . ​what’s going to happen in a mechanical system? Well, 

this is an experimental model that predicts what would happen—or you hope 

that it would predict—what would happen in real life.” Such prediction is a 

form of analogical transfer. The research in lab A, for instance, aims to cre-

ate dynamic physical models that will enable inferences about disease pro-

cesses related to normal and abnormal arterial blood flow processes. Thus, 
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the primary epistemic function of the practice of in vitro model-building 

is to enable inference by means of model construction and manipulation, 

which I have elsewhere called simulative model-based reasoning (Nersessian 

1992, 2002, 2008). We will see, as Helen Longino also has pointed out, that 

“treating reasoning as a practice reminds us that it is not a disembodied 

computation, but takes place in a particular context and is evaluated with 

respect to particular goals” (1990, 215). In sections 2.1.1 and 2.1.2, I unfold 

some of the context, goals, and considerations that have gone into building 

the primary model-systems of each lab.

On one level the researchers in the tissue engineering and the neuroen-

gineering labs belong to different cognitive-cultural systems. On another 

level, however, and for the purposes of this chapter, there are important 

commonalities—ways of approaching research that we found to transfer 

robustly across both sites. Although the specifics in each case differ, our 

insights about the nature of the model-based reasoning that devices afford 

and the primacy of engineering assumptions, norms, and values in con-

ducting this kind of in vitro research are two such interrelated dimensions. 

To understand how they interrelate, I begin by unpacking the processes 

through which the devices and model-systems are built to perform as cog-

nitive artifacts and epistemic tools.

2.1.1  Lab A: The Flow-Loop Device and Model-Systems

From the outset, the assumption guiding lab A’s research was that mechani-

cal forces produced by blood flow in the cardiovascular system have bio-

logical effects and contribute to disease processes. The lab A director began 

this research program as a mechanical engineer who worked in aeronautics. 

NASA requested his help to understand the effects of the vibration forces of 

launch and reentry on the cardiovascular systems of the astronauts. In our 

first interview, he formulated the insight he had during that investigation 

that would transform his research into a bioengineering program as “char-

acteristics of blood flow [mechanical stress/strain forces] actually were influencing 

the biology of the wall of a blood vessel. And even more than that—the way the 

blood vessel is designed. The way the blood vessel is designed is—it has an inner 

lining, the endothelium. It’s a monolayer—it’s the cell layer in direct contact with 

flowing blood. So, it made sense to me that, if there was this influence of flow 

on the underlying biology of the vessel wall, that somehow that cell type had to 

be involved.” His research, thus, started with an engineering framing of a 
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biological problem and a goal to understand complex biological processes 

of the cardiovascular system in terms of mechanical engineering concepts 

and methods. The hypothesis that mechanical forces were “influencing the 

biology” was radical at a time when the nascent field of vascular biology 

was focused on biochemical processes, and biologists initially rejected it. 

His statement also reveals the design perspective on biology of an engi-

neer, which came to pervade his investigative program. This engineering 

framing provides a means for managing the complex biological problem 

of the nature and effects of the dynamical processes within blood vessels 

by reducing it to understanding the effects of flow (mechanical forces) of 

blood on a specific cell type. The director proposed a novel hybrid “place-

holder” concept (Carey 2009), called “arterial shear,” that is, the frictional 

force of blood on the endothelium as it flows in the parallel plane through 

the lumen (the inner space of the arterial tube), and the goal of articulating 

this concept was a driver of the research for more than forty years. In the 

course of developing and following out his research program, the director 

was also a pioneer in creating the “interdiscipline,” (by which we mean a 

field that has coalesced into an “interdisciplinary discipline”) of BME.

In the configuration in which we encountered lab A after nearly twenty 

years in existence (and more than thirty after the then director had begun 

the line of research) some of the complexity had been added back into 

their research. Further, an applied goal had been added to the lab’s research 

agenda. Researchers now sought to understand how more components of 

the blood vessel wall respond to both mechanical stress forces (shear and 

strain) and to understand the requirements for designing a fully functional 

vascular tissue replacement for repairing the human cardiovascular system. 

As the director formulated their dual basic and applied research goals at 

that time, “When it comes to a blood vessel substitute, what are the mechanical 

properties and how do we engineer those in—how do we fabricate something with 

the appropriate mechanical properties?” Thus, the goal of creating new tissue 

engineering techniques had also now become a significant part of their 

problem situation. To achieve their applied goals, however, required basic 

research to understand what properties and processes give blood vessels the 

strength to withstand the in vivo forces of circulating blood. This under-

standing would enable the researchers to develop ways to design vascular 

tissue models (“constructs”) with sufficient strength, which could eventu-

ally lead to vascular implants. Researchers faced another problem, related 
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to the functionality of any implant: to develop a ready source of immune-

resistant endothelial cells. These cells are the most immune sensitive in the 

body, and implanted vascular grafts would need to be seeded with cells that 

would not be rejected by the host. The lab, again, formulated this prob-

lem in engineering terms and sought to find a way to create endothelial 

cells through mechanical manipulation of stem cells and progenitor cells. 

Whether this was even possible was an open question at the time.

Lab A had the look of a biology lab, with flasks, pipettes, a sterile work-

bench with a hood, incubators, petri dishes, and hazardous waste contain-

ers. Researchers could often be found at the workbench scraping cells from 

animal tissues they acquired from outside the lab. Indeed, the first thing 

the researchers learned upon entering the lab was to make cell cultures, 

which proved a daunting task for engineers and required considerable men-

toring. However, unlike a biology lab, there were a variety of mechanical 

artifacts inside the incubators and on the bench tops. Most of these arti-

facts were lab-built in vitro simulation devices and instruments, with which 

new researchers familiarized themselves while learning to perform cell cul-

turing. Here I focus on the two devices on which the research of the lab 

centered, the flow loop and the construct. Together these constituted the 

main experimental model-system of the lab. These models were designed 

to interlock in investigations of specific behaviors of the target blood vessel 

wall of human cardiovascular system.

In his research prior to founding lab A, the director had used animal 

models: cows in which vascular pathologies (stenosis) had been induced sur-

gically. He then studied the changes in morphology (elongation and orienta-

tion) in the harvested endothelial cells of the sacrificed animals. Additionally, 

he studied velocity patterns in the extracted vessels, which were filled with 

liquid plastic and hardened (“replica model”), with doppler laser techniques. 

The results of the two lines of study were correlated to provide insights into 

the quantitative relations between variations in wall shear stress due to par-

ticular velocity patterns and the morphology of cells lining these vessels. 

After several years he abandoned the elaborate and cumbersome practices of 

the animal studies as “too uncontrolled” along several dimensions, but they 

had enabled him to understand factors and constraints that needed to be 

taken into account for launching a program to study the impact of shear 

stress flow on cultured endothelial cells with engineered devices. What he 

called the “move in vitro” opened the possibility of controlled experimental 
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studies, amenable to qualitative and quantitative analysis, of both normal 

and pathological flow processes. It also solved problems related to the fact 

that it takes twenty-four hours to see the results of interventions, and in 

animals many confounding physiological changes take place during that 

period. The director set out to design an analogue model that instantiates the 

selected functions of blood flow in vivo such that endothelial cells behave in 

response to flow as they would in vivo, under those conditions. I unpack the 

latter sentence in the rest of this section.

At the outset, researchers need to understand what abstractions might 

be feasible from a biological perspective in designing an in vitro model, 

while yielding relevant and important information about the dynamical 

processes of interest. One lab member expressed the design process this 

way: “As engineers we try to emulate that environment [in vivo], but we also try to 

eliminate as many extraneous variables as possible, so we can focus on the effect 

of one or perhaps two, so that our conclusions can be drawn from the change of 

only one variable.” In one major abstraction, the director decided, in line 

with his initial insight, to isolate and study only the endothelial cells and 

not include other components of the blood vessel. The researchers reasoned 

that this abstraction is warranted because these cells line the inner blood 

vessels, and thus are in direct contact with the blood flow forces and so 

bear the brunt of the frictional force. Further, as one researcher justified the 

choice, “Cell culture is not a physiological model; however, it is a model where 

biologic responses can be observed under carefully designed and well-defined 

laboratory conditions.” This fact enables them to derive reliable quantita-

tive measures. Another important abstraction was to begin with studying 

laminar flow, which is steady and uniform, in contrast to in vivo blood 

flow, which is turbulent and pulsatile along much of its pathway. The in 

vitro model-system is, thus, greatly simplified, but to investigate just the 

response of endothelial cells to laminar flow would at the very least provide 

baseline information on biological responses of cells to fluid forces.

Given the initial hypothesis of the centrality of the endothelial cells, an in 

vitro model of the target system requires at a minimum that it can replicate 

the shear forces of blood on the cells. The channel flow device (“flow loop”) 

is a functional model of that process that enables controlled experimenta-

tion directly on endothelial cell cultures, thus creating a model-system. The 

important modeling parts of the flow loop in use during our investigation 

comprise a peristaltic pump, a liquid, and a channel in which the liquid 
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flows over cells. The speed at which the pump operates reflects a range of 

potential blood flow in vivo, and the pulse dampener allows control over 

the constancy of the flow; for instance, it can turn pulsating flow into lami-

nar flow. Both normal and abnormal flows can in principle be studied. The 

channel through which an incompressible fluid flows over the endothelial 

cell cultures on slides is engineered to exact geometrical specifications in a 

physiologically meaningful range. The liquid medium has the viscosity of 

blood, a cell-friendly Ph, and other in vivo features. The current flow loop 

was the product of years of design and redesign, dating back twenty years.

The initial flow loop was designed in 1981 with the capacity only to 

produce laminar (steady, uniform) flow. The flow was redesigned in 1989 

to allow “studies in which fluid mechanic conditions can be systematically var-

ied,” which include pulsatile and oscillatory flows, in order “to determine 

the extent of any such flow effects” that can occur in vivo. Given the state of 

technology at the time, it was a large benchtop system that, as a former stu-

dent remarked, “had bulky tubes that looked like some time machine from the 

1950s.” It had insulated heating coils to keep the cultures at the requisite 

temperatures and used hydrostatic pressure difference to derive the flow. 

Contamination was a constant problem because to keep cell cultures alive 

requires placing them in incubators that have appropriate CO2 levels and 

a specific temperature range, which was impossible with the benchtop sys-

tem. Over 50 percent of their experiments failed because of contamination.

New technology made significant redesign of the flow loop to address 

the contamination issue possible in 1995. In an interview, a recent gradu-

ate of the lab chronicled the process (see Kurz-Milcke et al. 2004). He had 

taken on the job of “model-revising this design to go into the incubator,” which 

made long-term (twenty-four hours or more) experiments possible. This 

was important because it takes twenty-four hours for the effects of flow on 

the cells to be seen, and contamination increases with time. The researcher 

claimed to have brought ideas for miniaturizing technologies from a lab 

he had worked in previously in Japan. “Model-revising” entailed a redesign 

of the model to replace the heating function of the coils with the incuba-

tor and to use a pump rather than pressure difference to derive flow. The 

revision also made the components sufficiently decomposable to allow for 

independent redesign if needed as the research program advanced. In fact, 

minor modifications continued to take place throughout our investiga-

tion. The redesigned flow loop (figure 2.1), in use when we entered, was 
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Figure 2.1
Flow-loop setup
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assembled under a sterile hood, operated in an incubator, and had an inte-

grated peristaltic pump. The geometry of the flow channel, where cells-in-

culture interface with mechanical parts, was left unchanged. This redesign 

of the flow-loop device was central to its function, as in the model-system, 

because its viability as a model-system is totally dependent on the ability of 

the endothelial cell cultures to resist contamination. Experiments flowing 

cell cultures on slides continued to be conducted throughout the period 

of our investigation, but investigations with a more complex vascular wall 

model, the construct device (discussed below) were the focal point of lab 

research when we entered.

The flow loop, then, is a dynamical model that when in operation can 

simulate normal and pathological forces of blood flow through the lumen 

of an artery. In most experiments the process instantiates the shear forces of 

a steady (constant speed), laminar (straight stream lines) flow over a flat sur-

face (cells on slides). The flow is two-dimensional and unidirectional. The 

researchers listed all of these features as contributing to their assessment 

that the model-system “emulates” in vivo shear to a “first-order approxima-

tion . . . ​as blood flows over [sic] the lumen.”5 They argued that instantiating 

this process with only characteristics of first-order flow is justified because it 

provides a “way to impose a very well-defined shear stress across a very large pop-

ulation of cells such that their aggregate response will be due to” it and enables 

them to “base . . . ​conclusions on the general response of the entire population.” 

That response is determined by removing the cells from the chamber to 

examine them with various instruments, including the Coulter counter 

and confocal microscope, which provide information about proliferation, 

alignment, alive/dead status, morphology, migration, and so forth in the 

form of qualitative and quantitative representations, that is, numerical and 

visual (graphical, diagrammatic, color-coded) representations. The models 

and the instruments function as cognitive artifacts. To use Hutchins’s char-

acterization of information flow in a D-cog system: the forces generated 

by the flow loop represent shear stresses (to a first-order approximation) 

as it manipulates the endothelial cells, which, in turn, generates “condi-

tioned” cells that researchers then manipulate with instruments that gen-

erate quantitative and qualitative information in various representational 

formats that propagates through the D-cog system.6

With this basic analysis of the flow-loop–cell culture model-system, we 

can begin to see how researchers build the warrant for the inferences they 
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derive from it and transfer to the in vivo system (“model that predicts”) as 

they build the models. What warrant there is depends both on their deter-

mination of whether the in vitro model does indeed instantiate the selected 

in vivo features and on the relevance of in vivo features that have been 

selected or eliminated in designing the model of the biological system of 

interest. The former is largely a technical issue about whether a desired 

process is achieved by the design: for example, does the flow loop achieve 

the desired kind of flow and shear forces on the endothelial cells? Assum-

ing that the device can be made to instantiate the selected features, the 

main issues researchers need to consider are these, given the goals at hand: 

Have they selected the relevant in vivo features to instantiate in the in vitro 

model? Have they left out anything important? and Do any abstractions 

from the biology they have made for engineering purposes matter for their 

goals?

Addressing these kinds of questions is an ongoing process in which the 

researchers create a rationale for their decisions during the incremental 

and iterative processes of building a kind of model. In the design of the 

flow loop, for example, the researchers decided to instantiate a first-order 

approximation to in vivo flow. This means that the in vitro flow is laminar 

(steady, straight stream lines, no eddies, and non-pulsatile). As we saw, the 

researchers justified using flow with these characteristics because it pro-

vides significant experimental control and simplifies the mathematical 

analyses. However, as researchers noted, in vivo “blood sloshes around in the 

blood vessel,” that is, the in vivo process has turbulent flow as well. One of 

the reasons they gave in support of using laminar flow is that there is varia-

tion in the flow along the cardiovascular system, with quite high pulsatile 

flow near the heart but laminar flow near the extremities. So, the in vitro 

flow does instantiate a relevant feature of the in vivo process, just not all 

of its features. The issue is whether the features of “sloshes,” that is, higher-

order effects, are relevant. The researchers were aware that if they found sig-

nificant discrepancies in the behavior of the endothelial cells, for instance, 

in the event that, in vivo, “there’s a whole different pattern of genes that are 

up-regulated in pulsatile shear,” they would need to instantiate higher-order 

features. In another feature selection, the model-system was designed to 

emulate the dynamic but not the diachronic nature of the in vivo environ-

ment. Blood flow in vivo changes, for instance, when eating and sleeping. 

Such changes were seen as experimental confounds with the animal studies, 
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and the goal to control these features motivated the move in vitro. In gen-

eral, the researchers recognized that flow-loop simulations are “very abstract 

because there are many in vivo environments and many conditions within that 

environment.” Their objective was not “to mimic the exact conditions found 

in vivo,” but to build models good enough to provide reliable, but suit-

ably qualified, understanding of phenomena that are inaccessible to in vivo 

investigation. The researchers, in fact, consider inferences made from the 

in vitro simulations to be more trustworthy than if the experiment had 

been performed in vivo because of the increased experimental controls. 

But, of course, as a researcher noted, the in vitro simulation experiments 

only “indirectly answer [their] questions,” which are about the in vivo system, 

so the issue of what qualifications inform the warrant for the transfer of the 

findings is always present. I discuss the issue in more depth in section 2.3.

Improving the devices and model-systems to instantiate more relevant 

features was an ongoing part of the research. For instance, for nearly twenty 

years the researchers used cells in culture on slides in the flow chamber. As 

we saw above, they justified using the cultures because the endothelial cells 

are the closest part of the vessel in contact with the blood forces and bear 

the brunt of shear forces. Simulations with the endothelial cells in isola-

tion from other components of arterial tissue could enable them to get a 

grip on cell response to shear, but the researchers were always aware that 

“cell culture is not a physiological model” of the blood vessel wall. It leaves 

out many features of the blood vessel, and thus, the in vitro model-system 

provides limited understanding for their target problem of the effects of 

mechanical forces on the blood vessel wall, which has other components. 

In a first attempt to add relevant features, they created a “co-culture” of 

endothelial and smooth muscle cells, but the limitations remained much 

the same since it does not capture their structural relations in the tissue 

of a blood vessel. Specifically, as the director noted, “putting cells in plastic 

and exposing them to flow is not a very good simulation of what is actually hap-

pening in the body. Endothelial cells, which have been my focus for thirty years, 

have a natural neighbor, smooth muscle cells. If you look within the vessel wall 

you have smooth muscle cells and then inside the lining is [sic] the endothelial 

cells, but these cell types communicate with one another. So, we had an idea: 

let’s try to tissue-engineer a better model-system for using cell cultures.” Their 

aim became “to use this concept of tissue engineering to develop better models to 

study cells in culture”; that is, to build “a more physiological model”—one that 
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would instantiate more features and would function as an in vivo vessel 

along mechanical, physical, and biochemical dimensions. With this more 

complex model they could study the effects of shear on more components 

of the blood vessel wall, as well as the interactions of different cell types. It 

also offered the possibility to investigate the forces of pressure on the wall 

and other effects (chapter 4). But the “the big gamble” the lab took to build a 

model that could instantiate all the features of a blood vessel wall was only 

possible because new engineering techniques and materials had been devel-

oped that enabled researchers to construct living tissue models. Part of their 

research focused on furthering the practices of tissue engineering. If success-

ful, building the construct model would also open a novel application pos-

sibility: to turn the model into a vascular graft to repair diseased arteries in 

vivo. Within the lab, this tissue-engineered model was referred to, variously, 

as “the construct” device, the “tissue-engineered blood vessel wall model,” and, 

underscoring its application potential, the “tissue-engineered vascular graft.”

An in vivo blood vessel is tubular in shape and comprises several layers: 

the lumen where the blood flows; a first, monolayer of endothelial cells that 

sit on collagen; an internal elastic lamina; a second layer of smooth mus-

cle cells, collagen, and elastin; external elastic lamina; and an additional 

layer of loosely connected fibroblasts. The construct device is first grown 

on a specially designed structure (for which they used the engineering term 

“mandrel”) that comprises tiny silicon tubes that allow cells to attach and 

grow on them, and is then slipped off the structure (figures 2.2a and 2.2b). 

Although the primary motivation for the construct was to provide a better 

in vitro model, its application potential also figured into its design. Specifi-

cally, to achieve the goal of repairing systems in the human body, the con-

structs must replicate the functions of the tissues to be replaced. This means 

that the materials used to grow them must coalesce in a way that mimics 

the properties of native tissues. It also means that the cells that are embed-

ded in the scaffolding material must replicate the capabilities and behav-

iors of native cells so that their higher-level tissue functions are achieved. 

For instance, in vivo the cells create an extracellular matrix, a network of 

proteins and other molecules, which provides growth factors and mechani-

cal properties. So too, then, the in vitro culturing process needs to ensure 

that “the cells, once they recognize they are in the construct will reorganize it and 

secrete a new matrix and kind of remodel the matrix into what they think is most 

appropriate,” as they do in vivo.
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Figure 2.2a
Constructs seeded onto mandrels

Collagen

Sleeve

EC
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SMC

Figure 2.2b
Cross-section of a construct. In this case a Teflon sleeve has been added to strengthen 

it for the specific experiment.
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The construct design is based on what was understood at the time of 

the biological environment of endothelial cells and vascular biology, on 

the kinds of materials available, and on the tissue engineering techniques 

developed in the lab and in the field thus far. The lab’s ongoing research 

sought to advance all these aspects. So, with the move to tissue engineer-

ing, the lab’s major research question became, as one researcher expressed 

it, “The big, big question is how do our constructs act like a modeling tool, how 

do they respond to—or biological markers respond to—mechanical stimulation. 

So is there a certain correlation to the stress and strain and the distribution being 

applied to these constructs to certain biological markers. . . . ​Does it respond in 

the same manner? That’s the big, big question.” To “respond in the same man-

ner” means, among other things, that it expresses the in vivo proteins and 

genetic markers, and possess the in vivo mechanical properties.

For a device to perform as a “modeling tool” requires that researchers rec-

ognize both how it represents in vivo phenomena (device qua model) and 

how it is an object in its own right (device qua device), an environment 

for biological experimentation with constraints and affordances due to 

the nature of the design, the materials, and the engineering challenges. All 

these factors need to be taken into account when researchers plan experi-

ments, make inferences, and evaluate outcomes. The construct was a new 

model when we arrived, and so much of the research was directed toward 

understanding the behavior of the various features of the construct itself. 

Depending on the goals of the experiment, a construct can be built to 

instantiate some or all of the in vivo features. It is possible, for example, 

to use only collagen and not add elastin. Some experiments are conducted 

with a single layer of the blood vessel wall that has been seeded with either 

endothelial cells or smooth muscle cells. Often experiments do not require 

the third layer of fibroblasts to be developed. Thus, the construct forms a 

family of models, which can be designed for different experimental pur-

poses. These models, in turn, can interlock with other models (devices) to 

form a variety of vascular construct model-systems.

The researchers had originally intended the construct to move the 

research from cells on slides to “tubular studies . . . ​trying to understand how 

we can apply physical forces to these tubular constructs to stimulate the cells 

inside there . . . ​to recognize—just to appreciate their surroundings.” The tubular 

shape of the construct did provide possibilities to experiment with respect 

to the effects of pressure and strength on the cells and tissues, and led the 
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lab to develop a range of new devices for experimenting on it, some of 

which are discussed in chapter 4. However, the flow-loop–construct model-

system was the locus of many investigations, and so the construct needed 

to interlock with the flow loop in order to carry out investigations of shear 

forces. The researchers would have needed to undertake a costly and major 

redesign of the flow chamber to accommodate their tubular shape. Instead, 

they decided to cut open the construct so it would lie flat in the existing 

chamber. This required only a slight redesign of the chamber to allow for 

a spacer to accommodate the thickness of the constructs. The researchers 

justified their use of the flat constructs by arguing that since the cells are 

so small with respect to the construct, the shear forces they experience are 

the same as if they were in a curved vessel. One researcher explained their 

reasoning this way: from the “cell’s perspective” a cut-open construct is not an 

approximation because “the cell sees basically a flat surface. You know, the cur-

vature is maybe one over a centimeter, whereas the cell is like a micrometer—like 

10 micrometers in diameter. It’s like ten thousandth the size, so to the cell—it has 

no idea that there’s actually a curve to it.” That is, flowing the fluid over a flat 

construct instantiates the force the cell experiences in vivo because the cell 

is so small with respect to the arterial wall, the cell’s in vivo experience of the 

wall is as though it lives in a flat world.7 Thus, the in vitro construct topol-

ogy instantiates the in vivo artery wall topology as experienced by the cells.

Lab A had considerable experience with, and understanding of, the 

flow-loop and cells-on-slides model-system when we entered. During our 

investigation, the lab’s challenges centered largely on building an under-

standing of the construct and of the requirements to develop it into a fully 

functional blood vessel wall model and possible implant. Although the 

cognitive-cultural system was continuing to evolve, many practices were 

well-established and there were significant structures in place to support 

the participants in the research. The situation in lab D was quite different 

when we entered, since these researchers were just starting to build the 

cognitive-cultural system with a pioneering research program.

2.1.2  Lab D: The Dish Model-Systems

When we began our research, lab D was starting to set up. Broadly framed, 

the researchers were seeking to understand learning and memory in networks 

of living neurons. For more than thirty years, neuroscience research on living 

neurons had been focused on the electrophysiological properties of single 
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neurons. The lab D director argued that to study learning there needed to 

be a way to study the properties of networks of neurons, because learning in 

the brain takes place through the communication of signals among neurons. 

Early investigations into the networks of neurons were conducted with brain 

slices, with neurons fixed in formaldehyde and their physical structure exam-

ined with a microscope. The director wanted to “look at living things, while the 

interesting parts would happen.” He recounted that, in graduate school, while 

working on a completely different, and what he felt was uninteresting, prob-

lem in biochemistry, he began “moonlighting as a cognitive scientist,” reading, 

attending conferences, and taking courses on the psychobiology of learning 

and memory. He tried building computational neural networks, but he saw 

their “relevance to the in vivo case [as] very tenuous.” He wanted to understand 

how real-world neurons learn in the brain, and for this purpose, living net-

works are needed. He recalled having had the idea, “Perhaps you could make a 

cell culture system that could learn something. I thought to do that you would have 

to see the cells while they were doing the learning.” The lab D director’s goal was 

to understand the neurobiological processes that take place in networks of 

neurons as they learn, but to carry out an investigation of the envisioned cell 

culture system required the resources of engineering.

For his postdoctoral research, he found a bioengineering lab that was 

developing the technology needed to study living networks of neurons, 

and over the next ten years in an extended postdoc, he transformed into a 

neuroengineer. During that time, he helped perfect the ability to culture a 

network of neurons that could live, be recorded from, and be imaged over 

an extended period (days, months, even years), and he developed novel 

technology for imaging it. This cultured network of neurons became the 

signature model-system of lab D, the hybrid device they called “the dish.” 

The major goal of lab D’s research was to understand how information is 

processed in the dish, and, especially, whether—and, if so, how—it could 

learn. If the dish neurons could learn, they would have a minimal crite-

rion for network learning, which requires controlled feedback and mem-

ory.8 The lab’s application goals were largely aspirational and stated quite 

generally, such as “to create aids for neurological impairments” and “to make 

some fundamental difference in human nature.” The lab director expressed the 

belief that the kind of research he was embarking on could create the latter, 

if “we understand how learning works, how memory works, and how pattern rec-

ognition works—and if we come up with new kinds of [brain-style] computation.”
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The neuroengineering department in which lab D was located had open 

lab spaces to facilitate interaction among labs, although lab D did have 

some walls defining it. The labs have benches on wheels, which can be 

moved around to accommodate changes in lab configuration. In lab D 

these benches were occupied by computers, not the usual biological equip-

ment (flasks, pipettes, and so forth). Indeed, a glance around the lab pro-

vided no telltale signs of biology. Instead, one was struck by the copious 

wires that crisscrossed the space. These carried electrical signals back and 

forth between the neuron dishes and the computers. The wires indicated 

that the main activity of the lab was, as we will see, digital signal process-

ing and analysis. The dishes were hidden from view in various kinds of 

insulating enclosures, wrapped in insulating foil—some with microscopes 

sticking out. All the biological work was done in an adjacent cell culture 

room where the researchers built the dishes. For a while the lab used an 

additional shared mouse/rat colony room in the basement to breed its own 

genetically engineered rodents that produce fluorescent proteins and a 

shared dissection room for harvesting embryonic cortical neurons, but they 

quickly realized it was less expensive, time consuming, and equally good 

to purchase these neurons from a commercial vendor. Fluorescent neurons 

help to differentiate the neurons from other elements (such as glia) in the 

cultures when they are imaged. In addition to regular microscopes, the lab 

used the latest advance in imaging, a type of scanning fluorescent process 

called two-photon imaging. Their initial two-photon microscope was built 

by the lab director.

All the graduate students during our observational period had arrived 

in lab D around the same time, and the director had taught them how 

to build the dish. Plating new dishes was usually a communal activity in 

which all the graduate students crowded into the room for “plating par-

ties” when new cells were available. Everyone built their own dishes and 

gave them names. They created a “dish log” for each dish, to keep track 

of experiments run on it, since every experiment changes the properties 

of that dish, and researchers needed to be aware of these changes. Unlike 

the lab A constructs, which were created anew for each experiment, dishes 

were used in multiple experiments, so the researchers wanted to keep the 

dishes alive for as long as possible (two years was the longest we observed). 

Thus, keeping the dishes well-fed (removing the old medium and adding 

new nutrients) and “happy” was a constant concern. As with lab A, much 
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discourse focused on the well-being and happiness of cells, and frustrations 

with their errant behavior impeding experiments. One researcher expressed 

her frustration at the dish’s response: “Pfft, you keep them happy by feeding 

them, by taking care of them, hopefully stimulating them and telling them to do 

something! I don’t know what to do to make them happy. I don’t know how to 

make them happy—that will make my neurons happy [pointing to her head].” 

If the cells are not happy, neither is the researcher. There is an important 

dynamic interplay between “making the dish happy” and the researcher’s 

cognitive goals (“making [her] neurons happy”).

The construction of the dish interlocks concepts, methods, and materi-

als from biology, chemistry, neuroscience, and electrical engineering. The 

dish comprises cortical neurons (15K–60K, depending on desired kind of 

network) and glia (support cells), which are harvested from embryonic 

rodents, dissociated (to remove any in utero connections), and plated in 

a single layer on a multielectrode array (MEA). The MEA is a small, glass 

petri-style dish with an 8x8 grid of microelectrodes, spaced around 200–

300 micrometers across, embedded in the bottom (figures 2.3a and 2.3b). 

The researchers mainly used the MEA that was designed by the director of 

the lab in which the lab D director had been a postdoc, although they did 

experiment with design modifications. This technology had been a major 

advance, and the MEA was rapidly becoming the standard in in vitro neu-

ron network investigations.9 The electrodes poke into the neurons (without 

damaging them), which gives the researchers the capacity to record from, 

and inject, electrical activity (“stimulation”) into the network. A sugary 

cocktail of biologically appropriate chemicals feeds the cells, and the lid 

of the dish is a thin nontoxic Teflon film that allows oxygen and carbon 

dioxide through while keeping out contaminants. The dish lives in a spe-

cially designed enclosure that provides the requisite external environment 

for the cells (temperature, humidity, carbon dioxide level). It takes around 

two weeks for connections to grow among the neurons and spontaneous 

activity to start. At that point experiments can begin.

The construction of the dish interlocks constraints of the device qua in 

vitro model and device qua engineered system. For instance, the in vitro 

model instantiates a monolayer network of neurons instead of the rich 

three-dimensional connections found in vivo, which reduces the complex-

ity of the system by reducing the number of variables. Several interlock-

ing constraints underlie this decision. The choice of monolayer cultures 
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provides “one single layer of neurons . . . ​a simpler system to study.” But also, a 

monolayer is easier to feed. With three-dimensional cultures, “the medium 

does not go into the inner layers. . . . [They] die off,” which would impede their 

goal of studying the dishes “over the long term. So, we want to keep them alive 

over months, years.” Additionally, if the model instantiated the more com-

plex system of a brain slice, the researchers would have to understand their 

preexisting network connections before they could initiate learning exper-

iments—a complex, if not impossible, undertaking. Finally, another design 

constraint figured into the choice of a monolayer. The recording technol-

ogy is limited to the grid of electrodes (MEA) embedded in the bottom of 

the dish, so only neurons close to those electrodes can be recorded. In all, 

the monolayer fits the constraints of the dish technology and provides a 

reasonable reduction of information for data analysis, while (they hoped) 

still instantiating the salient features of interneuron communication.

Figure 2.3a
A neuron dish device
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The researchers chose cortical neurons because the cortex is thought to 

have the most adaptable (“plastic”) neurons and to be where most general 

learning occurs in vivo. The dish model-system, then, provides both a means 

to investigate the basic features of interneuron communication and also 

whether learning can be induced in a system of neurons with just the net-

work properties of the brain, abstracted from other brain structures. The lab 

director thought this abstraction was justified because the research focus was 

to understand the network properties of neuron communication and learn-

ing, and for this goal, he reasoned, “it probably isn’t necessary to include all of 

the details . . . ​but it may be. So that’s part of our job to find out which details of the 

biology are important . . . ​and which are incidental.” So, determining the war-

rant for the dish as an analogue model was an ongoing part of their research. 

In comparison to lab A, there were many more open questions about the 

status of the dish as a basis for inference about in vivo neural networks.

Figure 2.3b
A network of neurons plated on an MEA
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Clearly no one saw the dish as realizing the philosopher’s vision of “a 

brain in a vat.” However, everyone agreed that the novel practice of in vitro 

modeling they were advancing would, at a minimum, yield understanding 

of the basic behavior and function of network-level cortical neurons. The 

director expressed the warrant for the research program: “First of all, it’s a 

simplified model; I say that because the model is not—it’s artificial, it’s not how 

it is in the brain. But I think that the model would answer some basic questions, 

because the way the neurons interact is the same whether it’s inside or outside the 

brain. . . . ​I think the same rules apply.” Here we see understanding and con-

trol are linked once again in the goals of the bioengineering research. The 

goal to determine these “rules” for the simple network would require the 

lab D researchers to develop a control structure for supervised learning. If 

they could achieve that, then it might be possible for the research to move 

on to design a more complex dish model-system that would instantiate 

other relevant features of brains, such as “cultures with different brain parts 

mixed together or specific three-dimensional pieces that are put together.” This 

move would be comparable to lab A’s move from a model-system that uses 

endothelial cells on slides to one that uses tissue-engineered constructs—

but recall that move took nearly thirty years of research.

When the field began to use MEA dishes to study neuron network cul-

tures, researchers focused on recording and analyzing “spontaneous activity” 

of the network (open loop electrophysiology). Lab D aimed to determine 

whether networks can learn, which they operationalized as creating a “last-

ing change in behavior resulting from experience.” In vivo neuron learning 

involves embodied interaction with the world. So, to create behavior, as 

the director specified, “an in vitro learning system somehow has to be connected 

to the outside world. In order for learning to have any definition at all, there has 

to be some way for it to behave, and to see whether there was some change in 

behavior, there has to be sensory input to see whether you could even influence 

that. Those were my prerequisites for learning.” The researchers contended that 

to achieve learning requires the ability to evoke neural activity through 

controlled electrical stimulation and feedback (closed loop electrophysiol-

ogy) through an embodied dish model-system. To carry out their investiga-

tion, the lab D researchers needed first to develop their own technologies 

to stimulate the dish and to study its responses—a process they called “com-

municating with the dish”—and then to create appropriate “bodies” for the 

dish. This work included that the researchers learn to interpret, control, 
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and mathematically represent the dish’s behavior under various conditions. 

Chapter 3 examines their electrophysiology research in my analysis of a 

process of concept formation and change that was instrumental in their 

solution to the problem of getting the dish to learn, so here I provide only 

a brief outline of the technologies the lab developed to carry out open-loop 

and closed-loop electrophysiology research.

Every experiment involves electrical stimulation and recording. Every 

piece of data collection and analysis involves multiple interlocking mod-

els. During our investigation, the stimulator board (transmits signals to the 

dish) and preamplifier (amplifies dish output signals) were placed inside 

the incubator with the dish, making up what they called the “stimulation 

site” (later these were moved outside). The researchers would program the 

board with a “stimulation protocol” formulated from a rough hypothesis 

about the “character” of a specific dish, based on observations of its spon-

taneous behavior or behavior derived from the experiments that had been 

conducted on it as recorded in the dish log. The MEA electrodes pick up 

and amplify the electrical signals from the neurons in response to a stimu-

lus. These voltage changes (analogue) are transmitted to a data acquisition 

card, which samples the signals (25K per second) and transforms them into 

digital (numeric) signals. The researchers developed a suite of custom soft-

ware tools to process the digital signals, MEAbench, after the software they 

purchased failed to have the various functions they required. The software 

captures signals and simultaneously saves them to the computer hard drive 

as a permanent record to provide the lab with a memory of the experiments 

performed on each dish, and sends them to their real-time visualization 

software tool, MEAscope. Just building all this software took nearly a year. 

In essence, the MEAbench software provides a series of filters to transform 

the raw numerical data into usable information. The researchers designed 

each of the filter algorithms on a model of selected electrical signals. Thus, 

even the ability of the researchers simply to “see” the neuron network activ-

ity is conditioned on a number of interlocking mental, physical, and algo-

rithmic models. I say more about how they manipulated and interpreted 

data in chapter 3; here I introduce the main data of interest: spikes. The lab 

researchers conceptualized the notion of plasticity, a biological property, in 

terms of a quantitative measure based on recorded spikes of electrical activ-

ity in the neuron network.
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Historically, the term “spike” designates the electrical trace left behind 

when a single neuron fires. In single-cell recording, neuron firing produces 

a steep jump in voltage potential as the neuron depolarizes, followed by a 

proportional drop in potential as the neuron recovers (action potential). 

Recorded visually, this process produces a spike figure. The lab D researchers 

estimated that the electrical activity recorded by an individual MEA elec-

trode comes from three to five neurons, which possibly fire simultaneously. 

Thus, it is impossible to tell the difference between single and multiple neu-

rons firing. Usually spikes are tagged manually, but the researchers replaced 

that tedious process with their own software that automated the process of 

tagging spikes. Their “spike detector” embodies the lab’s model of a multi-

neuron spike that includes “height” (difference from average voltage) rela-

tive to the noise on the electrode and the “width” (duration) of the change, 

along with a few more subtle characteristics. The spike detector checks for 

jumps in voltage that match the model, tags the spike, and keeps a snap-

shot of the electrical activity in the immediate surroundings of the spike.

Earlier, I said the copious wires indicated that the lab’s main activity was 

signal processing. We see why here. The information provided by neural 

signal data provides the basis for understanding how the networks represent 

and transmit information. In all, the researchers built several pieces of such 

software, which they called “filters,” designed on various models of aspects 

of neural signal data. These filters transform the neural signals before they 

become the final filtered spike data on which their analysis began. The fil-

ters can miss actual neuron firings or provide false positives. The researchers 

performed data analysis in light of their understanding of all the transfor-

mation processes the neuron signals have undergone with all the software 

they have built. The simplest form of analysis uses spike data that have been 

transformed into a visualization by MEAbench and displayed by MEAscope 

on the computer screen in an 8x8 grid arranged topographically to match 

the layout of the electrodes of the dish (figure 2.4). When the spike detec-

tor is turned on, the visualization software places little red dots at the peaks 

for easy visualization of spikes. Because the researchers’ primary interest 

was on network learning, they focused on spikes detected after electrical 

stimulation.

The simplest model-system was the dish itself, which, when connected 

to their stimulation and recording technologies, provided the site for in 
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vitro open-loop physiology (without feedback) experiments. But in vivo, 

the brain is embodied and learns in an environment, so, as discussed above, 

in vitro closed-loop physiology is needed to instantiate neuron learning 

behavior. As the director described, “[in] the traditional way to do in vitro 

physiology . . . ​the closest thing to behavior is little waves on the oscilloscope 

screen. It has nothing to do with behavior. . . . ​And there is not any sensory input 

other than electrical pulses. . . . ​It’s very disconnected.” To exemplify behavior 

requires that the in vitro system have features of a body relevant to neuron 

learning with which to interact with the environment. The director claimed 

to have gotten the idea of building embodiments for the dish from the pro-

ceedings of a conference on adaptive behavior in the 1990’s: “All of the 

people in that book are simulating animals or what they called ‘animats.’ . . . ​

They were simulating these things on a computer or they were building robots that 

were animal simulations. They were continually emphasizing the importance of 

Figure 2.4
A screenshot of the lab’s MEA visualization of output spike data, which topographi-

cally matches the layout of the electrodes on the MEA grid. This visualization is 

displayed on an oscilloscope.
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embodiment and being situated.” The goal to build embodied dish model-

systems was, at the time, unique to this lab.

The lab borrowed the computational practice of modeling animals, but 

transformed it into a more realistic in vitro model that had a living “brain,” 

the dish. The researchers created two different kinds of model-systems: 

“animats,” simulated animals connected to the dish that move in a compu-

tational world; and “hybrots,” hybrid robotic devices connected to the dish 

that perform in the real world. They also created animat model-systems of 

hybrot model-systems to investigate hybrot behavior in more detail com-

putationally. Building these model-systems, in turn, required the research-

ers to create more software models to capture such features of embodiment 

as motor ability. A major epistemic affordance of an embodied dish model-

system is that it provides the opportunity to investigate supervised learn-

ing in a controlled manner, “’cause you define what it’s going to learn based 

on the body you give it and the environment you allow it to work in.” As with 

the dish monolayer, in building these embodied model-systems researchers 

aimed “just to try and simplify everything . . . ​to make the data easier to analyze” 

and to be able to “just say, ‘okay this part of the simulation does this.’” These 

abstractions, which I will not detail, enabled the researchers to define more 

clearly questions and experiments that, in turn, produced data that were 

less complex and more easily interpreted.

Just as there are many creatures in the real world, lab D created a variety 

of animats and hybrots. The simplest animat was a simulated “moth,” located 

in a circle (environment) and at the center was a dot (light). Neuron activity 

in the dish is translated into motor commands that determine how the moth 

moves, and that movement is translated into “sensory” information in the 

form of patterned electrical stimulation that feeds back into the dish. The 

neurons read the change in information from the dish electrodes and the 

behavioral loop continues. The hybrot model-systems consisted chiefly of 

commercially available robots on wheels to which researchers attached dishes 

in special containers. Their most complex model-system was a collaboration 

with artists, the hybrot mechanical drawing arm MEArt, so named because 

it was both a research project and a mechanical art exhibit (figure 2.5).10 The 

robotic arm communicated via satellite with the dish in the lab and as it 

traveled the world, often accompanied by the lucky graduate student who 

was the primary lab member responsible for that research. Some of their 

research on learning using this model-system is discussed in chapter 3.
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Now that we have a basic understanding of each lab’s signature model-

systems in hand, we are in a position to examine how, in building these 

model-systems, the researchers create understanding through building 

D-cog systems that perform distributed model-based reasoning. In section 

2.2, I show how we extend the D-cog framework to accommodate inferen-

tial practices as a process marked by ongoing interaction between models 

in the researcher’s memory and artifact models, both under development. 

In section 2.3, I address how BME researchers build epistemic warrant for 

devices and model-systems as analogue representations that support under-

standing and inference about in vivo systems. I want to stress at the outset 

that in both of these theoretical analyses we see the “productive inter-

play” between case material that derives from an open empirical inquiry 

(“concrete”) and concepts and theoretical notions from cognitive science 

and philosophy of science (“abstract”), including my own prior work on 

Figure 2.5a
A photograph of the MEArt hybrot robotic arm drawing in a feedback loop with the 

dish of neurons. Behind it is a projection of the activity of its neurons (the dish) in 

real time. The arm and the dish are usually in different countries so it communicates 

with the neurons via satellite.
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conceptual modeling practices. The new modeling practices we uncovered 

both here (in vitro) and in systems biology (in silico) provide empirical 

findings from which to bootstrap further theoretical analyses.

2.2  “Putting a Thought into the Bench Top”: Distributing Model-Based 

Reasoning

Occasionally the researchers would surprise us by the simplicity with which 

they would inadvertently express the essence of a theoretical notion we, 

with difficulty, were attempting to articulate in our own field. When asked 

to characterize the in vitro modeling research, one researcher described it as 

“putting a thought into the bench top and seeing whether it works or not.” This 

characterization provides a concise, plain-English formulation of a concept 

Figure 2.5b
The photograph provides a sample of MEArt’s output behavior. (Photographs cour-

tesy of Guy Ben-Ary)
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I have been advancing, with doubtless less clarity, for some time: distributed 

model-based reasoning. From a D-cog perspective, in “putting a thought,” 

BME researchers distribute a process of reasoning about complex biological 

systems, which comprise imagination, visualization, simulation, analogi-

cal reasoning, and so forth, to the in vitro devices and model-systems they 

build. Building such models is a means through which these researchers 

create cognitive-cultural artifacts that extend their natural cognitive capaci-

ties into distributed problem-solving systems. Specifically, building model-

systems is the means through which BME researchers distribute processes of 

model-based reasoning across systems of interlocking models, as illustrated 

in figure 2.6. Such distribution creates a coupled model-based reasoning 

system comprising researcher and artifact models. We contend that the 

notion of coupling captures the interactive and system-level nature of rea-

soning better than the customary D-cog notion of off-loading. Reasoning is 

not off-loaded to the cognitive artifact, but, rather, carried out in interaction 

with it, that is, coupled with it. I develop this notion further in subsequent 

chapters.

In this section I consider, briefly, an exemplar of “putting a thought,” 

in which a researcher built an in vitro model-system to investigate her 

thoughts about the behavior of specific entities in the cardiovascular sys-

tem, and then explicate our analysis as depicted in figure 2.6. Then, I con-

sider how the BME practice of in vitro modeling, understood as “putting a 

thought” provides an instance of the broader notion of distributed model-

based reasoning introduced in chapter 1.

2.2.1  An “Experimental Model That Predicts”: The Construct-Baboon 

Model-System

One goal of lab A was to find a source of endothelial cells that could be used 

in a vascular graft without rejection by the host. As noted in the discussion 

of lab A’s model systems, the researchers were investigating whether it was 

possible to apply mechanical forces to generate mature cells, which would 

not be rejected by the host, from stem cells or other sources. The experi-

ment I discuss here was designed to see if a host’s own endothelial progeni-

tor cells (EPCs), which circulate in the cardiovascular system, might provide 

a source. How these cells become mature endothelial cells was not known, 

but the “thought” of the researchers was that mechanical forces of blood 

flow provide a likely in vivo mechanism for the maturation process. The 
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researchers hypothesized that harvesting the host EPCs and “precondition-

ing” them by subjecting them to shear forces in a flow loop would enable 

them to function like mature cells in the vascular system. In particular, to 

“see if it works,” they targeted the function of mature cells to express anti-

coagulant proteins—produce thrombomodulin—that prevent platelet for-

mation. To explore how preconditioned EPCs would behave under various 

preconditioning forces, they needed not only to conduct flow-loop simula-

tions, but also to build a model-system that would instantiate the features 

required to provide a simulation of their behavior as they function on the 

blood vessel wall under in vivo blood flow.

We followed a researcher, “A7,” from start to finish as she articulated the 

lab’s preliminary hypothesis into specific goals and problems and designed 

a model-system to investigate it. It took approximately three years for her 

to move from the hypothesis to the initial experiment. The experiment is 

significant because it constituted the lab’s first move in the direction of in 

vivo research and their application goal. Both A7 and the lab director empha-

sized its importance and centrality in the lab’s research program, as I discuss 

in chapter 4. However, this was not an experiment about the construct as 

an implant, since it was still far from being able to withstand blood flow 

forces and needed to be scaffolded with a silicon sleeve (figure 2.2b). Rather, 

the experiment was about the function of the cells within a “more realistic” 

model-system, which required they move into animal model studies, where 

more features of the human in vivo cardiovascular system would be instanti-

ated. They settled on using a baboon because of its availability at a lab nearby, 

and that lab director’s willingness to cooperate in creating the experimental 

setup. The baboon animal model-system, to which the construct model was 

to be connected, would provide a model of EPCs as they behave after circula-

tion in the human cardiovascular system. To prepare the baboon to function 

as a model, with minimal intervention and discomfort, the researchers in 

that lab surgically connected its femoral vein and the femoral artery with a 

permanent exteriorized shunt. During A7’s experiment, a long silicon tube 

was used to connect them so that a small amount of baboon blood flow could 

be diverted through a construct attached to the tube, and the tubing could be 

situated in a gamma camera at a sufficient distance from the baboon, so as 

not to frighten it. The baboon’s blood was injected with iridium so that any 

platelet formation would be visible as the blood flowed through the part of 

the tubing that was situated in a gamma camera.
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As I mentioned earlier, because the construct needed to remain in tubu-

lar form for this experiment, A7 had planned to do a major redesign of the 

flow loop to accommodate that shape. However, the baboon shunt gave A7 

the idea to also create an external “shunt” to connect the construct to the 

flow components with tubing. That shunt went through several designs 

and tests to ensure that it would keep the requisite flow characteristics of 

the chamber. This analogical redesign saved her the considerable time and 

expense of redesigning the flow chamber itself. Before we turn to our analy-

sis of her problem-solving process as an exemplar of distributed model-

based reasoning, it is instructive to examine her own succinct summary 

statement made in her final postgraduation interview with us.

What is most notable from her summary account of her experiment is 

how she seamlessly interlocks biological, engineering, and device concepts 

and models in thought and expression as she describes how she built and 

assembled the components of her model-system, conducted experimental 

simulations, and made inferences through these:

We used the shunt to evaluate platelet deposition and that would be—in other words—

were the cells, as a function of the treatment that they were given . . . ​able to prevent 

blood clotting? And so, we specifically measured the number of platelets that would sit 

down on the surface. More platelets equal a clot. So, it ended up being that we were able 

to look at the effects of shear stress preconditioning on the cells ability to prevent platelets 
and found that it was actually necessary to shear precondition these blood derived cells 

at an arterial shear rate, which I used 15 dynes per square centimeter compared to a low 

shear rate, which in my case I used like 1 dyne per square centimeter, so, a pretty big 

difference. But I found that the arterial shear was necessary to enhance their expression 
of anti-coagulant proteins and therefore prevent clotting. So, in other words, the shear 

that they were exposed to before going into the shunt was critical in terms of magnitude, 

for sure.

The bold text items mark reference both to interlocking interdisciplinary 

mental models as they function in her understanding and reasoning and 

to interlocking physical simulation models. To unpack a few of her expres-

sions, “the shunt” refers to the baboon understood as a simulation device 

that is part of a model-system. “The cells” are the endothelial progenitor 

cells she had extracted from baboon blood and had given the “treatment” of 

“shear stress preconditioning” (flow-loop device). She measured the “number 

of platelets” (an indicator of coagulation) on “the surface” (construct device). 

The objective of her research was to determine whether, and at what level 

of force, the preconditioning (“arterial shear” simulation) of cells (construct 
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device) would “enhance their expression of anti-coagulant proteins” or “prevent 

platelets.” In carrying out several iterations of the experimental simulation 

over a period of many months, A7 adjusted the force of the fluid on the 

EPCs in the preconditioning process to determine at what force the platelet 

formation in the baboon model-system ceased. She found, in the course 

of these iterations with the entire experimental model-system configura-

tion (“used the shunt to evaluate platelet deposition”), that the in vivo human 

arterial shear rate (“15 dynes/cm2,” a mathematical model) was required for 

sufficient protein expression (“was critical in terms of magnitude”) in the in 

vitro model system.

By putting her “thought” about the pretreatment of the cells into build-

ing the construct-baboon model-system (the “benchtop” in this case), 

then, A7 was able to “see” that it worked, provided that the human in 

vivo arterial shear rate was used. Although her immediate inference from 

the simulation was specific to the effects of preconditioning the cells on 

the performance of the model-system, she intended this system to be what 

she called “an experimental model that predicts what would happen—or you 

hope that it would predict—what would happen in real life.” That is, the infer-

ence she drew about preconditioning from the model-system simulation 

provided a hypothesis about how a vascular graft seeded with EPCs would 

behave if it were implanted in the human cardiovascular system.

2.2.2  Interlocking Models in Distributed Reasoning

We developed an analysis of the construct-baboon model-system as a 

distributed model-based reasoning system. The diagram in figure 2.6 is a 

greatly simplified schematic representation of that analysis. We constructed 

it based on our data analysis quite a while before our final interview with 

A7, but each component appears in her account, which I presented above 

so that the reader could better follow our diagram. On the extension of 

the D-cog framework I proposed in chapter 1, mental models and artifact 

models form coupled (interlocking) configurations in experimental simu-

lations. To construct the diagram, we used Hutchins’s notion that in per-

forming a problem-solving task, a D-cog system generates, manipulates, 

and propagates representations, in this case, models. The diagram in figure 

2.6 traces parts of the propagation of mental and artifact models within 

the D-cog system that constitutes A7’s experimental simulation. In the fig-

ure, the models are highlighted by thick lines. The flow arrows represent 
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the propagation of representations in the system as they are generated and 

manipulated. The categories of device, instrument, and equipment derive 

from a sorting task we conducted with the lab members of the artifacts 

used in their research (see chapter 4). To keep the diagram from becoming 

too complex, the numerous connections to other researchers and artifacts 

in the lab problem space are not included, but the construct, flow-loop, 

and baboon devices are to be understood as communal achievements, each 

representing years of research. In the process of preparing an experiment, 

including preliminary trial simulations, each artifact model and mental 

model can undergo numerous iterations.

Each researcher mental model is a part individual, part community rep-

resentation. Each artifact model represents and performs as a selected aspect 

of the cardiovascular system, for example, a construct represents and per-

forms as selected aspects of the biological environment of the blood vessel, 

the flow loop represents and performs as shear stresses on arterial walls, and 

the baboon model represents and performs as blood flow through a human 

cardiovascular system. Neither artifact nor mental models in an experimen-

tal set up are static; rather they are representations that can change in inter-

action over time as each component is developed and with each iteration 

and simulation of the experimental setup. In this way, these interlocking 

models provide an instance of a coupled system through which inferences 

are made.

There are three main components of this model system. I will call them 

“construct” (left third of diagram), “flow loop” (middle), and “baboon” 

(right third). Model-system configurations, though evolving artifacts, are 

long-term investments. It took more than three years of building the first 

two components before A7 could run the final experiments with the entire 

system over a further two-year period. Also, while she was preparing, the 

animal lab moved from a nearby institution to one that was in a distant 

state, which required her to fly there with the other artifact models. I pro-

vide a brief outline of what should be understood to consist of numerous 

iterations of building the models represented in each part of the diagram.

Considerable novel research went into building the construct (diagram 

left third) so that it could be used in the baboon model. Issues of mechanical 

integrity (strength) were significant, since it needed to be able to withstand 

nearly normal blood forces and also not leak. The desired final experimen-

tal configuration required that this construct model be what the researchers 
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considered to be the most “physiologic” one the lab could create, in that it 

instantiated all but the outer layer (adventitia), which A7 thought was not 

necessary to the experiment since she would need to develop a scaffold to 

suture the construct to the baboon model. She also surmised it might even 

grow on its own. Endothelial progenitor cells (EPCs) were extracted from 

a baboon’s peripheral blood. For a while A7 worked just with the EPCs on 

slides. She used the lab flow-loop model at various shear rates and then 

used several instruments to extract information about their protein and 

gene expression. She went through numerous iterations of manipulating 

EPCs and using various instruments to examine the cells for expression 

of molecules for thrombomodulin, which facilitated her building a men-

tal model of their function and behavior in relation to shear stresses, and 

contributed to building the final construct device for these experiments. To 

build a construct that she could use with the baboon further required that 

she isolate an intact elastin scaffold, remove vascular smooth muscle cells 

from harvested carotid arteries, and determine the right collagen mix. To 

suture it to the tube connecting the baboon shunts, she needed to deter-

mine the right scaffold material for the sleeve, which would enhance its 

ability to withstand in vivo blood flow as well.

As I noted briefly earlier, A7 had originally proposed to redesign the cham-

ber of the flow loop in order to condition the constructs in tubular shape 

(diagram, middle third). In the end, significant redesign turned out to be 

unnecessary because she had the insight that it should be possible to design 

a shunt for the flow loop to which she could attach the construct with tub-

ing to precondition the cells. She needed to determine that using the tubing 

would keep the flow components the same as they are in the chamber. After 

I had hypothesized that A7 had made an analogy with the baboon shunt, I 

asked her how she had come up with the idea in an email and she confirmed 

this, while she also explained how the shunt works for the flow loop and 

why she was justified to use it. She wrote that, once the construct is sutured 

into the tubing that connects to the flow-loop components it “fits in the 

place of the parallel flow chamber. . . . ​The shear stresses are the same and can be 

controlled like in the flow chamber. We consider the construct a rigid cylindrical 

tube of constant diameter and if we assume we have fully developed flow (just like 

the parallel plate flow chamber) going into the construct, we can predict the wall 

shear stresses on the cells based on fluid mechanical theory.” Here we again see 

the lab’s engineering framing of the biological entities and processes. A7 ran 
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many simulations to examine flow rates on the EPCs with just a construct–

flow-loop model-system before advancing to the baboon system.

The baboon model (diagram right third) provided a functional evalu-

ation of the preconditioned EPCs in an environment that parallels the 

human cardiovascular system. The model had been prepared to her specifi-

cations by the animal lab. Before running the experiment, she sutured the 

construct to a long tube attached to the shunt so that it could be placed 

directly on the gamma camera (a commercially available instrument the size 

of a small table) to capture and observe platelet formation during real-time 

blood flow. The baboon sat at a significant distance in a specially designed 

restraining chair, blindfolded to keep it calm, and with a suit over its body 

to prevent it from pulling on the shunt. As blood, which had been injected 

with iridium, flowed naturally through the baboon, A7 took pictures with 

the gamma camera so she could see any platelets that formed. The con-

struct was then disconnected from the baboon, and she used other instru-

ments and software programs to analyze the EPCs for information about 

expression of thrombomodulin, optical density, and electrical resistance.

However, although the baboon model exemplifies the in vivo human car-

diovascular system better than the construct–flow-loop model-system, it is 

less reliable as a model than a fully in vitro engineered system. As A7 noted, 

“In the lab we can control their [endothelial cells] environment completely. . . . ​

We can control exactly what flow is like and we can monitor by visually seeing 

it. But when we move to an animal model, it’s more physiologic—the challenge 

then is that it’s a much more complex system.” To advance the research, then, 

some control and precision needed to be sacrificed. A7 made several trips 

over two years to the out-of-state lab where the baboon model resided to 

run experiments, modified her experiments on the basis of the simulation 

results, and, in the end, she was able to establish that, in precondition-

ing the EPCs, the normal human blood flow rate was required to prevent 

platelet formation. This understanding was an important contribution to 

the lab’s goal to find an endothelial cell source for vascular grafts. If the 

hypothesis was transferred and successfully verified for the human system, 

it would mean that the host’s own EPCs could be harvested for the graft. 

On our D-cog analysis, in this case, the “experimental model that predicts” 

encompasses the entire system of mental-artifact-animal models through 

which A7 could make that analogical inference.
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2.2.3  Representational Coupling in Distributed Reasoning

“Putting a thought into the bench top” in a D-cog analysis is a process that 

turns a preliminary conceptual (mental) model into a physical model that 

affords a more detailed representation, a wider range of manipulations—

including possible and counterfactual situations—and more control than 

would be possible in thought alone. In the processes of co-constructing 

mental and physical models, correspondences develop between them, 

which are updated through interaction between them. The artifact model, 

then, provides a site of simulation not just of some biological or mechani-

cal process, but also of the researcher’s understanding, both of which can 

alter in interaction. To capture this interdependence as a D-cog system, we 

understand the researcher mental model and the artifact model to form a 

coupled system. In the example, what this means is that in building a con-

struct to precondition in the flow loop, A7 also builds a mental model that 

selectively interlocks what she understands from cell biology, vascular biol-

ogy, and fluid dynamics. This mental model represents biological aspects of 

endothelial cells with respect to mechanical forces in terms of the hybrid 

concept of arterial shear (force of blood as it flows over these cells, causes 

elongation, proliferation, and so forth), which can alter in interaction with 

building and simulating in vitro models. In this co-building process, the 

researcher develops mental models both of the in vitro model as it exempli-

fies an in vivo system (model qua model) and as it is an engineered artifact 

(model qua device).

In general, this representational coupling is an interactive bidirectional 

process different from what is customarily understood as off-loading a cog-

nitive function or process to an external artifact. The notion of coupling 

captures the idea that, as researchers gain understanding and make infer-

ences by means of manipulating the artifact models, features of their mental 

models can change, which in turn can lead them to alter the artifact models. 

Such mental-artifact representation-building processes can take place over 

short periods of time during hands-on building or over longer spans. These 

coordinated dynamic processes couple the researcher mental model and 

the artifact model into a distributed model-based reasoning system. Cast 

in these terms, then, what the A7 referred to as the “experimental model that 

predicts” comprises the entire model-system: researcher mental models and 

artifact models interlocked in various experimental simulation configura-

tions from which inferences derive. These inferences are, in the first place, 
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about the model system, but the goal of the research is to derive inferences 

that are sufficiently warranted to transfer to “what happens in real life.”

However, in this case and in general, researchers in BME are often far 

away from being able to test inferences from in vitro simulations in real 

life. In the circumstances of A7’s research, the value of the model-system is 

that it provided a means of getting a grip on the dynamical behavior of the 

EPCs circulating in the blood stream, a biological system about which little 

was currently understood in the field. This research was also a step in mov-

ing incrementally toward achieving the lab’s applied goals. The construct-

baboon model-system was the lab’s first step into the real world. A further 

step would be to implant a vascular graft directly into an animal rather 

than using the bypass shunt, but when and whether they would be able to 

do this was dependent on another line of the lab’s research that aimed to 

strengthen the construct so as to be able to withstand the forces of blood 

flow in vivo without scaffolding (see chapter 4). For the lab’s then-current 

state of research, the model-system enabled A7 to infer additional features 

of the behavior of EPCs in response to mechanical forces, from what the lab 

currently understood. This new understanding derives from a complex pro-

cess of distributed model-based reasoning, but what enables the researcher 

to have some assurance that she is on a productive path with an in vitro 

device or model-system—that it has the potential to provide understanding 

of an in vivo biological process?

As discussed in chapter 1, scientific practice, unlike other practices 

examined in the D-cog framework, has epistemic goals. Thus, we need to 

examine not only how inferences derive from in vitro model-systems, but 

also to account for how these inferences could provide hypotheses about 

the in vivo system. In general, the warrant for such transfer depends on 

the kinds of considerations BME researchers advanced in section 2.1 in the 

assessments they make of the fit between the devices and model-systems 

and the target in vivo systems during the building processes, as well as 

in their evaluations of outcomes from experimental simulations. We saw, 

for instance, researchers query: Is a first-order approximation sufficient for 

representing blood flow? Do the effects of shear stress on the cells in a flat 

construct differ in relevant ways from the effects in tubular arteries? Can a 

network that uses only cortical neurons provide a model for learning? And 

so forth. These are questions about the relevance of the features they have 

selected to instantiate—or not—in the model. To attain the epistemic goals 
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of distributed model-based reasoning requires that selected model features match 

to the target phenomena in ways relevant to the problem and goals at hand, and 

that nothing essential to the problem is left out.

2.3  Predicting “What You Hope Would Happen in Real Life”:  

Building Epistemic Warrant

In vitro models are the primary means through which researchers in numer-

ous fields of BME gain epistemic access to complex biological phenomena. 

The researchers develop epistemic warrant for a model through the prin-

cipled decisions and rationalizations they make in the processes of building 

it. Building epistemic warrant for a model is a significant piece of the pro-

cess of building to discover. The warrant for using these kinds of models as 

epistemic tools, then, is connected to how the models function as dynamic 

representations; that is, how they are designed to instantiate and simulate 

in vitro features. It does not matter to the airplane pilot how the system of 

the speed bug was built to be able to use it to solve the problem of adjust-

ing the plane’s speed during landing. But a biomedical engineer needs to 

know how a model is built and in what ways it does or does not exemplify 

features relevant to the research in order to claim to have gained insight 

into and, have hypotheses about, an in vivo target system from experi-

ments conducted with in vitro model-systems. We saw ample evidence in 

our research that the researchers do have this knowledge of their models, 

as I briefly detailed in section 2.1. What I propose, and consider in this sec-

tion, is that for philosophers to understand how the practice can achieve 

its epistemic goals through such model-based reasoning, we need to under-

stand the epistemic affordances of the models as built analogies.

In the words of our researchers, models are designed to “parallel” or 

“mimic” features of the in vivo phenomena. I interpret their expressions to 

mean that in vitro physical simulation models are built to provide struc-

tural, behavioral, or functional analogue representations of selected dimen-

sions of complex in vivo biological systems. They provide a way to get 

a grip on the behavior of a biological system by creating a virtual world 

through which to conceptualize, control, and experimentally probe aspects 

of a complex dynamic system. They are, to some extent, in the words of 

lab D researchers, “building science fiction.” But, the models can function 

as epistemic tools only if they have been designed with an appropriate 
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representation of biological facts. Importantly, unlike computational virtual 

worlds, in vitro models are composed in part of biological materials, so the 

cells and tissues have biological functionality that needs to be maintained 

as they interface with engineered materials and perform under greatly sim-

plified conditions, all of which figure into how they function epistemically. 

And, to add a level of complexity, most model-systems are nested analo-

gies, that is analogies within an analogy (Nersessian and Chandrasekharan 

2009). For example, the flow loop provides an analogy to hemodynamics, 

the construct provides an analogy to the blood vessel wall, and the model-

system they constitute provides an analogy to blood flow in an artery. So, 

the considerations in play are not only about each model, but also about 

how the model-system fits together (interlocks).

So, what enables the researchers to have some assurance they are on a pro-

ductive path with a device or model-system design? Despite their complexity, 

in vitro models are missing much of the in vivo target system. Determin-

ing what can and cannot be left out is a multidimensional problem that 

requires the researcher to track a number of constraints at the same time. 

What we saw in our data is that researchers were continually asking the 

question I phrase generically as, “Is the model of the same kind as the in 

vitro system along the dimensions relevant to the problem?” That is, are 

the features instantiated such that the researcher is warranted to infer that 

the behaviors of the model belong, along specified dimensions, to the same 

class of phenomena as those of the in vivo biological system? Answering 

that question requires an assessment both of the relevance of the features 

that are instantiated in the model to its behavior and of those that have 

been left out. As I have argued in my (2008) analysis of conceptual ana-

logue models, the best way to interpret that question is as asking whether 

the built analogy exemplifies the features relevant to the research.

In the sense advanced by Goodman (1968) and Elgin (2009, 2018), “X 

exemplifies Y” means “X instantiates relevant features of Y and refers to 

Y by means of that instantiation.” A paint chip, for instance, instantiates, 

and so refers to, a selected color that is relevant to the goal of the painter 

to reproduce that color on a wall. The notion of exemplification captures 

the representational relation the researchers aim for as they build models 

to parallel and mimic in vivo phenomena. The dish not only refers to neu-

ronal network processing, it is doing such processing in a neuron network 

simplified to a monolayer. The flow loop, in performing, not only refers to 
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shear stress forces in a process of blood flow through the endothelial cells 

in a blood vessel, it also produces those shear stress forces. The liquid has 

what the researchers judge to be relevant fluid-dynamic features of blood 

as it flows over the endothelial cell cultures or the construct device that 

has been designed to have relevant features of the blood vessel wall. The 

in vitro models, then, are successful as exemplifications if, indeed, they 

possess the features of the in vivo phenomena germane to the problem at 

hand, and much of the research is directed toward determining if this is the 

case. Such determination requires the researcher to consider the relevance 

of both what is and what is not instantiated to the behavior of the system. 

For instance, lab A researchers could examine and make inferences about 

cell proliferation and morphology when they used the flow-loop–cells-on-

slides model-system, but not the functional relations between them and 

smooth muscle cells, which led them to develop the construct that instan-

tiates both types of cells and supporting tissue. Importantly, then, what 

is not instantiated (either negative or neutral analogy) at a specific point 

in a research program provides a potential resource for further develop-

ment. Building in vivo models toward exemplifying features is an iterative 

and incremental process of epistemic iteration. Models that are satisfactory 

exemplifications provide the researchers with warrant for analogical trans-

fer of experimental outcomes. So, analogy and exemplification work together 

in model-based reasoning, as I consider next.

2.3.1  Analogy and Exemplification

The BME epistemic practice of building devices and model-systems is, fun-

damentally, an analogical practice. The researchers aim to design models to 

provide analogical sources that have the potential to provide understand-

ing and control of complex biological systems. This analogical practice is 

quite unlike any considered in the customary philosophical and cognitive 

science literatures. Usually, analogy is cast as a process of making sense of 

what we do not understand (target) in terms of what we do (source). In the 

case at hand, little is understood about either source or target at the outset. 

In the usual case of analogical problem-solving, the reasoner retrieves a 

previous problem solution—or, more broadly, an existing representation—

that provides a source analogy, determines a mapping between source and 

target, transfers features from source to target, and evaluates inferences 

with respect to the target domain. Mary Hesse (1963), whose account has 
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been most influential in both philosophy and cognitive science, called the 

features that form the mapping “positive,” if they match the target, “nega-

tive,” if they do not match, and “neutral,” if their status is unknown.11 In 

her account, the neutral features provide a resource for further develop-

ment. Although negative features as a possible resource are not addressed 

by Hesse, Tarja Knuuttila and Andrea Loettgers (Knuuttila and Loettgers 

2014) have shown in their recent analysis of interdisciplinary analogy use 

(retrieved analogies) in synthetic biology that negative features also can 

lead to further development. I have argued this as well with respect to built 

analogies, where features not exemplified in a model can provide negative 

analogies that can be evaluated as opportunities for development (see Ner-

sessian 2008).

Although models have pride of place in contemporary philosophy of 

science, scant attention has been directed toward the analogical dimen-

sion of models besides my own (Bailer-Jones 2009; Harré 1970; Black 1962; 

and Hesse 1963 provide exceptions). I venture this lack of attention stems 

from the fact that the literature focuses on models as derived, at least par-

tially, from theories, which has brought to the fore traditional represen-

tational issues associated with realism and especially the problem of how 

“false models” can support predictions or provide explanations. I have been 

arguing that starting from the other direction—that of building models 

“from the ground up” in the absence of a theory of the phenomena under 

investigation—underscores how models and analogies are tightly bound 

(see, e.g., Nersessian 1992a,b, 2008). I contend, too, the analogical relation-

ship between model and world has importance, thus far not addressed in 

the literature, for the customary, reverse direction (models from theories), 

since it provides the means to transfer prediction, explanation, and under-

standing from model to world. In addition, as Hesse (1963) pointed out 

in her groundbreaking analysis of models as analogies, the source model 

is always a false representation in that it cannot accurately or adequately 

represent all the features of the target phenomena. With her, I contend that 

“true” and “false” are not the appropriate categories for thinking about 

models. But neither is Hesse’s, and the customary, notion of similarity, as 

an extensive philosophical literature has been arguing. It is not necessary 

to get into the intricacies of these discussions for our purposes, however, 

because in vitro simulation models must instantiate relevant biological 

features in order to function properly, and so “similarity” is also not an 
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appropriate category for the representational relation between these kinds 

of models and the in vivo phenomena.

The vast cognitive science literature on analogical reasoning, too, does 

not attend to the creative work of building the source representation that is 

central in the kinds of analogical problem-solving I have been considering.12 

Cognitive science has made significant contributions to analogical reason-

ing that are useful to epistemic considerations, such as the overwhelming 

experimental evidence that, by and large, productive analogies rely on 

mapping relational structures (see, especially, Gentner 1983; Gentner et al. 

1993; Holyoke and Koh, 1987; Holyoke and Thagard, 1989) rather than 

similarities between properties, and that multiple constraints, including 

goals, direct the mapping and transfer processes (see, especially, Holyoak 

and Thagard 1989). I have reviewed, analyzed, and critiqued the cognitive 

science literatures on analogy in my 2008 book, and I refer the interested 

reader to the discussion there in chapters 5 and 6, rather than reprise that 

analysis in full. Instead, here I focus only on the aspect of my account 

developed there of analogical reasoning in creative problem-solving in sci-

ence that is addressed by neither the philosophical nor cognitive literatures: 

building the analogical source/base. If we attend to this aspect, it becomes 

clear there is a significant linkage between models and analogical infer-

ence. My prior analysis concerned building conceptual models. The in vitro 

model-building practices discovered in our empirical investigation provides 

an opportunity to advance that account.

The standard analyses assume that in problem-solving, source analogies 

are prior (though not necessarily easy to retrieve) problem solutions the rea-

soner has encountered. However, there is a significant representation-building 

aspect of analogy in science for which several sources of data provide evi-

dence, including historical, think-aloud protocol, and ethnographic data 

(Nersessian 2008). Although what we customarily understand as analogy 

occurs in science, that is, a comparison to what is ready-to-hand, for fron-

tier research problems there is often no such analogical source. Rather, the 

source analogue itself needs to be created in interaction with the goals and 

constraints of the target problem—a process that furthers the articulation 

of the problem itself. My original analysis of building analogue sources con-

centrated on conceptual models in physics, in interaction with diagram-

matic representations. Here I list the following takeaways from that analysis 

that are relevant to BME in vitro models as built analogies.13
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The main features of building analogue source models are these:

•	 Building processes are goal-directed.

•	 Building processes are iterative and incremental.

•	 Interaction between source and target is ongoing in the building process.

•	 Elements used in building analogies can derive from more than one 

domain (hybrid analogies).

•	 Various abstractive processes are used to select features and to merge 

target, source, and model constraints.14

•	 Mappings are established during the building processes, so in most cases 

mappings develop over time.

•	 Models are built toward instantiating features germane to the epistemic 

goals.

•	 Models are evaluated on the basis of whether they in fact exemplify rel-

evant features.

•	 Features not exemplified can provide a resource for further development.

•	 Analogical transfer requires that a model instantiate relevant features.

As we saw, BME researchers aim to build physical simulation models to 

the degree of specificity they believe sufficient to examine an aspect of the 

in vivo phenomena in a cognitively tractable manner. This goal is informed 

by an assessment of both the current state of understanding of the phe-

nomena and the degree to which the current state of the available materials 

and technologies constrains and enables design possibilities. With respect 

to the latter, for instance, the lab A researchers were aware that the cells-on-

slides model did not instantiate some clearly relevant features of the blood 

vessel wall, but the development of the construct model had to await the 

advent of tissue engineering. Given the frontier nature of the research, all 

of these factors change over time; thus, the building process is incremen-

tal, as the representation is developed over an extended period. Further, to 

underscore the engineering dimension, models are hybrid constructions, 

and there is tension between the constraints on the design and functional-

ity of a device that derive from biology and those from engineering. Some 

selections are made in order to merge these constraints, and these need 

to be considered in assessing the warrant for any inferences they transfer. 

For instance, part of lab D’s use of a monolayer of neurons had to do with 

the construction of the MEA and its recording capabilities; part, with the 



94	 Chapter 2

ability to feed the neurons given the overall construction of the dish; and 

part, with the need to begin with a “simpler system to study” than if three-

dimensional layers were to be used. These and other considerations added 

a level of uncertainty as to whether the dish model could actually achieve 

learning and what it would mean for learning in the brain if it did, that is, 

how and what it exemplifies (see note 5).

During our investigation, in both labs the researchers’ concerns about a 

model’s relation to the in vivo system informed decisions about design and 

redesign, as well as how they evaluated experimental simulation outcomes. 

Importantly, in vitro models are dynamic systems, and a model needs 

to instantiate those features that enable the cells and tissues to behave 

(“mimic”) in an experimental simulation as they would in the in vivo phe-

nomena under those conditions. A major epistemic task, therefore, is to 

determine what those features might be and whether or how any abstrac-

tions that have been made can impact behavior. Take, for instance, a flow-

loop simulation that instantiates first-order (laminar) blood flow. This is 

a counterfactual situation because there are always higher-order effects in 

vivo, but for their initial epistemic goal to simply understand in what ways 

forces can affect the morphology and proliferation of endothelial cells, the 

researchers argued that there is no need to capture the full complexity of 

the in vivo blood flow at the outset. The reasons researchers gave for this 

choice included such considerations as these: there are places of laminar 

flow in the circulatory system as the flow gets further away from the heart, 

laminar flow enables them to impose a well-defined shear on a population 

of cells, and if indeed the cells functioned differently in significant ways in 

vivo (e.g., gene expression), the device design affords (or can be redesigned 

to) the possibility to simulate higher-order effects. These reasons, in order, 

are of the following sort: the model instantiates a germane feature of a part 

of the in vivo system of interest, the model achieves an important engi-

neering goal that reduces the complexity of the analysis, and the model 

can be made to instantiate other features of the system if in vivo biological 

function is importantly different. They did use the flow loop’s capacity to 

simulate higher-order effects in later research when it became technologi-

cally possible to examine gene expression, which made it worthwhile to 

investigate these effects (initial negative analogy).

Importantly, redesign is an overarching agenda in in vitro modeling 

in BME. Some redesigns have to do with improving the engineering and 
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others are made for practical purposes, such as enhancing the viability of 

cells. The most important redesigns, however, are to improve the nature of 

the parallelism to the biological phenomena of interest, if only in minor 

ways, as they are made to provide better or different exemplifications. This 

process is often motivated by known negative analogies. Redesign can be 

driven by a change in understanding of the phenomena or of the problem 

or by a change in technological and material capabilities as the research 

progresses. At any point in time, in vitro models are in different stages of 

development. During the period of our investigation, the flow loop was 

quite stable, and the construct was still undergoing design changes, aimed 

mostly to improve its mechanical strength toward that of the in vivo artery. 

Although the dish design was stable, experience with it was quite limited, 

and the embodied systems were newly under design. Thus, exemplification, 

at least in this context, needs to be understood as a historical process. There 

are usually quite numerous obstacles along the way, but determining how 

to overcome or get around these provide opportunities for learning about 

the model and the in vivo system. Once the kinks have been worked out of 

a design and the researchers assess that it has met their current epistemic 

goals, change is largely incremental. In vitro systems are meant to be sites 

of long-term investment so as to enable systematic experimentation.

The programmatic agenda of redesign makes lab history a hands-on 

resource, since the current design needs to be understood as conditioned 

on the problem situation as it existed for the lab at a prior time. It is thus 

important in moving the research forward that researchers know what, 

how, and why design choices and changes have been made. Although the 

flow loop was a stable design at that time, the researchers were able to 

recount its redesign history, as well as to envision potential changes down 

the road. Notably, we saw few instances in which a kind of model was 

abandoned completely. In those cases, the reason was either that line of 

research had come to an end or researchers found a better, often simpler, 

way to achieve their goals. Because of the incremental nature of design, 

the analogical mappings between built source and target are not fixed as 

they are with retrieved sources, but rather are what we called “creeping,” as 

models are built toward providing better analogical sources (Nersessian and 

Chandrasekharan 2009; Chandrasekharan and Nersessian 2017). A better, 

more satisfactory analogue model is one that improves or enhances the rel-

evant features of the target system that the model exemplifies. For instance, 
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some important information could be gleaned from the dish by stimulating 

it with electrical signals and recording its response (open-loop physiology) 

but a closed-loop model-system in which the dish is connected to a robotic 

or computational model is a more satisfactory analogue because it instanti-

ates “sensory” feedback as occurs in the in vivo brain.

Now that I have laid out my idea of how analogy and exemplification 

work together to build analogical mappings and provide warrant for trans-

fer, it is useful to take another look at the processes through which the 

lab A researchers designed and redesigned various flow-loop model-systems 

as a concrete illustration, which itself exemplifies the BME practice of in 

vitro modeling. When we entered this lab, in vitro research had been under 

way for more than twenty years, so much more was understood about the 

in vivo phenomena than would be the case in more preliminary research, 

such as in lab D. Scientific  understanding of the biological phenomena was 

informed now by decades of this (and other) lab’s in vitro research and ani-

mal research, as well as vascular and cell biology research by bioscientists.

2.3.2  Building Analogue In Vitro Model-Systems

At the start of his research into the problem of the effects of mechanical 

forces of blood flow through arteries on the cardiovascular system, the lab A 

director decided to greatly simplify the vascular system by focusing only on 

the endothelial cells, which form a monolayer that provides the inner lin-

ing (endothelium) of the blood vessel. The reason he gave is that “it’s the cell 

layer in direct contact with flowing blood” and so “it made sense to [him] that, if 

there was this influence of flow on the underlying biology of the vessel wall, that 

somehow that cell type had to be involved.” Thus, the initial in vitro model 

system was designed to exemplify the shear forces in the process of blood 

flowing (flow loop) over the endothelium (cell on slides). In vivo hemody-

namics is a complex process that has areas of laminar flow (smooth path 

without interference) and areas of turbulent flow (whirlpools) as the heart 

pushes the blood through the system. Further, the process varies over the 

course of twenty-four hours. Things change constantly in human bodies 

over the day and over lifetimes, including physiological flow rates. These 

changes had been a significant problem in the director’s earlier animal stud-

ies, and motivated his move in vitro. So, researchers saw flow-loop simula-

tions as “something very abstract because there are many in vivo environments 

and many in vivo conditions within that environment.” The lab used mainly 
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unvarying laminar flow in its simulations: it instantiates the shear stresses 

during blood flow in an artery to a “1st order approximation of a blood vessel 

environment . . . ​as blood flows over the lumen.” The researchers maintained 

that this reduction was a warranted selection because it enables “a way to 

impose a very well-defined shear stress across a very large population of cells 

such that their aggregate response will be due to [it] and we can base our conclu-

sions on the general response of the entire population.” That is, this abstraction 

enables them to determine changes in cell morphology and proliferation 

across a population, characteristics that can be easily determined visually 

by means of a confocal microscope and Coulter counter, respectively, and 

can be related directly to the controlled shear stresses and quantified.

These studies provided provisional understanding sufficient for the 

researchers’ goal of getting a grip on these effects of blood flow about which 

nothing was known at the outset. The researchers, were, however, aware of 

several negative analogies from the outset: cells on slides, laminar flow, and 

lack of diurnal blood flow variation. These were sources of further develop-

ment of the lab’s in vitro model systems. The flow loop, as designed, did 

have the capability to produce a range of flow rates. Flow-loop simulations 

could also be made to instantiate higher-order effects if there were reasons 

to do so, such as “if there’s a whole different pattern of genes that are upregulated 

in pulsatile shear.” In this circumstance, however, for many years there was 

no way to investigate possible salient differences in gene regulation. That 

potential came quite late in the research program, when gene array tech-

nology was developed, at which time they made an agreement to use the 

new technology at a nearby medical school. The prior basis for partial com-

parison of their results was provided by studies of morphology and prolif-

eration in vascular biology and whatever biological markers were available 

from biochemical studies. The possibilities for comparison from biological 

research were always fluid and not fully adequate for lab A’s purposes.

Two other negative analogies were important to furthering the lab’s 

research program. First, the flow-loop model exemplifies only one of the 

in vivo mechanical forces: shear stress. This is the force with the great-

est impact on the endothelial cells. Blood vessels are also subject to strain 

forces from the blood pressing on the vessel wall, but to instantiate this 

force requires a model that instantiates the topology of the vessel. As we 

will see in chapter 4, new simulation devices were built to investigate pres-

sure or strain, once the construct model was introduced. The other negative 
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analogy, as we have seen, concerned the use of slides with endothelial cells 

in culture in flow-loop simulations. The researchers recognized that this 

model-system does not provide “a physiological model,” that is, “putting cells 

in plastic and exposing them to flow is not a very good simulation of what is 

actually happening in the body.” What this means is that this simulation does 

not instantiate some of what they knew to be relevant mechanical and bio-

chemical features of blood flow through the lumen of an artery, and thus 

limits the understanding obtained from it. For one thing, endothelial cells 

have a “natural neighbor,” smooth muscle cells. The researchers first tried 

a co-culture of both kinds of cells to address this issue, but it, too, is not 

a satisfactory physiological model. Not until the technologies to engineer 

complex tissues started to develop in the 1990s did it become feasible for 

the lab to take the “big gamble” and attempt to build a blood vessel wall 

model that could also instantiate smooth muscle cells and other in vivo 

components in the model—that is, build the construct family of models.

As the director stated, the research when we entered had the goal to 

“use this concept of tissue engineering to develop better models to study cells in 

culture. . . . ​So, we had the idea: let’s try to tissue engineer a better model-system 

[construct] using cell cultures.” Unlike endothelial cell cultures on slides, a 

construct has a three-dimensional tubular surface in which both kinds of 

cells can be embedded, along with various native tissue components, such 

as collagen. It exemplifies a blood vessel, because with those components 

instantiated, it “behaves like a native artery because that’s one step closer to 

being functional.” This redesign of the cells-in-culture model from slides to 

constructs provided a different kind of simulation—one that more closely 

mimics the in vivo system. Simulations with this model-system could also 

be used to determine whether there were relevant differences in the behav-

ior of the endothelial cells between the simulations with the slides and with 

the constructs. And, finally, the tubular construct afforded the possibility 

for the lab to develop new in vitro devices through which to simulate and 

investigate the strain forces (the other negative analogy), some of which I 

discuss in chapter 4.

How the construct was used with the flow loop demonstrates that engi-

neering and pragmatic constraints interlock in the assessment of what is 

relevant to instantiate of the in vivo phenomena. They had intended to 

redesign the flow-loop chamber to accommodate the tubular construct 

design, which they assumed would be a time-consuming and costly process. 
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In the end, the researchers made the decision to cut the construct open so 

it could lay flat in the flow-loop chamber. The researchers reasoned that the 

reduction in dimensions would not matter (neutral analogy) since the endo-

thelial cells that line the vessel are so small with respect to the surface “the 

cell has no idea that there’s actually a curve to it [vessel].” Because cells embed-

ded in flat tissue experience the same shear forces as when the fluid flows 

over them in vitro as in vivo, they concluded there is no need to instantiate 

their tubular shape to study the effects of these forces. The thickness of the 

construct required a small modification of the design of the flow chamber 

to accommodate them. However, once there was the possibility of doing an 

implantation experiment with an animal, the constructs needed to be kept 

in tubular form. When it came time to redesign the flow loop, as we saw, the 

solution was quite simple and inexpensive, once A7 saw the possibility of 

an analogy (ready-to-hand) with the animal shunt, which, indeed, worked.

As noted previously, the development of the construct in tubular form 

made possible investigations into strain forces for which the lab developed 

model-systems that instantiated different kinds of strain forces. Addition-

ally, the tubular form opened a line of research that was directed toward 

figuring out what creates the significant mechanical strength of tissue of 

the in vivo vessel. This understanding was a prerequisite for them to rede-

sign the construct to instantiate the in vivo mechanical strength, and thus 

exemplify a feature germane to the applied goal of a vascular graft.

Finally, to cast the representational nature of devices and model-systems 

in terms of exemplification underscores the sociocultural nature of rep-

resentation that Goodman called to our attention. A tailor’s swatch or a 

paint chip is understood to represent a fabric or a color only within spe-

cific sociocultural practices. In an epistemic practice, the norms, values, 

and assumptions of the culture contribute to the warrant of its practices. 

In unraveling some of these in the epistemic practice of building hybrid in 

vitro simulation models, we have been able to discern how an engineering 

culture is embodied in these technologies. The nature of the research ques-

tions in BME dictates the hybrid nature of the physical simulation models 

and also that the researchers attain a degree of hybridization as biomedical 

engineering scientists. Indeed, the interdisciplinary culture within which 

these labs reside self-consciously refers to itself as an “integrative interdisci-

pline.” But, as I consider in more detail in chapters 4 and 7, the interdisci-

pline largely comprises engineers who become hybrid biomedical engineers 
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through their education and research, and not an integration of, say, tissue 

engineers and vascular biologists. As we have seen, in the epistemic com-

mitments of the researchers, engineering assumptions, norms, and values 

predominate. Within the engineering framing of the problem, the biologi-

cal phenomena are to be explained and understood largely through engi-

neering concepts (e.g., shear forces on endothelial cells; electrical noise in 

neuron cultures) and the application of engineering methods to screen, 

isolate, and control the “messiness” and complexity of biological systems. 

Experimental setups are designed to provide outcomes that can be turned 

into mathematical form. Although cell cultures that need to be created, 

sustained, and cared for are at the heart of the research, the ways in which 

they are thought about are as opportunities for design into in vitro simula-

tion models. Our interviews provided substantial evidence that the design 

of the simulation models is dominated by norms and values associated 

with engineering, such as abstraction, approximation, control, quantifica-

tion, constraint satisfaction, simplicity, and a good measure of pragmatism, 

especially, in the form of compromises with respect to what it is feasible to 

do vis à vis engineering. I and my research group have worked for many 

years in an engineering institution and recognize these norms and values 

as widely in use across the various engineering fields and as inculcated in 

engineering courses. Many of these share what Keller (2002) portrays as the 

values and norms of mathematical physics, which she contrasts with those 

of experimental biology. Within the context of our investigation, these 

epistemic norms and values did not seem to be undergoing the hybridiza-

tion, as were the models and the researchers—at least we have no evidence 

to support such a claim. Perhaps epistemic hybridization takes place more 

slowly, and this kind of BME community is still young.

2.4  Summary: Getting a Grip with/on In Vitro Simulation Modeling

In our preliminary ethnographic investigations of BME research labs, 

we discovered the practice of in vitro simulation modeling, which is the 

primary means of research in many fields of BME, but is an investiga-

tive method novel to the philosophy and history of science. The practice 

involves building hybrid artifacts that merge living cells and tissues with 

engineering materials to provide sites for simulation of biological processes 

under experimental conditions. Such simulations are the primary means 
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through which researchers attempt to get a grip on complex biological sys-

tems, otherwise inaccessible to experimentation. With our discovery, we 

decided to concentrate our research on understanding these “devices” and 

“model-systems” and the practices surrounding them within our framing of 

the research lab as a distributed cognitive-cultural system with epistemic 

aims.15 Our research goals required that we determine how the models are 

created, how they function as cognitive-cultural artifacts, what are their 

epistemic affordances, and what provides the epistemic warrant for believ-

ing the models can provide information relevant to understanding and 

controlling the complex biological target system. These dimensions are 

interwoven in the lab’s actual research practices, but in this chapter, I have 

disentangled some aspects for the purposes of analysis. In particular, we 

have seen that building these in vitro models requires researchers abstract 

and integrate constraints from engineering and biology. Our cognitive 

ethnographic investigation enabled us to follow out the reasoning of the 

researchers in detail over an extended period as they determined and justi-

fied their selection of what features to instantiate and the various abstrac-

tions and engineering and biological trade-offs.

Our pilot studies drew our attention to the devices as the most epis-

temically, cognitively, and culturally salient artifacts in each lab. As I noted 

previously, in one of our earliest interviews, a researcher characterized their 

practice of in vitro simulation modeling as “putting a thought into the bench 

top to see if it works or not.” From the perspective of our analytic framework, 

“putting a thought” designates building in vitro models as the means through 

which researchers actively distribute cognition in the environment, thus 

building the distributed cognitive-cultural that is the lab, and the problem-

solving subsystems it comprises. The in vitro models have a dual nature. 

They are cognitive artifacts because they perform cognitive functions that 

enable analogical and other model-based reasoning processes, a major epis-

temic aim. They are also the material culture around which researchers 

develop the sociocultural practices pertinent to the lab’s epistemic goals 

and in which researchers embed the epistemic assumptions, norms, and 

values of BME and the further subdivisions into tissue and neural engineer-

ing. Furthermore, individual and lab identity and history are bound up 

with the models researchers build and use in their epistemic practices.

To “see whether it works or not” refers to the iterative and incremental pro-

cesses of designing, constructing, redesigning, evaluating, and experimenting 
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with models—“building models to discover.” I have characterized the prac-

tice of in vitro modeling as one of building analogue source models so as to 

exemplify features of complex biological systems germane to the research-

ers’ goal to determine an aspect of the system’s behavior. Examining how 

such models are built toward serving as source analogies provides important 

insights into a largely overlooked creative analogical practice central to this 

and other frontier scientific research. The BME methodological innovation 

of building in vitro models demonstrates the more widespread nature of the 

analogical practice of “building the source” that I identified with respect to 

conceptual models, as well as reinforces the generality of my earlier analysis 

of this practice (Nersessian 2008).

Research in both labs began with isolating cells for simplicity and to 

achieve control. Since the endothelial cells are the ones immediately in 

contact with the blood flow, lab A research began with studying their 

behavior in response to flow, independent of the rest of the blood vessel 

components and environment. In lab D, the embryonic rat neuron connec-

tions were broken apart, so all learning would be de novo, and plated on 

the MEAs as a monolayer, which leaves out other parts of the brain usually 

thought to be implicated in learning. These moves are warranted because 

even the greatly simplified systems instantiate features relevant to the goal 

of understanding aspects of the system’s behavior under specific conditions. 

The flow-loop–endothelial cell model-system, for instance, exemplifies fea-

tures of hemodynamics germane to the investigation of the effects of shear 

forces on endothelial cells. The dish model-system, as another instance, 

exemplifies features of interactions among neurons germane to investigat-

ing network activity in response to stimulation. Improving in vitro models 

toward providing better analogue sources was an ongoing process, especially 

as researchers aimed to instantiate additional features thought relevant to 

the behavior of an in vivo system (negative analogies). Much of the research 

was directed toward figuring out what features need to be instantiated in a 

model, what constitutes a legitimate abstraction from the in vivo system, and 

in what ways the current engineering capabilities afford and constrain model 

design. When we examine ongoing research in situ, we see that and how 

discovery and justification are interwoven processes in scientific research.

The tendency to isolate and control is, however, counterbalanced 

by the systems thinking also common to engineering. After a period of 
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investigation with relatively simple models, researchers were willing to take 

the risk (“gamble”) to build back in some of the complexity that was con-

sidered to matter. The lab A researchers understood that endothelial cells 

on slides do not provide an adequate physiological analogue to the blood 

vessel wall, since at the very least there are smooth muscle cells with which 

the endothelial cells communicate in vivo. When tissue engineering tech-

nologies became available, they began to build the construct device, which 

could instantiate both endothelial and smooth muscles cells, as well as sup-

porting tissues. The flow-loop–construct model-system exemplifies more of 

the in vivo system, which, in principle, should yield greater understanding 

of the behaviors of that system. One form that building complexity took in 

lab D was to design systems for “embodied learning” in the dish. An in vitro 

model with a feedback loop, that is, one that inputs sensory stimulation to 

the dish and outputs the dish response in the form of behavior, exemplifies 

learning in an animal better than the disembodied dish model.

In general, a satisfactory in vitro simulation model is one that exemplifies 

features relevant to the epistemic goals of the problem-solver(s), which are, 

in the BME case, ultimately, to understand and control the behavior of the 

in vivo system. I have argued that exemplification provides the evaluation 

criteria for warranted analogical inferences. The researchers’ assessments 

of whether a model instantiates those features relevant to the problem at 

hand provides the basis for their inferences from the source model to the 

target system. Warranted predictive inferences (epistemic goal) about the 

behavior of the in vivo system affords understanding as well as possibilities 

to control and intervene (pragmatic/application goal) on the target system. 

However, the application goals require a high degree of confidence in the 

outcome of a simulation, as well as ethical and practical considerations, 

so in frontier research the realization of those goals is often quite far off. 

Instead, the objective of the labs we investigated, each during a five-year 

period, was by and large to understand and control the models themselves 

so as to provide better epistemic tools.

Given the pioneering nature of the research, in building the warrant 

for a specific in vitro model (construct, dish), researchers are also building 

the warrant for a specific domain practice (vascular and tissue engineering, 

neuroengineering), as well as the practice of in vitro physical simulation 

modeling across the spectrum of that kind of BME research. The warrant 
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for the modeling practice rests, ultimately, on the ability of the model-

building methods to create models that provide a reliable and successful 

basis for understanding and inference. Further, a successful practice of in 

vitro simulation modeling provides warrant for the broader epistemic proj-

ect of biological engineering it exemplifies: to use the material, conceptual, 

methodological, and technological resources, together with the norms and 

values, of engineering to get a grip on complex biological systems.



In chapter 2 we saw how building hybrid devices and model-systems pro-

vides the means for BME researchers to think about real-world biological 

systems. In this chapter I examine how the interplay of models of different 

kinds led to conceptual innovation in the neuroengineering lab. Solutions 

to the problems the BME researchers in our investigations posed required 

creating conceptual resources through which to understand both the in 

vitro models and the novel behaviors that emerged from experimental 

simulations. For instance, as noted in the chapter 2, the lab A researchers 

introduced and articulated the concept of arterial shear to mark their novel 

investigation of the effects of arterial blood flow on the endothelial cells 

by means of mechanical forces, in contrast to the customary biochemical 

investigations. The initial placeholder concept provided the means to char-

acterize the various flow-loop model-systems and, eventually, to under-

stand the behaviors of the cells in response to stimulation with mechanical 

forces. This chapter provides a detailed analysis of how building modeling 

environments facilitates processes of conceptual innovation. Conceptual 

innovation includes conceptual transfer and modification, as well as novel 

concept formation.

Frontier research areas are excellent candidates in which to investigate 

conceptual innovation in the development of an epistemic culture. Con-

cepts are significant cognitive-cultural resources. They provide the means 

through which the researchers understand, reason, learn, and communi-

cate. Often the phenomena under investigation, such as mechanical forces 

on cells or network-level neuron learning, are entirely novel, as are the 

means through which they are investigated. Research in BME requires, in 

addition, interdisciplinary synthesis, in which researchers tap conceptual 

3  Engineering Concepts: Conceptual Innovation in a 

Neuroengineering Lab
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resources from engineering to represent phenomena in biological systems. 

So, it was not surprising to find that solutions to research problems in these 

labs required conceptual innovation. What was surprising was the nature of 

the modeling practices through which the innovations actually took place. 

In the lab D case I consider here, this included building computational 

models as well as in vitro simulation models. As we will see, building the in 

silico model of the in vitro model played a pivotal role in the research and 

in building the D-cog system.

The analysis I develop here builds on the account I have advanced of 

conceptual innovation as a problem-solving process in which model-based 

reasoning plays a central role (most recently, Nersessian 2008).1 In particu-

lar, it once again underscores the central role of analogy, visualization, and 

simulation in creating or adapting concepts. Thus, this chapter provides 

another exemplar of the “productive interplay” through which philosophi-

cal notions and frameworks are examined, modified, and extended in inter-

action with novel empirical data on scientific practices. In the earlier work I 

examined how problem-solving processes using conceptual models, which 

are developed in the scientist’s imagination and explored in conjunction 

with pen and paper visual (especially diagrammatic) and mathematical rep-

resentations, are instrumental in conceptual innovation (e.g., Nersessian 

1984, 2002, 2008). In this chapter I focus on the relation between con-

ceptual innovation and the problem-solving practices of building in vitro 

and in silico (computational) simulation models that we discovered in the 

bioengineering sciences.

During the period of our investigation, both BME labs provided novel 

data on the centrality of model-based reasoning for conceptual innovation, 

as well as on how the need to understand novel phenomena can promote 

new investigative practices that configure and reconfigure “the lab” as a 

distributed problem-solving system (chapter 4). In this chapter, I develop 

an extended case of conceptual innovation “in the wild” from lab D, the 

neuroengineering lab, where the cross-breeding of two models—one in 

vitro and one in silico—led the researchers to create a cluster of concepts to 

get a grip on puzzling dish phenomena and, ultimately, on their problem 

of neuronal network learning. In these conceptual innovation processes, 

the researchers both transferred and modified concepts from single-neuron 

studies and engineering to the network, as well as constructed novel con-

cepts specific to network behavior.
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Our analysis of the case centers on three graduate students whose 

research projects were brought together through the development of a com-

putational model of the in vitro dish model-system discussed in chapter 2. 

The in silico model, which might be considered a second-order model, was 

constructed initially by one researcher in an attempt to understand the 

spontaneous, dish-wide firing of the neurons (“burst” phenomena) that was 

occurring in the in vitro model and that they assumed was an impediment 

to progress in the lab’s research project of getting the dish to learn. Thus, 

D11 built the in silico dish to provide an analogical source for getting a 

grip on the artifact model, the in vitro dish itself. For the in vitro dish to 

function as an epistemic tool and help them gain understanding of neu-

ronal network behavior in vivo, they first had to understand its puzzling 

behavior. This kind of second-order modeling of built prototypes (which 

we consider the in vitro dish to be) is a common engineering investigative 

practice. For instance, engineers develop computational models to provide 

wind-tunnel simulations of the behavior of airplane prototypes under vari-

ous conditions. In this chapter, as well as in chapter 5 where I discuss sys-

tems biology cases, our investigations show specific ways in which this kind 

of practice is taking root in the bioengineering sciences. In the case exam-

ined here, once the in silico dish model was established through numer-

ous iterations, it served as a platform from which the researchers derived 

novel insights and problem solutions that they, eventually, transferred for 

investigation to the target in vitro dish. The results of this investigation also 

opened up novel application possibilities with respect to the in vivo world. 

The interaction between the two kinds of models led the researchers to for-

mulate a cluster of novel concepts by which to understand neuron network 

activity and, ultimately, to solve the problem of getting the dish to learn. 

Importantly, only once the researchers had developed a control structure 

for supervised learning for the in silico dish did it prove possible for them 

to exploit the built analogy to develop a control structure for the embodied 

in vitro dish, MEArt.

For the purposes of clarity of the exposition, I divide the research into 

three phases (sections 3.1.1–3.1.3), although in the actual research some of 

the activities in these phases overlapped. From the perspective of our eth-

nographic research, it was not until well into phase 2 that we realized that 

something highly significant for both their research and our own appeared 

to be taking place. Fortunately, we had been collecting detailed data on 
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these research projects as we worked to make sense of these data ourselves. 

So, we both were able to collect additional data as it was happening and 

had the possibility to go back and reconstruct earlier phases as the research 

had unfolded. We continued to conduct follow-up interviews with the lab 

D members as their major publications and dissertations on this research 

were being written. After presenting our case analysis in section 3.1, I exam-

ine in section 3.2 the specific epistemic affordances of building the lab D 

computational model for this case of conceptual innovation, and consider, 

broadly, those affordances of computational simulation modeling as part 

of D-cog systems.

3.1  Concept Formation and Change in a Neural Engineering Lab

3.1.1  Phase 1: “Playing with the Dish”

As discussed in chapter 2, lab D was founded to pursue the general hypothe-

sis that advances could be made in understanding the mechanisms of learn-

ing in the brain by investigating the functional properties of in vitro models 

of neuronal networks.2 The current neuroscience paradigm for studying the 

fundamental properties of living neurons used single-cell recordings. The 

lab D director’s postdoctoral bioengineering research lab had developed a 

completely new kind of model-system for studying network interactions 

and emergent properties that might arise, the MEA dish. Lab D was one of 

the first to investigate its properties and behaviors and, as far as we have 

been able to determine, the only one at that time to investigate embodied 

dish model-systems. As a reminder, to construct the in vitro dish model 

researchers dissociate the connections among cortical neurons extracted 

from embryonic rats and plate them (15K–60K, depending on the desired 

kind of network) on a specially designed set of sixty-four electrodes called 

a multielectrode array (MEA) whereon the neurons generate new connec-

tions to become a network. The design of the dish model-system incorpo-

rates constraints from neurobiology, chemistry, and electrical engineering.

For much of the first year, the researchers constructed and cared for 

dishes, established lab protocols, and created the technologies and software 

needed to interface with the neuron culture by stimulating it and record-

ing its activity—what researchers called “talking to the dish.” The technolo-

gies and software were developed together with a postdoctoral researcher, 

briefly in the lab, and a PhD student at the director’s former institution. 
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During that period the researchers put significant effort into figuring out 

“what we should be looking at,” with respect to dish behavior and how to do 

so. Initially, the three researchers decided to focus on simply stimulating 

the dish with a “probe” electrical stimulus on a few electrodes to initiate 

activity and see what effects this caused in the network behavior. Their ulti-

mate goal, however, was to figure out how to create and control learning in 

the in vitro network. Specifically, they aimed to discover how to train the 

in vitro dish to control an embodiment (animat, hybrot) such that it exhib-

ited goal-directed behavior using feedback. From the start, their research 

posed significant problems with many facets, the solutions to which would 

involve conceptual innovation.

The researchers began to conceptualize learning in the neuronal net-

work by transferring concepts from single-neuron studies, specifically those 

associated with what is known in neuroscience as Hebbian learning. They 

operationalized learning in terms of synaptic plasticity (basically, the abil-

ity of the synaptic connections, the structures through which neurons 

pass signals from one to another, to change in response to experience) and 

memory, which is the ability to retain and retrieve experiences. Plasticity 

is thought to provide the basis for learning, which they characterized as a 

“lasting change in behavior resulting from experience.” They also transferred 

the mathematical formulation, known as the Hebbian rule, for learning 

(basically, “neurons that fire together wire together”). As researcher D4 

recounted later, “from Hebb’s postulate—which talks about learning between 

two neurons—we thought our data will show that something has to be added to 

the known equation in order for it to manifest in a population of neurons. Our idea 

was to figure out that manifestation. . . . ​So, it has gone from what Hebb said for 

two neurons to what would translate into a network.”

Figure 3.1 is our schema for the activities of the distributed cognitive-

cultural system of lab D for this part of its research as it evolved during the 

period of the episode, which began in year two. The system comprised the 

three primary researchers involved in the day-to-day activities of building 

simulation models and other technologies. Of course, ongoing interactions 

with the director were an integral part of the system. The three graduate 

students involved in the case were all recruited within a few months of one 

another. D2 had a background in mechanical engineering and cognitive 

science, D4 in electrical engineering, and D11 a joint degree in life sciences 

and chemistry, with an aspiration “to make movies,” which proved relevant 
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to the research. In general, it was an important part of the culture of the lab 

to create visualizations—what they called “making pretty pictures”—in their 

attempts to grasp dish phenomena, as well as convey their research to oth-

ers in publications, presentations, and grant proposals.

During the first year, after the initial period of getting the lab up and 

running (discussed in chapter 2), the researchers all spent considerable time 

together “playing with the dish,” which consisted of exploring the space of 

possibilities through stimulating the neuronal network using different 

electrical signals and tracking the output. In addition, D2 and D11 were 

engaged in expanding the model-system by building the computational 

and robotic embodiments that could be connected to the dish and would 

enable real-time feedback experiments. Although there were a handful of 

research groups investigating in vitro dishes, these embodied dish model-

systems were entirely novel to the research field.

Our analysis begins in year two, when the researchers had encountered a 

major problem. The middle section of figure 3.1 provides a schema of D4’s 

research. She had attempted to use a probe stimulus to replicate a plasticity 

result reported by another research group, but was unable to do so, largely 

because the dish was exhibiting spontaneous synchronous network-wide 

electrical activity. This activity occurred in all dishes, but was greater in 

high-density cultures. To interpret this behavior, they had borrowed two 

concepts: the notion of burst, transferred from single-neuron studies, where 

it meant the spontaneous electrical activity of one neuron, and the engi-

neering notion of noise, which is considered a random disturbance that 

carries no useful information and needs to be eliminated from a signal. 

They called the dish-wide spontaneous phenomena “bursting,” extending 

its meaning to the population of dish neurons. D4 had tried to introduce the 

term “barrage” into the community to focus attention on the network-wide 

nature of the phenomenon, but soon reverted to “burst” when her term did 

not catch on. This dish-wide phenomenon is visualized in figure 3.2 as the 

spike activity for each electrode per electrode recording channel, across all 

channels. Once busting began in a dish it was persistent throughout its life. 

Bursting phenomena do occur in the brain, during development, in epilep-

tic seizures, and in some stages of sleep, but it is not a lasting phenomenon 

in the healthy adult brain. The researchers reasoned that a quieted dish 

would provide a better analogy to the in vivo brain because it exhibits its 

“natural” adult state—that is, bursts are not a feature of a healthy mature 
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brain: “So if you have an adult, mature awake brain then you never see such 

bursting, that’s except in epileptic seizures. So, the idea is to move away from 

that kind of unnatural behavior to more natural behavior, where you always have 

some stimulation coming in . . . ​and on that you have your learning stimulus. So 

maybe, then, it’s a more natural mode of activity for the dish and you’d be able to 

induce better learning—that’s kind of the model.”

There was much discussion at lab meetings about how to understand 

and, hopefully, eliminate bursting. They formulated several hypotheses 

about it that directed the research. First, they hypothesized, on analogy 

with an animal brain, which continually receives sensory inputs, that the 

cause of bursting is the lack of sensory inputs. Next, they hypothesized 

that “spontaneous bursts erase the effects of plasticity-inducing experiments.” 

That is, bursting creates a problem because it prevents the detection of any 

Figure 3.2
The MEAscope per channel visualization of in vivo dish activity shows spontaneous 

bursting across the channels of the dish. Bursting activity is represented by the spikes 

appearing in the channels. A relatively “quiet” dish would have few spikes across all 

the channels, which D4 eventually managed to achieve.
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systematic change that might arise because of controlled stimulation. They 

concurred that “bursts are bad” and interpreted bursts as “noise in the data—

noise, interference. . . . ​So it’s clouding the effects of learning that we want to 

induce.” The concept of noise provides, as we will see, an instance in which 

resource transferred from engineering to biology proved largely to be an 

impediment to problem-solving.

Given this understanding of bursts as noise, the group decided that they 

needed to get rid of them. D4 began working on developing techniques 

for “quieting” bursts in the dish by providing the network with artificial 

sensory input in the form of sustained electrical stimulation. She tried 

a range of stimulation patterns to lower the bursting activity in the net-

works. “Probe stimulation” is a one-time low-level electrical stimulus to a 

few electrodes that provides the researcher with an indication of the state 

of the network, without changing it much. “Tetanus stimulation,” is a fast, 

high-frequency, long-duration (~15 minutes) stimulation aimed to induce 

plasticity changes. D4 developed tetanus stimulation to simulate the stimu-

lation the thalamus, which is essential to memory and learning, imposes 

on the cortex in vivo. “Background stimulation” is a series of low-frequency 

stimulations applied at random to about a third of the electrodes.

Without stimulation, a neuron’s threshold for firing decreases, which D4 

thought could contribute to bursting. She reasoned that constant background 

stimulation should keep the thresholds from dropping, and thus quiet the 

dish. After about a year, D4 achieved a breakthrough, managing to stop the 

bursting entirely. However, despite the meanwhile quieted network, for 

the next six months her attempts to induce plasticity in the network failed. 

The activity pattern evoked by a stimulus in the quieted dish did not stay con-

stant across trials, but “drifted” away to another pattern. This drift prevented 

tracking the effect of a stimulus, because the network never responded the 

same to a constant stimulus pattern. The impasse was so frustrating that D4 

told us she would likely leave the research project if no solution to the drift 

problem was found in the next six months; after all, she had just spent a year 

getting it to quiet. Instead, as we will see, this failure provided the group with 

an important opportunity for learning about the dish.

During the same period when D4 was trying to quiet the network and 

induce plasticity, the other researchers were engaged in largely separate, 

though interrelated, research activities. D2 (top section figure 3.1) worked 

on embodiment software modules that would transform the electrical 
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signals passed between the neuron network and the motor commands used 

to control animats and hybrots. He initially used information from D4’s 

probe experiments to begin closed-loop controlled-motion experiments 

with the embodiments. D2 began with his knowledge of control engineer-

ing to develop movement commands to a specific position with respect to 

a fixed zero point (“absolute positioning”). Not having much success with 

numerous trials of these commands, he then developed commands based 

on the neuroscience notion of a population vector (roughly, the sum of 

the preferred directions of activation of a population of neurons) to direct 

motor commands. Much of this laborious work centered on simply getting 

the embodiment to move, which required him to determine how to map 

the neural activity into motor commands and how to map the embodi-

ment behavior into sensory feedback to the dish. D2 created numerous 

animats and worked with the small robots the lab had purchased, but the 

primary hybrot he worked was MEArt, the mechanical drawing arm, dis-

cussed in chapter 2 (figure 2.5). The MEArt project was perhaps the most 

exciting of all the lab projects for the researchers because it required that D2 

spend considerable time traveling the world with the art exhibit of hybrid 

mechanical-biological art projects developed by their collaborators. As a 

biomechanical art exhibit, MEArt’s creativity required only that it draw, but 

as a neuroengineering research project it needed to “draw within the lines,” 

that is, it needed to exhibit goal-directed controlled behavior.

Since MEArt was the hybrot on which the researchers would focus their 

attention in the experiments to create a control structure for supervised 

learning, it will be helpful to have a general understanding of the model-

system. The mechanical arm was created by a laboratory of artistic research, 

dedicated to using science and technology to explore the possibilities of 

“wet art,” that is, art that fuses biological entities and technology. The arm 

itself was designed to “resemble organic forms in function and aesthetics.” Its 

shape was modeled on bone structure, and the pneumatic muscles were 

developed based on physiological models so as to contract individually, 

as can the biceps and triceps. The arm drew in a circular motion about a 

fixed point by flexing and extending within a specified range, and addi-

tional small muscles pressed the pen to the paper. It communicated with 

the in vitro dish through satellite or Internet transmissions of electric sig-

nals from and to the neurons. These signals went through numerous pro-

cessing programs that “translated” between the “language” of the neurons 
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and that of the mechanics of the arm. The sensory feedback to the dish was 

derived from the images of the drawing in progress that were captured by a 

digital camera located above the movement space. To close the movement 

feedback loop, D2 had to develop numerous pieces of software to process 

the signals that directed MEArt and fed back to the dish (“signal transform” 

programs). Again, building this model-system was achieved thorough 

incremental and iterative processes. As with the vascular construct model-

system discussed in chapter 2, we also analyzed the MEArt model-system 

as a D-cog system that generates, manipulates, and propagates representa-

tions through interlocking artifact models and researcher mental models, 

as represented in figure 3.3.

The movement software modules D2 developed were to be used in train-

ing the embodied dish once they had the sought-after control structure. 

The control structure, however, had an unexpected origin: it was derived 

through the group’s interaction with a computational simulation of the in 

vitro dish model-system built by D11.

3.1.2  Phase 2: “Seeing into the Dish”

Early in the burst-quieting period, when the research seemed at an impasse, 

D11 decided to branch away from working with the in vitro system entirely 

and develop a computational model that would simulate dish phenom-

ena. As he put it, “The advantage of modeling [computational] is that you can 

measure everything, every detail of the network. . . . ​I felt that [computational] 

modeling could give us some information about the problem [bursting and con-

trol] we could not solve at the time [using the in vitro dish model-system].” D11 

felt that to understand the phenomena of bursting he needed to be able 

to “see” the dish activity at the level of individual neurons, to make pre-

cise measurements of variables such as synaptic strength, and to run more 

controlled experiments than could be conducted with the physical dish. 

Computational modeling was not part of the investigative practices of the 

lab, largely because the director was skeptical it would be of any benefit 

since he had rejected computational neural network modeling as a means 

by which to understand neuron activity in the brain. Fortunately, he did 

allow his students considerable freedom in their research, and he supported 

D11’s proposal. D11 moved to a different physical space where he could 

work on a computer, and moved back into the physical space of the lab 

(indicated by the dashed line on figure 3.1) only after he had successfully 
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replicated the behavior of their in vitro dish with the in silico dish. From 

that time, the researchers worked together to exploit the computational 

model’s results in interaction with the in vitro dish and the animat and 

hybrot model-systems.

From the outset, D11 built the in silico dish model to serve as an analogi-

cal source for their in vitro dish model-system. That is, D11’s goal was, even-

tually, to map and transfer insights derived from it to the target problem to 

understand and control the behavior of the in vitro model-system. However, 

he began with building a generic in silico dish, which he later instantiated 

with specific features of the behavior of their dish. Even more clearly than in 

the case of in vitro models, the in silico case underscores the emergent nature 

of built analogies, since a computational model can take scores of iterations 

of building and thousands of runs before it replicates the phenomena suffi-

ciently to serve as an analogical source. As it turned, out, the in silico model 

provided a source analogue from which the researchers would both develop 

novel concepts to represent in vitro dish behavior and develop the desired 

control structure for supervised learning in the embodied dish model-system.

D11 developed and optimized the in silico dish model through an incre-

mental bootstrapping process that comprised many building cycles. These 

cycles included integrating constraints derived from the design of the in 

vitro model and data from a wide range of neuroscience literature, as well as 

constraints of the in silico model. Among the latter constraints were those 

from the computational modeling platform and those that arose from the 

model as it gained in complexity. Figure 3.4 provides our schema of this 

complex process.

Many constraints contributed to the iterative and incremental build-

ing process, and I highlight only the most significant. First, D11 was not 

an expert modeler, so for a modeling platform he chose what he called 

“the simplest neuron model out there—leaky-integrate-fire” (CSIM modeling 

platform) to see whether he could replicate network phenomena without 

going in to too much detail, such as including synaptic models. The only 

constraints D11 took from their in vitro dish at the outset were structural: 

8x8 grid, sixty electrodes, and random location of neurons (“I don’t know 

whether this is true, though, looking under the microscope they look pretty random 

locations”). In the model he used only 1K neurons, 70 percent excitatory 

and 30 percent inhibitory, which he believed would produce sufficiently 

complex behaviors. Each neuron was connected directly to a number of 
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other neurons in its surroundings through a statistical distribution that had 

been developed in neuroscience. In all there were 50K synaptic connec-

tions. He modeled each neuron as a simple unit whose activation slowly 

decreases over time (“leaks”). Through its connections to other neurons, 

each neuron constantly adds—or integrates—the activation of those neu-

rons to its own activation. When the neuron’s activation reaches a certain 

threshold, it fires and sends signals to all the neurons with which it is con-

nected. D11 took all the parameters of the model—such as types of synapses, 

synaptic connections, synaptic connection distance, percentage of excit-

atory and inhibitory neurons, conduction velocity and delay, noise levels, 

action potential effects—from the neuroscience literature on single-neuron 
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Our schema of the bootstrapping processes involved in building the in silico dish 

through numerous iterations. Once the in silico dish was able to replicate the in vitro 

dish behavior, the researchers worked to understand and control its behavior. They 

mapped and transferred those analyses of the in silico dish to the in vitro dish and 

evaluated their applicability.
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studies, brain slices, and experiments with in vitro dishes other than their 

own. His justification for using all of these data was that the behavior of the 

neurons should be pretty much the same as these instances. D11 then just 

let the model run for a while to see what would emerge, which is typically 

what modelers do before they conduct simulation experiments by chang-

ing parameters.

To “validate” the model (in this case, establish that it instantiated the rel-

evant features of an in vitro dish), he first followed the same experimental 

protocol used with in vitro dishes other than their own to see whether he 

could replicate those behavioral data. For in silico simulation modelers, a 

“valid” model is one that has sufficient warrant to support the claim that 

predictive inferences about the target system are credible and worthy of 

pursuit. Once D11 had succeeded with the replications of the dishes in the 

literature (an outcome he called “striking” given the simplicity of the in 

silico model), D11 used data from the behavior of their lab’s in vitro dish 

and was able to replicate these as well. The in silico model D11 had devel-

oped was, then, a model of a generic in vitro dish, because it incorporated 

replications not only of the lab’s dish behavior, but also of disparate behav-

ioral data from the wider neuroscience/engineering literature. By early year 

three, he had developed the model network sufficiently to begin “playing 

with the [in silico] dish,” by which he meant seeing how the computational 

network behaves under different conditions. He had started to get what 

he called “some feeling about what happens actually in the [in silico] network.” 

Sometime during this playing period, he moved back into the physical 

space of lab D, and all three researchers began to work together.

For exploring bursts, the computational model offered many advantages 

over the in vitro dish. For instance, the in silico network could be stopped 

at any point to examine its states. Significant variables, such as synaptic 

weight, could be measured and manipulated. Synaptic weight was a vari-

able of particular interest in the research, because it is a measure of how 

strong the connection is between the neurons, and is thus related to learn-

ing. The strength of this connection cannot be measured in the in vitro 

network, but it can be in the in silico network. Further, a large number of 

experiments, including counterfactual, could be run easily and at no cost, 

in contrast to the laborious and expensive processes involved in setting up 

and maintaining an in vitro dish. Most importantly, with the computa-

tional model, D11 was able to create a dynamic visualization that allowed 
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him to track activity across the network as it occurred. These epistemic 

affordances (common to computational simulations, generally) proved to 

be a powerful combination that gave D11 immediate access to a range of 

configurations and data that the in vitro dish could not provide. He could 

design experimental simulations with different configurations and data, 

run these instantly, and examine and reexamine them at will.

The visualization, in particular, proved to be highly significant for the 

research in that it facilitated the group’s articulation of a cluster of novel con-

cepts by which to represent and understand dish activity and, ultimately, to 

achieve their goal of a control structure for supervised learning. D11 noted 

that he built the visualization as part of getting a feel for the dish: “I am sort 

of like a visual guy—I really need to look at the figure to see what is going on.” 

It is important at this point to realize that computational visualizations are 

largely arbitrary. D11 could have visualized the in silico dish in any number 

of ways, including using the visualization the group was accustomed to see-

ing on MEAscope: a per-channel spike representation (figure 3.2). Instead, 

D11 built a visualization to capture the dish as he imagined it—as a network 

(figure 3.5). With the network visual format, he could “visualize these 50K 
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A screenshot of the network computational visualization of bursting activity across 

the in silico dish.
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synapses and so you can see—after you deliver a certain stimulation you can see 

those distributions of synaptic weight change—or synaptic state change.”

A major contribution of this visualization is that it enabled the group to 

notice—literally to see—interesting patterns in the way the in silico dish 

responded to different stimuli. These behavioral patterns were novel and 

distinct from anything they had thus far understood about in vitro dishes. 

In the MEAscope visual display of the in vitro model, the activity of indi-

vidual neurons is hidden, as is the propagation of activity across the dish. 

Specifically, one can see activity across each separate channel (clusters of 

neurons) in figure 3.2, but this display does not exemplify the network 

configuration of the in vitro dish and it does not capture burst movement 

across the network. Thus, it was not possible to see that there were patterns 

of movement across the network. Further, with the computational visualiza-

tion, D11 began to notice what appeared to be structurally similar looking 

bursts. To follow out this hunch, D11 made movies of the visualization as 

the simulation ran, and these showed the movement of activity patterns 

across the network over time. While running numerous simulations and 

repeatedly reviewing the movies, he began to notice something interest-

ing: there were a small number of repeated spatial patterns in the activity, 

both when bursts arose spontaneously in the in silico network and when 

it responded to stimuli. As he expressed it, he found that there were “simi-

lar looking bursts” that propagated across the network, and only a limited 

number of these, which he called “burst types.” He stated that through the 

process of watching the movies “you get some feeling about what happens in 

the network—and what I feel is that . . . ​the spontaneous activity or spontaneous 

bursts are very stable.”

D11 showed his movies to the other researchers (and to us) so they too 

could “come away with the same thing.” They all agreed that, by analogy, 

it was possible that there were stable bursts in the in vitro dish as well, 

and began to work together to develop a means to track and mathemati-

cally represent the activity “stable bursts” across the in vitro and in silico 

networks. The radical implication of stable bursts was that the researchers’ 

understanding of bursts transformed from “bursts as noise” to “bursts as 

pattern”—signals that might be exploited to develop a control structure 

for training the network. It is important to underscore that this change 

in understanding arose from the group running many visualized simula-

tions with different conditions, a process that led to group consensus. This 
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consensus was made possible by the manifest nature of the network visual 

display of in silico dish activity.

3.1.3  Phase 3: “He Was Thinking Like a Wave, while We Were Thinking 

of a Pattern”

From this point, things developed rapidly in the lab as the researchers 

worked together to develop a range of ways to quantify the spatial proper-

ties of moving bursts using clustering algorithms, statistical analyses, and 

experimentation to develop “drift immune” measures for the in silico net-

work and equivalents (determined by a suitable analogical mapping) to 

transfer to the in vitro dish. With the drift problem solved, meaning that 

now that the activity pattern stayed constant across trials, they were in 

a position to determine whether the “burst feedback” in the in vitro dish 

could be used for supervised learning with the embodiments. This phase of 

research began with the idea that “bursts don’t seem as evil as they once did” 

(D4)—or as the director like to say, “bursts can be both good and bad.” That 

is, the researchers had modified their initial understanding of bursts, from 

the engineering notion of noise to be quieted completely to the notion that 

some bursting in the dish is useful because it can be tapped as a signal that 

might be used to control the embodiments. This shift in understanding led 

to their articulating several interconnected novel concepts:

•	 burst type: one of limited number of burst patterns (approximately ten)

•	 burst occurrence: when a type appears

•	 spatial extent: an estimation of burst size and specific channel location

•	 CAT (center of activity trajectory): a vector capturing the flow of activity 

at the population scale

D4 developed the concept of spatial extent directly for the in vitro dish. 

But the other three were developed first for the in silico network, and then 

mapped, with suitable modifications, to the in vitro dish. Each of these 

concepts is important, but they are complex conceptually and also math-

ematically. Therefore, in what follows, I focus only on the, for my pur-

poses, most significant details of the development of one of them, CAT. 

This is an entirely novel concept for understanding neural activity, which 

the researchers claimed might well prove to be of major importance to neu-

roscience. Its importance for our analysis is that it emerged from the visual-

ization of the in silico dish model, which instantiates the network behavior 

of the neurons, and would likely have been impossible to conceptualize 
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and formalize without it. D2 recounted during the final stages of analy-

sis, “The whole reason we began looking at the center of activity and the center 

of activity trajectory is because we are completely overwhelmed by all this data 

being recorded on the 60 electrodes—and we just can’t comprehend it all. The big 

motivation to develop this is to actually have something—a visualization we can 

understand.” CAT enabled them to understand how burst activity moves 

across the network and, thus, opened the possibility to control it.

The researchers formulated the mathematical representation of the in 

silico CAT concept by making an analogy to the physics notion of center of 

mass and by drawing from three resources within the group: (1) D11’s deep 

knowledge of statistical analyses from the earlier period in which he had tried 

to create sensory-motor mappings between the dish and the embodiments; 

(2) an earlier idea of the graduate student at the director’s old institution (who 

had worked remotely with the group) that it might be possible to capture 

“the overall activity shift” in the in vivo dish by dividing the MEA grid into 

four quadrants and “using some kind of subtraction method”; and (3) the idea 

that bursts seem to be initiated at specific sites as shown in a new graphical 

representation (figure 3.6) for the in vivo dish (“spatial extent of a burst”) that 

D4 developed after the in silico model had replicated her in vitro dish results.
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Figure 3.6
A screenshot of the display of information captured by the spatial extent representa-

tion. Spatial extent captures the location and frequency of bursts over time in the in 

vivo dish per channel. The figures show the burst initiation sites and the number of 

times (count) any neuron near an electrode initiated a burst during 30-minute seg-

ments of 1.5 hours of continuous recording. The color and size of the circles repre-

sents the number of times any electrode initiated a burst in the 30-minute segments. 

D4 kept the per channel grid of the MEAscope visualization (figure 3.2) but analyzed 

and displayed much different information in these new representations.
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D4 had been trying to see whether she could get at some of the informa-

tion the in silico visualization provided by graphing more specific spatial 

information about in vitro bursts, in particular, their location and frequency 

over time. She introduced a novel concept to represent this information: 

“spatial extent”: “the number of times any neuron near an electrode initiated a 

burst in 30 minute segments of a 1.5 hour spontaneous recording.” The spatial 

extent of a specific burst is represented by the color and size of the circle 

in figure 3.6. These graphs clearly represent information different from the 

MEAscope representation of bursts as spikes per channel across the chan-

nels (figure 3.2). However, this representational format does not instantiate 

the flow of the burst activity as it propagates across the network. This is what 

the CAT representation was developed to capture.

D11 found the spatial extent representation useful but not sufficient: “I 

not only care about how the channel’s involved in the burst, I also care about the 

spatial information in there and the temporal information in there—how they 

propagate.” CAT tracks the spatial properties of activity as it moves through 

the network; that is, it tracks the flow of activity at the population scale, as 

displayed in the third visualization in the sequence of screenshots (figure 

3.7), taken at the point when the CAT was moving from the center. D11 

and D2 worked together to formulate the mathematical representation of 

CAT to include temporal as well as spatial dimensions. For our purposes it 

is not necessary to understand the details of the mathematics. Basically, 

the CAT is an averaging notion similar to that of a population vector. A 

population vector captures how the firing rates of a group of neurons that 

are only broadly tuned to a stimulus, when taken together, provide an 

accurate representation of the activity in response to the stimulus. CAT is 

more complex than a population vector because it tracks the spatial prop-

erties of activity as it moves through the network. That is, if the network 

is firing homogeneously or is quiet, the CAT will stay at the center of the 

dish, but if the network fires mainly in a corner, the CAT will move in that 

direction. The third screenshot in figure 3.7 shows the CAT as the activ-

ity  moved from the center (shot one) to a new position (shot two). Thus, 

CAT tracks the flow of activity (not just activity) at the population scale. It is 

a novel conceptualization of neuronal activity. What their complete CAT 

analysis shows is that, if the simulation is allowed to run for a long time 

(tetanus probe stimulation), only a limited number of burst types (clas-

sified by shape, size, and propagation pattern) will occur—approximately 
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ten. Further, if the probe stimulus is given in the same channel, “the patterns 

are pretty similar.” Thus, the CAT provides a signature for burst types.

They developed the CAT first for the in silico dish, and D11 was unsure 

whether it would be possible to transfer the representation to the in vitro 

dish because of the potential role of the negative aspects of the analogy 

between the in silico and in vitro dishes: “The problem is that I don’t think it is 

exactly the same as in the living network—when our experiment worked in the liv-

ing network, I am surprised—I was surprised.” One difference between them is 

that the in silico CAT tracks individual neurons, while the in vitro dish has 

a cluster of neurons at each electrode. For the in vitro dish, the researchers 

decided to try a mapping that replaced individual neurons in the in silico 

CAT representation with individual electrodes and began a range of experi-

ments with the in vitro dish alone (open loop) and with the dish connected 

(closed loop) to various animats, including an animat version of a robotic 

drawing arm and, finally, to the real-world robotic drawing arm. The differ-

ent representations in figure 3.8a and b show how CAT is conceptualized 

for each kind of model, that is, the mapping from CAT–in silico to CAT–in 

vitro. To visualize the dynamic nature of the simulation without seeing the 

movies, the reader should imagine the CAT as pictured in the “C” represen-

tations in the screenshots in figures 3.8a and b moving in the direction of 

Network Network
Center of activity
trajectory (CAT)

Figure 3.7
The first two screenshots of the computational visualization of the network show 

the flow of burst activity in simulated dish at burst time T1(first) and burst time T2 

(second). The third screenshot shows a corresponding CAT from burst time T1 to 

burst time T2. The CAT tracks the spatial properties of activity of the population of 

neurons as the activity moves across the network.
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the flow of activity, as pictured in the “B” (Network [3.8a] or MEA [3.8b]) 

representations in the screenshots.

D4 summed up the difference between the understanding of the in vitro 

dish behavior they had with CAT conceptualization and the way they had 

been thinking of its behavior prior to D11’s simulation: “[CAT] describes a 

trajectory. . . . ​We weren’t thinking [before] of vectors with direction . . . ​so think 

of it as a wave of activity that proceeds through the network. So, he (D11) was 

thinking like a wave, while we were thinking of a pattern.” Even the spatial 

extent analysis she had developed to capture some of the information in 

the in silico visualization tracks a pattern of bursting across the channels 

(figure 3.6), but the CAT analysis tracks a wave of busting activity across the 

network (figure 3.8). CAT thus exemplifies the in vitro behavioral dynam-

ics and, potentially by further analogy, the in vivo dynamics. Notably, she 

continued, “We had the information always. . . . ​The information was always 
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there.” She is correct that the information was always there, at least in the 

raw data. However, the per-channel visualization of MEAscope hid that 

information from them. The computational network visualization enabled 

them to “look inside the dish” and see the dynamical behavior of the activity 

as it propagated across the network, which facilitated their ability to make 

perceptual inferences about its behavior and, then, to develop a mathemat-

ical representation that captures what they were seeing. What CAT enabled 

them to do was tap into the network behavior of the system and, eventually, 

exploit bursts as signals to control the system’s learning, even though they 

did not understand the behavior of either dish sufficiently to explain it. The 
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These screenshots show parallel CAT representations for the computational (3.8a) 

and in vitro (3.8b) models. The Raster plots of activity (A) on each shot show the 

activity at the level of the individual neuron for the in silico dish (3.8a, B Network) 

and for the electrode (cluster of neurons) in the in vitro dish (3.8b, B MEA), respec-

tively. The CAT (C) tracks how that activity propagates through each kind of dish.
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kind of understanding the in silico model facilitated is an exemplar, in this 

epistemic practice, of what Johannes Lenhard (2006) has called “pragmatic 

understanding” in the context of in silico simulation modeling—a mode of 

understanding that provides the potential for intervention, manipulation, 

or control, but is not explanatory. He and others see this as the worst-case 

scenario for simulation models. In practice, however, the allegedly worst case 

is often the standard case with respect to computational simulation model-

ing in the fields of bioengineering we have been investigating, and is often 

the case with in vitro simulation modeling as well; yet it is highly productive 

in enabling researchers to achieve their goals to control their systems.

To wrap up the story, D4 kept working with open-loop experiments to 

investigate network properties of the in vitro dish, while now using CAT to 

track poststimulation changes. She also added a new wet-lab investigation 

into the cellular properties of the neurons under electrical stimulation. She 

conducted this research together with a medical school researcher as part 

of preliminary investigation into whether the lab’s new understanding of 

bursts as signals could be transferred to epilepsy (which they had specu-

lated could be caused by bursting) and used to control seizures.

D2 and D11 stayed for an additional year after D4 had graduated and 

worked on combining CAT and techniques D4 had developed for burst qui-

eting to develop a range of stimulation patterns for the in vitro dish that 

led to supervised learning for the embodied dish. To control the network 

required that it learns (through training), and that it retains and is able to 

access (have a memory of) what it has learned. Developing a control struc-

ture for embodiments was a difficult problem because of the sheer num-

ber of possible patterns. So, they began with animats, since numerous in 

silico trials could be run quickly. After thousands of trials, they first devel-

oped algorithms for control structures that produced adaptive goal-directed 

behavior for the “moth” animat D11 had created (a dot with the goal to 

move toward a light), and then for a MEArt animat (with the goal to draw in 

a constrained space). Finally, they made suitable mappings of the produc-

tive algorithms to direct the hybrot MEArt to draw within the lines through 

adaptive goal-directed behavior (figure 3.9). The goal was to make a suffi-

ciently greater number of marks inside the lines than outside, using visual 

feedback from the camera to determine whether or not to tetanize the dish 

(provide it rapid electrical stimulation to contract the “muscle”). Through 

the in silico simulation experiments and the in vitro ones with MEArt, the 
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researchers were able to establish the first demonstration of adaptive goal-

directed learning in an embodied dish of cultured neurons. They cautiously 

reported that their results “suggested” that even though a cultured network 

lacks the three-dimensional structure of the brain, it can be “functionally 

shaped and show meaningful behavior.” D2 and D11 each wrote and success-

fully defended a dissertation on different aspects of this work.

Notably, their control structure differed in important respects from  the 

customary structure for reinforcement learning, where the same stimulation 

is repeated continually. Their control structure consisted of providing the 

network with a patterned stimulation (a number of these worked) to induce 

plasticity, followed by providing a random background stimulation to sta-

bilize the response of the synaptic weights to the patterned stimulation. 

Figure 3.9
MEArt learns to consistently draw between the lines. (Photograph courtesy of Guy 

Ben-Ary)
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This method is counterintuitive with respect to existing notions of rein-

forcement learning, and it emerged only in the context of the researchers’ 

attempts to gain sufficient understanding to control the in vitro dish model 

by creating a new representation of “the dish” with different affordances: a 

computational dish model built toward serving as an analogical source. The 

successful work to control the embodiments opened new application pos-

sibilities for the lab. After we finished our data collection, the lab director 

wrote grant proposals and received funding to conduct research that aimed 

to use the dish to control a limb prosthesis and to control the distribution 

of energy in the US national power grid.

3.2  Creating Scientific Concepts

A wide range of epistemic aims can lead to conceptual innovation and 

change in science (see, e.g., Feest and Steinle 2012). As I have been discuss-

ing, in BME, chief among those aims is not only to understand but also to 

control or intervene on complex in vivo biological phenomena in artifact or 

natural systems. To achieve their aims, researchers develop in vitro simula-

tion models to isolate, control, and selectively focus on entities and processes 

of interest. From the outset, the intention of this practice is to create an ana-

logical source from which to develop candidate hypotheses to transfer to the 

target system. As we saw in chapter 2, the specific nature of that analogy is 

usually determined incrementally, as the model is developed over time.

Often, to build an analogy requires configurations of more than one 

model, as we saw in the analyses of in vitro model-systems in chapter 2. 

These models are themselves complex dynamical systems with emergent 

properties and behaviors that, too, need to be understood and, possibly, 

controlled. In the case examined in this chapter, a researcher introduced 

a novel kind of model-building into the lab’s epistemic practice—a com-

putational model of an in vitro model—in the attempt to understand its 

“errant” behavior. The interaction of the different kinds of models in this 

configuration provides a rich and productive case of not only methodologi-

cal novelty, but also conceptual innovation. In earlier work, I investigated 

how building conceptual models can promote conceptual innovation; in 

particular, the model-based reasoning processes of the analogical, the visual, 

and the thought-experimental kind (see, e.g., Nersessian 2008). The present 
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chapter adds building in vitro models and in silico models, as well as the 

interplay among models of different kinds, to such innovation processes.

There is nothing particularly innovative about how D11 built a neural 

network (computational) simulation. What is innovative is that he built 

it to provide an analogy to an analogy—a second-order analogy to an in 

vitro model—and to exploit it in an attempt to overcome the impasse the 

research had reached with the in vitro model. At the outset there was no 

guarantee that this strategy would work. D11 thought the affordances of 

computational modeling would give him the ability to “measure everything,” 

which could not be done for activity in the in vitro dish, and, importantly, 

to visualize the dynamic behavior of the network. But it was an open ques-

tion whether either those measures or the network visualization would pro-

vide any insight into the bursting behavior of the in vitro model.

The in vitro simulation model and the in silico simulation model are 

each complex dynamic systems with novel emergent behavioral possibili-

ties. As with the in vitro models, D11 built the in silico model to provide 

a surrogate through which to reason about another system, but in this 

case to investigate and get a grip on emergent behavior (bursting) in the 

in vitro model. As we saw, the in silico model produced its own emergent 

behaviors, which, when rendered visible, indicated that bursts occurred 

in patterns, and those patterns were limited in number. Eventually the 

researchers came to understand the in silico behavior sufficiently to gain 

control of it and—by analogy—of the in vitro model. The primary objec-

tive of the research we have examined here was to develop further the in 

vitro model as an epistemic tool to investigate whether neuronal networks 

could learn, which in turn might provide insight into learning in the brain. 

First bursting behavior and then burst-quieting impeded D4’s attempts to 

induce plasticity in the in vitro dish. D11 saw building a computational 

simulation as a potential resource for examining the perplexing behavior 

of the in vitro dish.

The physical dish model is a hybrid construction, merging constraints, 

methods, materials, and epistemic values from biology, neuroscience, and 

engineering. In chapter 2 we saw that the researchers transferred several 

concepts from the neuroscience area of single-neuron studies to provide 

a provisional understanding of behavior exhibited by the in vitro dish 

neural network, namely, spike, burst, and the Hebbian notion of learning 
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in relation to plasticity, along with the associated rule for learning, to wit 

“neurons that fire together wire together.” The engineering representation 

of electrical signals as spikes on an oscilloscope provided a manageable for-

mat in which to observe the behavior of the dish as their software picked 

up signals from the grid of electrodes. The engineering concept of noise as 

interference to be eliminated provided their initial understanding of spon-

taneous bursting behavior. The researchers were aware that the network 

nature of a population of neurons would likely require modification of the 

neuroscience concepts, but appeared not to have anticipated a problem with 

“noise.” Nor did they anticipate that the per-channel activity grid visual 

representation would hinder their progress. In practice, these representa-

tions both facilitated and impeded the research. The concept of spike, for 

instance, facilitated their development of stimulation and recording meth-

ods and interpretations of the output of clusters of neurons surrounding an 

electrode. However, the grid visual representation hindered their thinking 

about neuronal activity as it propagated through the network. The single-

neuron concept of burst, when extended to spontaneous dish-wide elec-

trical activity, and understood as interference to be quieted, impeded the 

research for an extended period. But, in the end, they were right to focus 

on bursting behavior. The transfer proved fruitful when they realized that 

bursts could also be understood as “signals” (another engineering concept).

To deal with the impasse, D11 introduced an investigative practice with 

epistemic affordances different from those of the in vitro dish: an in silico 

simulation of a generic in vitro dish. Only after the in silico model gained 

sufficient complexity to replicate, and thus exemplify, the known behav-

iors of in vitro dishes, including their own, could the researchers consider 

transferring their findings to the in vitro model. As we have seen, to build 

that model D11 needed to draw on and integrate information from several 

resources (see figure 3.4): structural constraints of their dish, constraints 

of the CSIM modeling platform, data from single-neuron and brain slice 

experimental literature, and data from the literature on in vitro dish experi-

ments in other labs. He built the model through numerous iterations, which 

infused data into it. With each iteration the model gained complexity. He 

evaluated each iteration by means of the criterion of how well it replicated 

the test data on established results from the experimental neuroscience and 

neuroengineering literatures. D11 used their dish data for testing only after 

the in silico dish had replicated these other results. The building process 
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took nearly a year, at which time the in silico model was established suf-

ficiently to serve as an analogical source to their dish model-systems. D11, 

together with the group, exploited the epistemic affordances of the com-

putational model to develop a new understanding of burst behavior, which 

they articulated in novel concepts with which to get a grip on the in vitro 

dish behavior. D4 investigated the transfer of a hypothesis about bursting 

to the in vivo brain through collaborative research on animals. D11 and D2 

developed the control structure for goal-directed learning, first for the in 

silico dish, and then for the embodied dish model-system, MEArt.

3.2.1  Epistemic Affordances of In Silico Simulation Modeling

The lab D case of computational simulation modeling provides an oppor-

tunity for us to begin to examine the affordances of the practice with a 

model that was relatively simple to build. As epistemic tools, in silico mod-

els have cognitive, manipulative, and experimental affordances, which I 

take to constitute epistemic affordances, not available with physical mod-

els. Although the systems biology computational model-building practices 

we will examine in chapters 5 and 6 are significantly more complex, the 

basic epistemic affordances of the practice are much the same. For a D-cog 

system in which this investigative practice is an epistemic tool, the major 

affordances are these:

•	 A computational model synthesizes a vast amount of data into a com-

plex representation that can enact the behavioral dynamics of the target 

system.

•	 A computational model enables researchers to run an unlimited number 

of experiments and do so quickly. Although these experiments do not 

create new empirical data, experimental outcomes enable the modeler to 

examine implications of the data as synthesized in the model, as well as 

investigate potential experimental scenarios.

•	 The model can be used to run counterfactual scenarios. These scenarios 

enable the modeler to gain understanding by interrogating different 

possible variations of the target system and their existence conditions 

(parameter settings).

•	 It is possible to stop and start a simulation at any state and to track the 

system variables that generate the behaviors. This enables the modeler to 

understand the dynamic interplay among different model components.
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•	 The model provides detailed measures of significant variables, often not 

accessible in vitro or in vivo (e.g., synaptic strength, in our case).

•	 The dynamic behavior of the model can be visualized, for instance, by 

graphs against which data can easily be compared or by visualizations 

that are themselves dynamic, as in the case at hand. A dynamic visu-

alization, specifically, supports the modeler in thinking about three-

dimensional phenomena, and processes taking place across time. The 

visualizations can be recorded and viewed, and compared repeatedly.

Taken together, these affordances help the modeler to form a global per-

spective on the phenomena—a perspective that cannot be obtained from 

the more limited in vitro and real-world experimental possibilities of the 

target system. This global perspective is what informs the “feeling for the 

model,” that D11 expressed, and that is ubiquitous among modelers (more 

about this in chapter 5).

These epistemic affordances of the model enable the researcher, among 

other possibilities, to determine dependencies among variables, to discover 

information about a model’s potential behaviors, to develop new experi-

ments, and to use perceptual inferences to discover patterns hidden in exist-

ing empirical data. How the model’s behavior is visualized is largely arbitrary, 

but with judicious choices of how to exemplify behavior with respect to the 

problem goals, the visual representation can provide significant novel infor-

mation about the system being modeled. One example is the choice D11 

made to visualize the system behavior as it propagates across the network.

Finally, by the time a model successfully replicates a target system, the 

modeler has experienced thousands of simulations providing thousands 

of views of the system dynamics, both real and counterfactual. These 

experiences help the modeler build an understanding of the system in 

component terms and of how these components interact dynamically to 

produce behavior. They can also serve to alter the conceptual landscape of 

the researcher(s). In the case at hand, D11’s experiences of in silico model 

bursting behavior led to his hypothesis that the behavior could be stable, 

not random, which required him to develop new ways to conceptualize the 

behavior and to represent it mathematically. Repeated experiences of the 

movies of the model behavior and the other researchers own interaction 

with these made conceptual innovation a group project. This aspect of our 

case shows that the visualization capacities of computational models offer 
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the additional affordance of building collaboration ecospaces. Together, the 

piecemeal building of the computational model and the affordances of the 

model generate the task environment, collaboration space, and shared rep-

resentations of the D-cog system.

Of course, computational models have their limitations. Two major ones 

are that the model relies on the quality of the experimental data and the 

nature and fit of the parameter space, and that, of course, a computational 

simulation cannot create new data. But, as with logical inference, in which 

inferential processes can reveal novel implications hidden in the premises 

of an argument, so too, model simulation processes can lead, as we have 

seen in abundance, to novel insights and to verifiable experimental predic-

tions, which provide part of the warrant for the model.

I delve into these issues in detail in chapter 5, but, briefly, in addition to 

predictions, the warrant for the model rests on a pragmatic evaluation of the 

credibility of well-established modeling methods (see also Winsberg 2010), 

and on each increment of the building process being evaluated by means 

of a success criterion—that is, how well it fits the data. A computational 

model is built iteratively and incrementally through cycles of construction, 

simulation, evaluation, experimentation, and adaptation, and each cycle 

infuses data into the model, fitting the model closer to the target behavior. 

Each replication of the literature data changes the model’s parameters in 

the direction of fitting the target system. As the model gains complexity 

through infusing data, fitting processes, and numerous runs under various 

conditions, it comes to instantiate known and hypothetical system-level 

behaviors of the target system. The researchers anticipate, though still need 

to evaluate through predictions, that it also can accurately enact novel 

system-level behaviors of the target. The “target system,” is not a specific 

instance but a class of systems of that kind, which is what enables the pos-

sibility to transfer predictive inferences, for instance, to any in vitro dish 

model, as well as to in vivo neuronal networks, belonging to the class.

3.2.2  Distributed Model-Based Reasoning

Building computational simulation models provides another means of 

distributing cognition in the cognitive-cultural system of the research lab. 

We have been proposing a comprehensive account that places thought 

experimenting, simulation with physical models, and computational sim-

ulation on a spectrum of simulative model-based reasoning.3 Specifically, 
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all of these types of modeling build coupled mental–artifact systems that 

extend the researcher’s natural ability to create and test real-world and 

counterfactual situations imaginatively. On our account of computational 

model-based reasoning, the artifact model gradually becomes coupled with 

the modeler’s imagination (mental model simulation) during the course 

of numerous iterations of model-building and simulation. This coupling 

is built as the researcher performs systematic actions on the model and 

receives the feedback from those actions. The repeated two-way flow of 

information enables the researcher to build correspondences in her men-

tal model as she is building the computational one. The developing corre-

spondences enable her to make the requisite inferences to build, test, and 

draw implications from the model, as well as make changes to the model. 

The ability of the computational model to enact system-level behaviors 

makes manifest many details of the system’s behavior the modeler could 

not have imagined before in view of the fine grain and complexity of those 

details (see also Kirsh 2010). In particular, the coupling of the mental model 

with the artifact model expands the researcher’s imagination space so as 

to enable many possible scenarios (real and counterfactual) to be explored 

at a level of detail not possible in the mind alone. The enhanced ability to 

explore “what if?” scenarios furnishes resources beyond the natural human 

ability to conduct thought experiments, providing an exemplar of how 

scientists “create cognitive powers” through creating modeling environ-

ments. The computational model allows researchers to interrogate different 

variations—real and possible—of the target systems. Both thought experi-

ments and computational models support reasoning about counterfactual 

scenarios, but only computational models enable the researcher to probe, 

in principle, all possible variations. An important difference is that thought 

experiments provide particular scenarios, while computational models are 

built using variables, which support examining a range of possibilities in 

a parameter space and allow the modeler to drill down into the behavior 

for details, and, potentially, to develop insight into why a specific one is 

instantiated in the target. The affordance of visualization that computa-

tional modeling offers is of particular value in building coupling in a D-cog 

system, as we have seen in the lab D case. I explore in more detail the 

epistemic affordances of computational coupling in chapter 5. Here I focus 

mainly on those of dynamic visual representation.
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First, I consider the researcher’s comment that they needed “a visual-

ization we could understand,” which took the form of a dynamic compu-

tational visualization. As we saw in this case, the epistemic affordances of 

visualization can be especially productive because they make it possible for 

the researcher to see significant system behaviors and thus to support what 

comes relatively easy for humans, namely, making perceptual inferences. 

The computational visualization of dish behavior could have taken many 

forms, including the MEAscope graph with which the researchers had inter-

acted throughout the research. However, D11 chose to visualize the activity 

as he envisioned it, as a network in which neural signals are propagated 

across the system of neurons (dish, brain). Of course, because the lab was 

investigating learning as a network phenomenon, everyone assumed that 

the activity in the dish was network activity. But the per-channel represen-

tation of the MEAscope graph, based on the oscilloscope visualization used 

in electrical engineering, displays the dynamical activity (spikes) of a cluster 

of neurons at an electrode in separate channels. As such, that visualization 

does not exemplify the network features of the in vitro dish or the in vivo 

phenomena, and so the researchers appeared not to have been thinking in 

those terms as they wrestled with the dish behavior. As we have seen D4 

express, they had been “thinking of a pattern” (structure) instead of a “wave” 

(propagation behavior).

None of them had seen the network activity or a representation of it. 

D11 built the computational visualization on a counterfactual scenario—a 

thought experiment: “if we were able to see into the dish”—which altered 

his capabilities and those of the other researchers for simulative model-

based reasoning. The network visualization provided a significant repre-

sentational change in both the artifact model and the researcher mental 

model from a structure of burst patterns to propagation of burst activity 

(wave). The computational visualization was dynamic and captured the in 

silico network’s structure and behavior as a whole, as relationships changed 

and moved across it. The processes of “playing” with the in silico model in 

numerous configurations and under various conditions, and of “seeing” 

the resulting behaviors as these were occurring served to develop a close 

coupling between the researcher(s) mental model and the artifact model 

as a D-cog system and enabled the group to develop a better grasp of the 

system-level behavior of the network. Even the spatial extent graph, which 
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D4 developed to capture some of the spatial behavior they were seeing in 

the computational simulation, displays only a pattern of structural infor-

mation, whereas the CAT visualization captures behavioral information as 

it unfolds over time.

The researchers articulated their interpretation of what they saw in the 

visualization as indicating that bursts could be signals into a cluster of 

concepts:

•	 burst type: a limited number of bursting patterns (~10)

•	 burst occurrence: when a type occurs

•	 spatial extent: an estimation of burst size and specific channel location

•	 center of activity trajectory (CAT): a vector tracking the spatial properties 

of bursting activity—the flow of activity at the population scale—as it 

moves through the network

They modified and elaborated their initial concept of burst. However, 

the CAT is a completely novel conceptualization of a behavior heretofore 

unrepresented for both the lab and the field. It emerged initially from the 

computational model and the visualization of the movement of patterns of 

network activity and would not have been formulated, including represented 

mathematically, without a dynamic network visualization. The information 

might have been “always there,” but it was hidden in the MEAscope graph, 

which does not exemplify network behavior. The computational simulation 

and network visualization made it accessible. The manifest nature of the 

visualization served to align the researcher mental models and to facilitate 

the group in exploiting the possibilities of bursts as signals. Once the in silico 

dish could replicate the lab’s in vitro dish results, it created a different kind of 

distributed problem-solving system wherein all the researchers now directed 

their efforts toward trying to understand bursts as signals that could be con-

trolled and made use of in supervised learning. The computational visualiza-

tion served as a generator of many types of lab activity and coalesced the 

various research thrusts (open and closed loop), which when taken together 

enabled them to get the grip on the in vitro dish that had eluded them in 

interacting with it alone. With the new concepts, they could think about 

how to undertake a range of new investigations, such as how to control the 

embodied dish model-systems (hybrot and animat) and, to a lesser extent, 

how to control epilepsy in patients.
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Next, I consider the role of analogical inference. As we saw in chapter 

2, scientific innovation based on analogy is often more complex—being 

distributed across time, artifacts, and people—than studied by analogy 

researchers in philosophy and cognitive science. In the case at hand, we 

see once again the power of building the analogical source as a creative 

problem-solving practice in frontier science where there are no ready-to-

hand analogies to map and transfer (Nersessian 2008), and we see also the 

power of a visual analogy. Once the built analogical model is understood, it 

can be used to conceptualize and get a grip on puzzling target phenomena, 

as we saw in this case.

Customarily, analogical processes of mapping and transfer are under-

stood to proceed from the source to the target, but in cases of building the 

source, there is often an iterative interaction between target and source, 

wherein constraints from the target are also built into the source. The 

source, in this case, is a hybrid analogy, incorporating features from several 

domains, including the target, which thus provides a novel synthesis. D11’s 

stated goal in building the in silico dish model was to build an analogy: “I 

thought that [computational] modeling could give us some information about the 

problem [bursting and control] we could not solve at the time [using the in vitro 

dish].” In the process of building the in silico dish model, for instance, D11 

drew experimental data from single-neuron studies, brain slice studies, and 

other dish experiments, which he justified by assuming that, in the respects 

that matter, the behaviors exhibited by these neurons should also be exhib-

ited by the neurons in the lab D in vitro dishes. The in silico model also 

incorporates the engineering constraints of the structure of the in vitro dish 

(grid and electrode placement), as well as constraints from the CSIM neural 

network modeling platform. The finished model incorporates experimental 

data from the lab D dish. In general, how a model is built determines the 

nature of the analogical comparison it supports. The warrant for believing 

that reasoning with a built analogical source can provide understanding of 

the target stems from its having been constructed in ways germane to the 

target problem and from a determination of how well it exemplifies features 

cognitively relevant to the problem. In the case of a computational model, 

the relevant features are largely behavioral: the model needs to enact the 

behaviors of the target system in order to warrant transfer. We can see this 

in the following way.
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Through iterative building processes, a computational model merges 

information pertinent to the behavior of the target system. For one thing, 

the model provides a synthesis of data, in this case from the experimental 

neuroscience and neuroengineering literatures, relevant to the goals of the 

problem situation. Each replication of the various experiments reconfigures 

a model’s underlying parameters. Each of these replications infuses data 

into the model and adds to its complexity in a cumulative fashion, with 

each replication of the model building on the previous replication, until it 

comes to exemplify the observed behavior of the target system. In the case 

at hand, the final in silico dish model was built on a synthesis of all the data 

drawn from the literature, including from the lab. In an important sense, 

this model (and all such simulation models) creates a global structure that 

provides a running literature review, which synthesizes and makes manifest 

behavior, explicit and implicit, in the data on the related target systems. 

Through that synthesis, novel combinations of structures and behaviors 

can emerge. The model is fine-tuned by the replications until it gains suf-

ficient complexity to enact not only the target behavior, but also counter-

factual cases the modeler creates by changing parameters to explore the 

global behavior of the model. The model cannot create new data, but it can 

uncover potential consequences of the synthesized data—novel implica-

tions hidden in the data.

Analogical transfer is warranted because the model is built to exemplify 

the behaviors of systems of that kind. In this case, the in silico model was 

built to exemplify the behaviors of a target class of systems that comprise 

the in vitro models. Further, on the supposition that the brain is also a 

system of that kind, the researchers had sufficient warrant to transfer, pro-

visionally, their new understanding of bursts to investigate the burst-like 

phenomena seen in some in vivo neurological disorders, as D4 did in her 

epilepsy research. In sum, the analogical model is a generic representation, 

and representations developed from it, such as CAT, are generic and pertain 

to members of a class of phenomena. Part of the research is to figure out the 

range of phenomena that constitute the members of the class. The lab D 

researchers developed concepts initially for the computational simulation 

and then, by analogy, with suitable mapping modification, for the target 

in vitro dish. In the final analysis, however, the researchers determined the 

CAT to be a generic representation that captures the center of activity of any 

patterns with spatial extent.
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3.3  Summary: Concept Formation “in the Wild”

A substantial literature in the philosophy and history of science draws from 

historical cases to examine conceptual innovation and the roles of concepts 

in investigative practices, to which I have contributed. The case of concep-

tual innovation I have detailed here provides an opportunity to reflect on 

what more we learn about concepts by studying research-in-action. For one 

thing, our cognitive ethnographic investigations contribute to a general 

conclusion that model-based reasoning is productive of conceptual inno-

vation and change across a wide range of sciences and historical periods 

and on into present-day science. Of course, the specific kinds of modeling 

possibilities have enlarged over the history of science, bringing with them 

new epistemic affordances, for instance, those of dynamical simulation and 

visualization of the sort afforded by computational modeling.

I did not go into this ethnographic research with the intent to apply 

in these new studies the analyses of concept formation and change that 

I developed in my earlier cognitive-historical research. However, as we 

collected and analyzed the data pertinent to physical and computational 

modeling processes, features emerged that paralleled my earlier analyses 

of model-based reasoning in conceptual innovation. Many members of 

our research group were not familiar with my previous research. Together, 

we discovered, in particular, that the process of incremental and iterative 

analogue model-building, in this case physical and computational models, 

promotes conceptual innovation, just as I had found to be the case with 

conceptual models. To use a notion drawn from ethnographic analysis, 

such processes transfer robustly across different sciences and time periods, as 

well as across several sources of data and methods of analysis. So, the ethno-

graphic studies lend support to the interpretations developed from the less 

rich historical records. Further, as has been established in historical cases, 

the ethnographic cases underscore that model-based reasoning, across the 

range of modeling platforms, is closely connected with visualization, anal-

ogy, and simulation. And, as in those cases, exemplification is an important 

criterion by which researchers provide warrant for transfer from the source 

model to the target phenomena.

Most importantly, the ability to collect field observations and interviews 

surrounding problem-solving practices during the research process provides 

a wealth of insight into creative scientific practices, and the integrative 
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nature of cognitive-cultural dimensions of these. Indeed, cognitive ethnog-

raphy captures aspects of such practices that would never make it into the 

historical records. The reasoning of the researchers and the considerations 

in play at the time they are working on the problem, the evolving dynamics 

of the interactions among the members of a research group, and between 

them and the modeling artifacts, and the evolution of those artifacts are 

the most prominent among these aspects. Even for the most detailed con-

current records (which are rare in contemporary, if not all, science) there 

are numerous relevant data points about such processes that are unlikely 

to be archived. The computational visualization that enabled them (and 

me) literally to see the burst patterns as they were occurring provides an 

example: a sentence in a publication remarking that “burst patterns were 

noted” conveys neither its cognitive impact nor the change it sparked in 

group dynamics that led to integration across the three research projects. 

My research group was, of course, not able to make all the observations and 

collect all the records that are pertinent to these conceptual innovations, 

since ethnographic data collection is complex and time consuming and, 

of necessity, selective. However, once it became apparent that significant 

scientific developments were starting to come from lab D’s research (nearly 

two years into our research), we did have sufficient data to mine and could 

collect additional data to document and enrich the most salient aspects of 

the innovation processes, which I have been analyzing in this chapter.

The case here examined underscores that for philosophers and cognitive 

scientists to understand the nature of conceptual innovation in science requires 

an analysis of the interacting components within an evolving distributed system 

of researchers, artifact models, and practices. This analysis need not be eth-

nographic, but can also be based on historical records, as I have demon-

strated (Nersessian 2008). My main point is that conceptual innovation 

stems from the interplay among specific problems; the conceptual, mate-

rial, and analytical resources provided by the problem situation; and rea-

soning and representational practices. Concepts and models have a dual 

existence as mental and artifactual representations, and inferences derive 

from a coupling of these. As we saw, building the simulation model enabled 

D11 to think—and then the group (including the director)—of the dish at 

the level of individual neurons in networks of neurons and how these inter-

act dynamically to produce system-level behavior. This simplified in silico 

model enabled the researchers to “see into the dish,” which was opaque in 
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its in vitro complexity. The network visualization reinforced thinking of the 

neuron culture as a network and provided a dynamical simulation (captured 

in movies that could be examined more carefully and repeatedly) of the real-

time propagation of the activity across the network. This kind of visualiza-

tion enabled D11 to see that there were similar-looking burst patterns—and 

to infer that they were limited in number. Further, he could show these to the 

others who could also see these phenomena. It enabled them, as they said, 

“to look inside the dish,” which had thus far been a black box.

As noted, many affordances of a computational model are not available 

with either an in vitro or a mental model, such as being able to run numer-

ous simulations of the network under various conditions (for instance, 

resolution and parameter settings) or to stop and examine the state of the 

simulation whenever desired. The specific affordances of computational 

models for dynamic visualization, however, create a different kind of distrib-

uted model-based reasoning system that was paramount for this research. 

The in silico model with its visualization altered the problem-solving envi-

ronment, helped define the problem(s), and furthered the incorporation 

of the researchers and artifacts into a distributed problem-solving system. 

The manifest nature of the in silico dish network, through its visualization, 

enabled the group to exploit its affordances and make judgments about its 

limitations communally. In particular, it facilitated the group in making  

inferences about potential mappings to the in vitro dish, in rejecting false 

leads, in developing extensions, and in coming to consensus—all of which 

led to conceptual innovation.





In the preceding chapters on the BME labs, and in the ones on the ISB labs 

to follow, I examine each lab’s practices around modeling and how models 

are built toward accomplishing the lab’s epistemic aims. We have seen, in 

the BME case, how labs in different fields use the practice of in vitro simula-

tion modeling to build the cognitive-cultural resources, primarily material 

and conceptual, they need to investigate specific aspects of complex bio-

logical systems. In this chapter I have a different objective. In the course 

of our BME investigations we came to realize that the devices themselves 

drive much of the direction in which a lab develops, especially through 

posing problems or opening new avenues of research, which in turn leads 

to new technologies and practices, all of which shape the student research-

ers as scientists. Getting a grasp on the evolving, historical dimension of 

this kind of a distributed cognitive-cultural system requires a different kind 

of analysis—of how the system, in effect, builds itself.

“The lab” is often associated with those physical spaces that house the 

research-specific technologies, instruments, artifacts, and workbenches. “The 

lab” is also used to designate a research agenda: the problems and groups of 

people associated with it. In the latter case, it is often referred to as “the X lab” 

where “X” is the name of the principal investigator/director. And, as in the 

case of lab A, the tissue engineering lab, it can also be referred to, internally 

and externally, by a salient research object, in this case, “the flow-loop lab.” 

This designation directs attention to the kind of epistemic practices through 

which the lab carries out its research, while also signaling that these practices 

are sufficiently known in a broader community to be a meaningful designa-

tion. For lab A, this is the epistemic practice of in vitro simulation modeling 

of mechanical forces in blood vessels by means of in vitro devices. In chapter 

2, I dubbed such objects “signature artifacts” and examined in detail how 

4  Interlude: Building “the Lab”
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they and the warrant for their use as in vitro simulation models are built in 

both labs. In this chapter, I examine the function of these devices as provid-

ing what William Wimsatt (2013a,b) has called “structuring constraints” for 

future development within an ecosystem. In particular, I examine the role 

the signature artifacts in lab A played in building the lab into a distributed 

cognitive-cultural system comprising researchers, artifacts, problems, and 

practices, all with intersecting developmental trajectories.

As discussed in chapter 1, our analysis of research labs cannot simply 

apply the framework of D-cog as developed initially through studies of 

highly structured problem-solving environments. In such environments, 

participants carry out largely routinized tasks that use existing technolo-

gies and bring to bear knowledge that is relatively stable, even as used in 

novel situations. In contrast, the BME research lab is an innovation com-

munity where researchers do not have established methods, technologies, 

and well-defined problems in advance of beginning the research. Although 

there are loci of stability, there are equally important features of these labs 

that are continually undergoing development and change. These features 

include the ongoing development of the technologies, methods, and prob-

lems; the formation of social practices and systems; and the development 

of the researchers as they learn to be bioengineering scientists in the pro-

cesses of carrying out a research agenda of a lab director at a stage of his or 

her research program. At each slice in time, “the lab” comprises the current 

state of these, its features.

As I discussed earlier, D-cog’s customary use of the adjective “distrib-

uted” is past tense, which signifies a process of distribution already com-

pleted. To study scientific practice, however, requires we attend to how 

cognition is actively distributed as a system is built, that is, attend to what 

Rogers Hall has called the dynamic processes of distributing cognition. As 

he explains, drawing on his research group’s examinations of the research 

practices of scientists and mathematicians, “the word distributing is a verb, 

operating in an ongoing present, and shifts our attention to studies of how 

cognition . . . ​is produced historically out of human activity” (Hall et al. 

2010, 226; emphasis original). In this chapter I examine the research lab as 

a dynamic environment that builds itself as a D-cog system “historically out 

of human activity” with specific affordances and limitations for problem-

solving as it furthers its epistemic aims. I focus, in particular, on the role of 

the signature devices in these processes.
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In the following sections I examine how the signature artifacts of lab 

A not only provide a platform for current problem-solving, but also cre-

ate structural constraints and affordances for research potentialities not yet 

envisioned, and how these build “the lab.” I then discuss the wider ecosys-

tem that has been designed to turn the student researchers into the hybrid 

bio-medical-engineers envisioned by the senior researchers to populate and 

build a novel twenty-first-century version of the field of BME.

4.1  Creating Epistemic Infrastructure: The Laboratory for Tissue 

Engineering

The director of lab A, as with many of the pioneers in biological engineer-

ing, had an unusual career trajectory. In an interview I conducted with 

him as he was closing down the lab (approximately ten years after we con-

cluded our research), he characterized that trajectory as “from astronauts to 

stem cells”—a trajectory inconceivable to him at the outset. Starting in the 

late 1950s, the future director of lab A trained as a mechanical engineer 

and then worked in an aeronautical engineering lab for the space program. 

Since he received funding from NASA for his research, they drafted him to 

help study how the effects of vibration along the axis of the Saturn launch 

vehicle and during reentry in the Apollo capsule (“pogo stick vibration”) 

affect the cardiovascular system of astronauts. They tapped him because 

of his knowledge of the physics of launch and reentry forces. He reported 

that he did not know “anything about biology and medicine,” but that he felt 

an obligation to try to help them, and the problem was interesting. He dis-

covered that no one had examined the effects of even the natural physical 

forces of blood flow through the cardiovascular system. He came to suspect 

that the mechanical forces, in the first instance, shear, would most likely 

impact the endothelium—the innermost layer of cells in a blood vessel—

and decided to shift his own research program to this focus. First, though, 

he needed to learn some cell and vascular biology.

He spent a year as a visitor in a vascular biology lab that conducted 

research with an interdisciplinary team of medical and engineering 

researchers, and then left research in aeronautical engineering entirely for 

biomedical engineering. By then he was a tenured full professor, and he 

leveraged his engineering faculty position to begin research into how nat-

ural and aberrant blood flow through the arteries could affect the blood 
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vessels in animals and to learn as much about the biology of endothelial 

cells as needed to conduct research on the effects of the flow on the cells. 

Since no biologists would collaborate with him, he conducted this research 

in a veterinary lab at his institution (research discussed in chapter 2). He 

then moved to a new university, where he had a largely administrative 

role, while continuing the animal research long distance. The laboratory 

for tissue engineering (lab A) dates from 1987, when the director moved to 

another university to take advantage of the opportunity to begin research 

in the emerging area of tissue engineering and to create a new department 

of biomedical engineering. Importantly, the change provided the opportu-

nity to move out of animal studies and “take the research in vitro.”

When we met the director in 1999, he was widely recognized as a senior 

pioneer in biomedical engineering. As we have seen in chapter 2, the epis-

temic practices of lab A center around creating in vitro devices, assembling 

them in various model-system configurations, and performing in vitro 

simulations under various controlled experimental conditions. The lab 

began with the flow loop, at that time a large device, cobbled together but 

precisely engineered in its flow components, which simulated blood shear 

forces on cells on slides. Flow experiments were still a significant portion 

of the lab’s activity when we arrived, but by then the initial device had 

been replaced by a redesigned compact version that could be assembled 

under the sterile hood to limit contamination and placed in an incubator 

to keep the cells alive. A new tissue-engineered device, the construct, had 

been introduced, and it was playing a central role in building the lab at that 

time, and throughout our investigation.

4.1.1  Ontology of Artifacts

Shortly after we entered the lab, we conducted a sorting task in which we 

asked the researchers to put the names of the material artifacts they used 

to conduct their research on index cards and sort them into categories of 

their own devising. Their agreed-upon classification in terms of “devices,” 

“instruments,” and “equipment” is shown in figure 4.1.

Based on additional ethnographic interviews and observations, we for-

mulated working definitions of the categories, with which the research-

ers concurred. Devices are hybrid bioengineered facsimiles that serve as in 

vitro models and sites of simulation. Instruments, some shared with other 

labs, extract and process information and generate measured output in 
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graphical, quantitative, or pictorial form. Equipment assists with manual or 

mental labor. I focus on the devices here, since they drive the lab-building 

process, but the equipment and instruments also play important roles in 

the cognitive-cultural system. In fact, when we asked the researchers to tell 

us what is the most important artifact, the novice researchers settled on the 

pipette, to the astonishment of the lab director. He, and the more experi-

enced student researchers, said it was a toss-up between the flow loop and 

construct. When I discuss cell culturing practices, it will become apparent 

why the novices made this choice. This ontology also underscores the fact 

that all of the cognitive artifacts are part of the material culture of an epis-

temic community, though the reverse does not hold. Here, only the devices 

and instruments perform cognitive functions.

The flow loop and construct were the signature devices of the lab. These 

devices, which were built in-house, provided structuring constraints for 

the evolution of a range of cognitive-cultural practices in the complex sys-

tem that is “the lab.” These artifacts are what Wimsatt called “generatively 

entrenched” in the evolution of a complex ecosystem (Schank and Wimsatt 

1986; Wimsatt 2007, 2013a,b; Love and Wimsatt 2019). Briefly, an arti-

fact or entity is generatively entrenched if it acts as a constraint on the 

future direction of development of a complex dynamical system, which, 

Devices

flow loop

construct

equi-biaxial strain

pulsatile bioreactor

computer

Ontology of artifacts

confocal

flow cytometer

mechanical tester

coulter counter

“beauty and beast”

LSM 5 (program)

Instruments

camera

sterile hood

refrigerator

water bath

flask

pipette

Equipment

Figure 4.1
Sorting task of lab A artifacts
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in Wimsatt’s account, includes cultural systems as well as the biological 

systems for which the notion was developed originally.1 As we will see, the 

requirements of, and opportunities afforded by, these two devices led to the 

development of virtually all of the lab A cognitive-cultural structure as we 

encountered it and during the course of our investigation.

Most off-the-shelf purchases made by the lab fall into the equipment 

category. All of the equipment, except for the computer and camera, was 

used for cell culturing, which is critical to the research. The researchers 

noted later that they had forgotten the incubator, which is essential to keep 

the cells and constructs alive. The water bath and incubator are designed 

with biological knowledge of the requirements to keep the cells and tissues 

healthy—or as the researchers would say, “happy.” Unhappy cells become 

contaminated or dead, which can spell disaster for the research project 

under way. Researchers set the incubator’s temperature and atmospheric 

content to what is optimal for growing cells. The water bath, which is the 

medium that surrounds the constructs (“water for cells”), includes nutrients 

that are optimal for cell life. Importantly, culturing cells is a prelude to 

building the construct models needed for most research projects. Because 

all the researchers need to build their own constructs, learning to culture 

cells had supplanted learning how to operate the flow loop as the entry 

point into the lab research and culture when we began our investigation. 

Cells on slides could be prepared by a lab manager, but constructs need to 

be built by a tissue engineer. So, as a senior researcher told us, learning to 

culture cells was “baseline to everything.” That is, it provided entry into the 

problem space and cognitive-cultural practices of the lab and, so, incorpo-

rated the new member into the community.

Learning to set up and manipulate the flow loop is a relatively easy task 

for an engineer; learning to culture cells and build constructs is not. For 

new researchers, this is often the first contact they have had with biological 

materials, concepts, and procedures. How much care and maintenance are 

needed to support the viability of a cell culture amazed and constantly frus-

trated them. The consequences of failure are high: when cell cultures die, 

experiments are ruined. As a result, mentoring within the lab usually began 

around learning to culture cells, which started with harvesting them from 

the animal arteries donated to the lab from a nearby veterinary school. 

It was quite common for us to observe the new member and the men-

tor huddled close together scraping cells off arteries or learning embodied 
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techniques of culturing under the sterile hood. Although there are written 

protocols for the steps, culturing is also a performance art that needs con-

siderable practice to acquire. It is a highly embodied skill in which an incor-

rect angle of the hand with the pipette can lead to disaster.

The discourse of the lab frequently centered on keeping the cells “happy,” 

calling them “pets,” being told to “think of them as children” and bemoaning 

long weekends lost to “babysitting” them. As one way to address the trag-

edies of failure with cells, more senior researchers shared war stories about 

the recalcitrance of cells to respond in the ways they desired, and how they 

had emerged victorious, eventually. In such episodes, we witnessed how 

the researchers began to build resilience in the face of obstacles or failures, 

which are a constant in their pioneering research, and in all the labs we 

studied. The general ethos of the lab reflected the attitude that failure or 

impasses provide opportunities to learn. This attitude was reinforced by 

a broader community that purposefully promoted opportunities for struc-

tured and unstructured interaction among students and faculty from differ-

ent labs where research impasses as well as successes could be shared and 

discussed. What is especially interesting is that we did not encounter any 

situations in either lab where an in vitro model, once broadly envisioned 

and in the process of being built, or once selected from the existing ones 

as the means to pursue a research problem, was abandoned in the research. 

Impasses or failures usually led researchers to make modifications to the 

model or model-system or to the scope of what might be investigated using 

it. Significantly, everyone in the labs when we were there conducted suf-

ficient research to graduate, and they went on to academic or industry posi-

tions. Although lab directors encouraged practices for cultivating resilience 

in many ways, the most unusual was lab A director’s policy of handing 

out a compilation of what he called “The Rules of Life: The Planet Earth 

School,” which listed aphorisms about how to thrive in research and in life, 

to each new member—and to me, as I started this risky research on his lab.

During the process of learning to culture cells and make constructs, new 

members explored the research of the lab and the roles of various instru-

ments and devices in informal conversations with more senior researchers. 

Through these conversations they came to understand how the research 

largely involves working with the constructs as “modeling tools.” This learn-

ing experience, too, began to build an interdisciplinary epistemic identity, 

shifting it from engineer to bioengineer (Osbeck and Nersessian 2017). As 
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one researcher put it, when we witnessed the scene of her joyously dancing 

around the lab with her first success in getting cells to do what she wanted 

after nearly a year of repeated failures in every approach she had tried, “I’m 

a bio-bioengineer.”

In the instrument category, the confocal microscope, flow cytometer, 

and Coulter counter are large, expensive instruments that have been pur-

chased by the department for all the labs to use. Everyone in lab A uses 

these instruments. LSM 5 (laser scanning microscope) is the program used 

with the confocal microscope and enables user-directed image manipula-

tion and analysis of how the cells behave and change as a result of the in 

vitro simulations, which is likely why the researchers singled it out. “Beauty 

and the beast” was a nickname they gave to the large computer (beast) and 

camera (beauty) setup that had been designed for analysis (including the 

software) by a researcher who had just wrapped up her research when we 

entered. Her project had been to develop a better substrate for proliferating 

endothelial cells on slides, which she thought might also be used to help 

the cells migrate in the constructs. It provides an example of technology 

still residing in the lab but no longer used. It remained, taking up lab space, 

throughout our research. The other researchers could explain what it does. 

Old technologies tended to hang around since they have the potential to 

be repurposed in new lines of research.

The mechanical tester is the most interesting instrument for understand-

ing the central place of the construct model in building the lab, and pro-

vides an example of such repurposing. The design of the construct was 

continually under revision toward being both a better model and a viable 

implant. The properties of every new design needed to be examined and 

evaluated. The mechanical tester was used to examine the mechanical 

strength of various iterations of constructs. The original mechanical tes-

ter was an unused instrument in another lab that conducted tests on the 

strength of native tissues. An enterprising lab A researcher saw its potential, 

with suitable redesign, to be used to evaluate the mechanical strength of 

their engineered tissue. When we entered, it was a clunky, cobbled-together 

instrument that had been modified incrementally ever since the construct 

had been introduced. The testing process, at the time, was as follows. After 

constructs are “stimulated” in tubular form by the forces produced by vari-

ous simulation devices, they are cut into rings and beads are glued at vari-

ous intervals to examine local distension. The rings are placed in the liquid 
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chamber of the tester, and each side of the ring is attached to the tester’s 

hooks. At this point the ring is pulled apart until it breaks, while the process 

is videotaped (a quite recent modification). The tester can measure stress, 

strain, and ultimate tensile strength.

Interestingly, while we were there, they decided to buy a machine made 

by Instron because of its increased range of forces and sensitivity, but 

despite having spent a considerable sum on it, the researchers never used it 

for mechanical testing. Although it could do much more than their tester, to 

them Instron tester was a black box that did not, in particular, fit into their 

practice of placing the rings into the liquid chamber—a feature missing from 

the Instron—to keep the rings from sticking together before attaching them 

to the hooks. The machine had been built by Instron to test a range of mate-

rials, but it would need to be modified to work with the lab’s practices with 

constructs. The researchers noted they had been “avoiding this thing [Instron], 

because no one wants to design something that’ll work.” To make it work they 

would either have to redesign the Instron to hold open the rings or redesign 

their practices for preparing the constructs to be tested. With many mechani-

cal engineers in the lab, the former is something they could likely have done 

quite readily. However, despite being a jumble of parts and difficult to use, 

their mechanical tester had evolved alongside the lab’s practices and had 

become entrenched in ways the Instron proved unable to dislodge. Later, 

researchers new to the lab would appropriate the Instron and modify it for 

the completely different purpose of developing a device to simulate the 

effects of compression on stem cells (Harmon and Nersessian 2008).

All the in vitro simulation models fall into the category of devices. The 

flow loop preceded the construct; together they constituted the primary 

model-system of the lab. As we saw in chapter 2, the researchers considered 

it unnecessary to undertake a considerable redesign of the flow loop to 

accommodate the construct’s tubular design. Instead, the constructs were 

cut open and flowed flat when subjected to shear stress forces of the liquid. 

To accommodate the thickness of constructs, as compared with the cells on 

slides for which the flow chamber had been designed, a spacer was added 

to the flow chamber. Although “just” a spacer, it did require some redesign 

of the chamber to comply with the physics of the behavior of the flow-

ing liquid. The baboon model-system experiment, discussed in chapter 2, 

was the first time it became necessary to maintain the tubular form of the 

construct. The researchers anticipated they would undertake a significant 
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redesign of the flow loop, but as we saw, A7 was able to attach a shunt to 

the flow chamber and connect the construct to the shunt tubing, just as she 

had done with the animal—an ingenious method that saved them consid-

erable time and expense.

The lab’s evolving understanding, goals, and problems in relation to the 

construct opened new lines of research and led to building new in vitro 

models through which to manipulate and examine construct properties 

under various conditions. The researchers built the other devices listed in 

the ontology to explore mechanical properties of the tubular constructs 

other than shear (stress, strain, pressure). The research into these proper-

ties was directed especially toward strengthening the construct to meet the 

requirements of the application goal (vascular implant) opened by its intro-

duction into the lab. This research led to new conceptual resources related 

to arterial stress, strain, and pressure.

To be either a functional model or an implant requires (among other 

things) that the cells that are embedded in the scaffolding material repli-

cate the capabilities and behaviors of in vivo cells so that higher-level tissue 

functions can be achieved, such as expressing the right proteins and genetic 

markers. Further, a vascular implant needs to be strong enough to be able to 

withstand the in vivo blood forces of a pumping heart, and so understand-

ing what creates mechanical strength and integrity in native tissue became 

prime concerns. All of the experiments with the tubular construct required 

a silicon sleeve because it could not withstand the forces itself. The sleeve 

could be made to varying criteria that included thickness, elasticity, “sticki-

ness” in holding onto the construct, and with or without a collagen coat-

ing. The researchers hoped through their investigations into mechanical 

strength to find a way not to use the sleeve, both because it “added a level of 

doubt,” to their simulation results and, of course, because “a surgeon would 

actually want to suture the construct [sans sleeve] into the patient.” To address 

the issues of mechanical strength and integrity, researchers created two 

devices to simulate mechanical forces of pressure in the tubes (the pulsatile 

bioreactor) and strain on the cells (the equi-biaxial strain device, or EBSAD).

Finally, a vascular implant requires a high-yield source of endothelial 

cells, most desirably derived from manipulation of the patient’s progenitor 

cells or marrow stem cells to prevent immune rejection. We saw in chapter 

2 how A7 built a model-system with the construct and an animal model to 

examine a hypothesis about how progenitor cells function (more on that in 
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the next section). The researchers further speculated (they explicitly denied 

it was a hypothesis) that compression forces might be the mechanism 

through which endothelial progenitor cells differentiated into endothelial 

cells in vivo. During the last part of our research (and so not on the ontol-

ogy list), two newly arrived researchers were working on two compression 

bioreactor devices using confined and unconfined compression to examine 

the effects of these forces on progenitor and bone marrow stem cells. This 

provisional research aimed to determine whether a speculation could be 

turned into a hypothesis worthy of pursuit and, ultimately, to see whether 

the needed endothelial cells could be created by either of these methods. 

For the confined compression bioreactor, the researchers modified the 

rejected Instron mechanical tester. The unconfined bioreactor was in the 

planning stage when we concluded our research. This emerging research 

project provided us with a glimpse of how a new line of research and the 

requisite infrastructure derive from the then-current cognitive-cultural sys-

tem of the lab.2

4.1.2  Configuring the Problem Space

The representation drawn by the director when we asked him to draw a 

picture of the lab research partway though our study (figure 4.2) depicts, 

in our terms, the configuration of lab A as a distributed problem space. We 

gave him no instructions for how to do this. He declined to draw it while 

we were present, but said he would think about how to aproach it and 

would work on it during a flight he was about to take. When he gave it to 

us, he said he had wanted to depict how his research “barriers” (listed at 

top), researchers (middle section), and technologies (listed at bottom) are 

interconnected. The diagram on paper is a static representation, but the 

word “being” marks his intention to capture the configuration of the lab’s 

ongoing research. In line with it as a dynamic depiction, I interpret it as a 

schematic of “the lab as an evolving distributed cognitive-cultural system 

with epistemic aims”—a dynamic constellation of interrelated problems, 

researchers, simulation models, methods, instruments, and other technolo-

gies. The picture depicts the hybrid nature of the interdisciplinary problem 

space of BME, as we will see in unpacking it. Each of the barriers references 

the interlocking of biology and engineering.

The diagram references the five graduate student rearchers and one post-

doctoral researcher (A8) in the lab at the time. A notable feature of the lab, 
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not depicted, is that five of the researchers were women (A10 the lone man). 

I found the composition of the lab striking, coming myself from physics 

and philosophy, where women are underrepresented, and I asked the direc-

tor about it. His response was that he chooses only “the most qualified appli-

cants.” We were later to discover that although the proportion in lab A was 

unusual, BME has a high number of women in the field.3 Although the 

director did not include himself on the diagram, he is, of course, an integral 

part of the system even though his visits to the physical space of the lab 

were rare. He spent a significant amount of time on the road to promote 

the research and to obtain the financial resources to conduct it, in addition 

to administering an interdisciplinary center, and building and promoting 
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Gene
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Figure 4.2
Lab A director’s representation of how he envisioned “the lab.” The original figure was 

drawn by hand, and we have redrawn it without alteration to make it easier to see.
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an interdisciplinary educational program. He held lab meetings at varying 

intervals whenever he was in town, as well as individual meetings with 

each researcher when needed.

In this section I use the diagram to examine some of the research lines 

and their associated epistemic infrastructure that participated in evolving 

the lab as the researchers addressed the barriers.

At the top of the diagram the director categorized the “major barriers” 

with which the research was dealing. In lab A, the researchers addressed 

“barriers” by formulating research problems that interconnected the basic 

biological research of the lab and its medical application aims, and pur-

sued these problems through developing technologies for in vitro investi-

gation. To address the barrier of “mechanical properties and the influence 

of mechanical forces” required researchers to formulate problems directed 

toward understanding basic biological processes of arterial shear, stress, 

and strain and their role in normal and disease processes. It also required 

all the researchers to address the problem of developing a construct with 

desired in vivo biological and mechanical properties. The lab did not aspire 

to create an implant, but rather to solve the problems that would further 

that application goal. In particular, this meant bringing the research closer 

to understanding the requirements to create an implant with the requi-

site functional properties. As part of that goal, the lab undertook research 

directed at the barrier of “cell source strategies,” by which the director 

meant research to find an appropriate source of endothelial cells, such that 

a tissue-engineered implant would not be rejected by the recipient’s body. 

This research took the novel direction of investigations into the possible 

role of mechanical forces on cell differentiation and maturation. It opened 

lines of basic biological research for the researchers, such as on the role 

of forces in adult stem cell differentiation (A8) and in the maturation of 

progenitor cells (A7), which in the latter case led to the lab’s first animal 

model-system.

The lab-built devices are designated by “collagen gel technology” (con-

struct), “flow chamber studies” (flow loop), and “mechanical testing” 

(pulsatile bioreactor and equi-biaxial strain device). “Mechanical testing” 

also indicates the lab-built instrument for testing mechanical strength of 

a construct. The kinds of investigations along the bottom of the diagram 

implicate both the devices and the technologies through which research-

ers could examine simulation outcomes from experiments conducted with 
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them. For instance, after a flow chamber simulation in which the construct 

is subjected to various controlled shear stresses, the researchers examine the 

effects on the endothelial cells for various biological markers with instru-

ments or through gene profiling. These kinds of studies implicate a range 

of technologies, many external to the physical space of the lab, such as the 

confocal microscope used to study morphology and migration or the DNA 

microarray technology used to study gene expression.

The director used the thick lines to denote interconnections among the 

individual research projects, especially with respect to the researcher (A7) 

designated to build the animal model-system that would integrate find-

ings from all these projects. He represented a postdoctoral researcher (A8) 

as unconnected to the students because she had just started the new line 

of lab research into the possibility that stem cells might be made to dif-

ferentiate into endothelial cells by means of mechanical forces, and thus 

provide a cell source. Her project did become more central in the research 

after she was successful, and later led to the new researchers’ project to 

examine compression effects mentioned in the previous section. At the 

time of the diagram, she did interact with other lab members about her 

and their research through conversations in the course of the lab activities 

and at lab research meetings. Although the research projects were carried 

out by individual lab members (sometimes assisted by an undergraduate or 

MS student), we witnessed frequent joint problem-solving episodes within 

the lab and at all the lab meetings. Each individual research project and 

its associated problem-solving processes formed a D-cog system. Each of 

these subsystems contributed to and was constrained by the lab’s dual basic 

and applied research problems and goals. The diagram depicts the intercon-

nected subsystems that constituted the configuration of the lab’s problem 

space at that time and the direction of the lab’s evolution. Together they 

constituted “the lab” as an evolving distributed cognitive-cultural system 

with epistemic aims.

When the researchers noted in figure 4.2 entered the lab, the flow-loop 

model was a well-established technology of research, but several of them 

formulated research problems that would require some redesign of it. The 

construct model was a recent addition, and all the researchers played sig-

nificant roles in furthering its design in directions related to their specific 

projects. A22’s research focused on developing the collagen gel technology 
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toward improving the mechanical strength of constructs, although at the 

time she was still in the process of figuring out how she would approach 

the problem. She was the newest member in the lab, who started as an MS 

student, and she decided to transition to a PhD student only shortly before 

we concluded.4 A4’s research was to examine specific biological markers in 

relation to controlled mechanical stimulation of constructs by stretching 

with the pulsatile bioreactor, as compared with their behavior in native tis-

sue, thought to be stimulated by pressure forces in vivo. A5’s research was 

to correlate the development of arteriosclerosis with the genetic behavior 

of the endothelial cells and progenitor endothelial cells that circulate in the 

bloodstream by simulating normal and abnormal flow conditions with the 

flow loop. She, along with A10, introduced new biological methods and 

tests related to gene profiling.

Its interesting for our purposes to have a glimpse of A10’s project because 

he introduced a new kind of construct, which in turn required him to build 

a new simulation device to pair it with. A10’s project was to investigate 

the effects of shear stress on the function of the aortic valve. Stenosis in 

vivo is a frequent problem, and there has been a long history of largely 

unsuccessful attempts to replace the valve. A10’s research aimed both to 

understand normal and diseased valve functioning and to contribute to the 

goal of a tissued-engineered replacement. He built a novel aortic construct 

and used valvular endothelial cells harvested from animal valves. Valvular 

endotheliel cells experience forces different from those that line the arter-

ies; in particular, they undergo significant stretching due to their proximity 

to the pumping heart. Understanding what creates mechanical integrity 

and strength in native valves was a primary concern for him. He hypothe-

zised that the effects of stretching on the cells might be what strengthens 

the extracellular matrix. To follow out this hypothesis he decided to build a 

new device. The only device in the lab that simulated repeated stretching of 

the construct was the pulsatile bioreactor, which was an inadequate design 

because it simulated stretching along only one axis of the tube, so different 

parts of the construct, and thus the cells, experienced different stretches. 

A10 wanted to look at cellular behavior where “it’s critical to make sure you 

are doing the same things to every single cell.” He saw a design for a biaxial 

strain that another mechanical engineer at a university in distant state had 

built for different purpose. A10 initiated a collaboration with him, and they 
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redesigned and built the EBSAD for use on valvular constructs. This device 

could simulate the strain (deformation from stress) experienced by a vessel 

as blood flows through it.

Interwoven with the engineering task, A10 worked to develop the biolog-

ical knowledge and expertise to determine whether the cells, when exposed 

to the simulated in vivo stretching by the EBSAD, would produce biologi-

cal markers that indicated strengthening. He struggled for quite a while to 

figure out what to analyze as markers, deciding on the proteins that make 

up the extracellular maxtix, which binds the cells in the tissue. He reasoned 

that “the cells secrete protein. . . . ​I surmise that the valvular cells, because they 

are in a highly dynamic flexing environment . . . ​have to constantly remodel the 

matrix they’re in to kind of repair it.” His research, thus, again led to new bio-

logical methods being introduced into the lab practices: the gene microarry 

studies to compare protein generation in stretched and nonstretched cells. 

He chose that method because “there may be characteristics from the gene pro-

file that suggest that they [proteins] will interact with the matrix in a certain way 

that may strengthen it.” Both the time and financial investment of the lab 

into building the EBSAD and the costs of establishing a collaboration with 

a nearby university to conduct the complex gene array studies represented 

a gamble. His hypotheses about strengthening through stretching and the 

gene profile characteristics “very well may not hold.” As with virtually every 

research project the lab undertook, it represented a significant risk to invest 

in building out in a specific direction.

As indicated by the thick lines on the diagram, all of the system’s com-

ponents are connected to A7. All of the research projects undergird the 

construct-baboon model-system designed by A7, which she called inter-

changeably an ex vivo (meaning outside the animal’s body) or in vivo 

experiment, that we discussed in chapter 2. In an early interview A7 noted 

that she had been designated as “the person who would take the construct in 

vivo.” This meant that she would need to create a model-system in which a 

construct would be connected to the vascular system of a living animal. To 

be successful, as she said, the project would need to “obviously integrate the 

results of colleagues here in the lab.” At the start, she was quite unclear about 

just what she would study with the model. Once she decided on a specific 

animal, she devoted condiserable time to designing a means of connecting 

the fragile construct to the animal without it rupturing (and in an animal-

friendly way). As her research project evolved, it became clear that it would 
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connect the two “barriers” by investigating whether shear stress condition-

ing of endothelial progenitor cells with the flow loop would make them 

function as mature endothelial cells in the production of thrombomodulin 

(a protein that prevents platelet formation) when attached to an animal 

circulatory system.

For her investigation, she designed a model-system (figure 2.6) that could 

connect the teflon-scaffolded construct to the bloodstream of a baboon by 

means of an exterior shunt between the femoral artery and vein of the ani-

mal. The ex vivo simulation was designed to be run in real time through 

a gamma camera to provide functional imaging. Conducting a simulation 

with this model-system under the requisite experimental controls was the 

most complex problem the lab had undertaken. As A7 noted, “In the lab we 

can control . . . ​exactly what the flow is like. . . . ​But when we move to an animal 

model, it’s more physiologic—the challenge then is that it is a much more complex 

system.” Importantly, she was able to determine that precondtioning the 

progenitor cells with flow-loop shear at the normal human in vivo blood 

flow rate enhances the ability of progenitor cells to express anticoagulant 

proteins within the model-system, but not at lower rates. This finding made 

a significant contribution both to the research community’s understanding 

of the effects of arterial shear, along with further articulation of that con-

cept, and to the problem of finding endothelial cell sources for a vascular 

graft. With respect to the latter, it demonstrated that mature endothelial 

cells can be created by mechanical forces from progenitor cells, which gave 

a boost to the lab’s research in that area. A7’s research was completed just at 

the end of our follow-up investigation, so it took approximately five years 

of concentrated work, but it was predicated on nearly thirty years of build-

ing the lab.

Although not represented explicitly on the diagram, the barriers, tech-

nologies, and researchers implicate both lab history and research poten-

tialities. One potentiality is seen in the, then, less-integrated line of A8’s 

research. Her novel investigation into the effects on mechanical forces on 

adult stem cells as a strategy for producing endothelial cells—if successful—

could lead to more research along those lines. In fact it was successful, and 

it did open other lines, including the line we mentioned above in connec-

tion with the Instron mechanical tester. The two new researchers would 

be connected to A8 in carrying on her project on cell differentiation by 

means of forces but, in their case, compression on bone marrow stem cells 
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and progenitor cells. They modified the Instron to carry out confined com-

pression studies and were building a new device to carry out unconfined 

compression studies. Their research also required they make modifications 

to the collagen gel technology.

Our analysis shows that lab history is implicated in current problems, 

technologies, methods, and researchers. A7’s account of how her under-

standing of how it was possible she could now use the construct in an 

animal experiment provided in an interview in her third year in lab illus-

trates the hands-on role of history in the research: “One of the main limitations 

of the collagen gel construct is its mechanical strength. And like over the course 

of research in our lab, A1 had looked at things like mechanical conditioning to 

increase the strength, and of course A12’s work has focused on how he could inte-

grate elastin. Well, with his integration of the elastin sleeve we’ve now actually 

made enough progress in the area of mechanical strength that we have a strong 

enough construct to put in an animal.”

This account characterizes constructs as products of communal activity 

around a problem, the lack of mechanical strength. Her sketch of its his-

torical trajectory thus far in the lab gives the artifact meaning through its 

relationship to two prior members and their roles in this ongoing problem-

solving effort. One person looked at mechanical conditioning as a possible 

source of strength, while the other added a new component to the con-

struct. A7 identified the current problem situation and her future work and 

lab role as yet another chapter in the building of the construct and of the 

lab. The historicity of the construct served to create a thread that binds the 

activities of lab members within its developing cognitive-cultural fabric. 

Such accounts by members of the lab-built technologies were commonplace 

in our interviews and informal discussions. In chapter 2, I provided their 

account of history of the flow loop, as recounted by several members. These 

accounts led us to understand the importance of the historical dimension 

of building the lab is a resource for current and future research (see, e.g., 

Kurz-Milcke et al. 2004). The agenda of design and redesign makes history 

a resource that is intellectually hands-on; that is, history is meaningfully 

related to present work with lab technologies, devices in particular. Devices, 

inherited and new, need to be (re)designed for the current problem situa-

tion. To avoid past pitfalls requires, among other things, knowing why and 

how a certain problem situation has led to the realization of certain design 

options and what about those options worked or did not. The historicity of 
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the artifacts is a resource for novel design options in the present. In prac-

tice it is not an easily accessible resource, but becomes more available as a 

researcher’s participation in the community develops.

Finally, a central component of the epistemic and sociocultural infra-

structure of the lab is not explicit in the diagram. It is the educational infra-

structure at the institutional level that was under development at the same 

time and was directed specifically at creating a new kind of interdisciplinary 

researcher in BME—a program designed to move the research field beyond 

the problematic collaborations of researchers in different disciplines by 

designing hybrid BME researchers. A central dimension of our research was 

to use our findings about their epistemic and learning practices in the con-

text of research to aid in the development of their curriculum to enhance 

that kind of research. We dubbed our approach a “translational strategy.” 

I had long worked informally with K–12 science education researchers, 

which reinforced my strong belief that philosophers of science could—and 

should—make a contribution to the improvement of science education. 

This research provided an exciting opportunity to contribute to building 

a practice-informed educational program from the ground up. But I also 

saw that the funding we received from the educational directorate at the 

US National Science Foundation for developing a novel, practice-informed 

education in BME would also provide the means to collect the data of the 

sort needed to address the problem of cognitive-cultural integration in the 

epistemic practices of science.

4.1.3  Designing Educational Infrastructure for Hybrid Researchers

In the BME labs, graduate students are simultaneously learning to be scien-

tists and pioneering researchers. Thus, the development of student learners 

into BME researchers is a significant component of building the lab. These 

BME communities see themselves as conducting cutting-edge research on 

the frontiers of science, engineering, and medicine. The lab ethos is infused 

with an open-ended sense of possibility, as well as a tinge of anxiety about 

how little is known in their area and whether PhD research projects will 

work out. The researchers place a high value on innovation in methods, 

materials, technologies, and applications. Obstacles and impasses are omni-

present, as are lab-devised support structures for dealing with them. These 

structures help student researchers to see failures along the way are viewed 

as opportunites for learning. During our investigation, we saw several 
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instances where “big gambles” led to high payoffs, which sustained this 

attitude, despite the fact that most of the researchers engaged in high-risk 

research are doing it for their dissertation projects. The sociocultural fabric 

each lab built, along with the supports developed in their local community, 

has been successful in helping students to graduate.

Our labs resided in a BME community that decided to place high value 

on what it calls “interdisciplinary integration” at the level of the individual 

researcher. For them this meant to move beyond problematic collaborations, 

which stem from the numerous differences between the practices and epis-

temic norms and values of engineers and of bioscientists, to the extent possi-

ble, and cultivate the individual researcher as a hybrid bio-medical-engineer 

from the outset. The nature of the research requires lab members, who arrive 

predominantly with engineering backgrounds, to develop equal facility with 

wet-lab techniques and in vitro engineering design, as well as to develop a 

selective deep knowledge of the biology of their research targets. Although 

it was clearly possible to, as the lab A director expressed, “learn the biology as 

they go along,” the lab directors knew from their own experience that this was 

often an arduous and haphazard process, and so sought to develop an educa-

tional program to facilitate systematic hybrid learning.

The lab A director and other senior colleagues felt the lab context and 

interaction with wider research communities were not sufficient to provide 

the infrastructure for students to develop fully as researchers. They saw it as 

their challange to design and build a new educational environment in which 

to develop their students into a new breed of reseacher, better-equipped to 

meet the demands of an emerging field and become leaders in it. This new 

breed would move beyond the faculty’s own experiences of being educated 

as engineers who later moved into biomedical research—they would be 

educated as hybrid biomedical engineers from the outset. In conducting 

research, they would be able to integrate engineering and biological con-

cepts, methods, and materials to address, mainly, medical problems.

As a consequence, the faculty determined they would build a pioneer-

ing educational program that would firmly establish BME as an “interdisci-

pline” that integrated all three components in its research and education.5 

So, in this framing, to address biomedical problems within an engineering 

framing did not require the BME researcher to establish collaborations with 

biologists or integrate them into the research, although they could do so. 

The graduates of this program would be able to collaborate fluently with 
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other hybrids or with disciplinary colleagues in each area, thus mitigat-

ing much of the “interactional complexity” of interdisciplinarity (Wimsatt 

1974). They would be equally able to move into academia, medicine, public 

health, industry, or government.

This was the vision. They translated it into an explicit decision for how 

to build that vision with three main components: (1) two new buildings 

with architecture designed to promote interdisciplinarity among bioengi-

neering, biosciences, and medicine, with one building dedicated entirely to 

the envisioned BME department; (2) a new joint department of biomedical 

engineering across two universities, with one university providing largely 

engineering and bioengineering expertise and the other medical expertise, 

with the biosciences drawn from each university; and (3) a new educational 

program (starting at the graduate level, but quickly adding an undergradu-

ate degree) that would integrate the three components of the field through-

out its curriculum and cultivate student identities as bio-medical-engineers. 

Together these components would serve to articulate and institutionalize 

the kind of interdisciplinarity they broadly envisioned. This pioneering 

educational program has since attained national and international recogni-

tion, as well as garnered major awards.6

When we became involved, the first two components were well under 

way and provided the institutional, material, and financial structures from 

which to develop an educational program. They were raising funds and 

consulting with architectural experts in building spaces for labs and offices 

and for developing community activities that would promote interdiscipi-

nary interaction and community-building. They had few ideas, however, 

about how to build an educational program to achieve their vision, and 

there were no established curricula or textbooks that could be adapted to 

that vision in their estimation. Through a serendipitous circumstance they 

became interested in understanding what cognitive science might have to 

offer as a resource. At that time the US National Science Foundation had 

a requirement that any grant that included an educational program also 

needed to include a cognitive science dimension. The NSF, as with other 

funding agencies, often includes such requirements to further their own 

objectives, in this case to improve the quality of science and engineering 

education through incorporating cognitive science research on learning. 

The leaders of the BME initiative were applying for an engineering research 

center (ERC) that would include graduate training. I was director of the 
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Program in Cognitive Science, so they contacted me and asked if I could 

explain to them why the NSF would have such a requirement, which I 

interpreted to mean to explain what cognitive science has to offer educa-

tion. My response to their request created a partnership between them and 

me and my colleague Wendy Newstetter, whom they would hire into the 

new department and who became the co-PI on our NSF-funded research.

Our NSF funding, in turn, led to our creating a research group to conduct 

the investigations into the cognitive and learning practices emerging in fron-

tier bioengineering sciences research labs. CLIC: the Cognition and Learning 

in Interdisciplinary Cultures research group continued, with varying com-

position, for fifteen years. We proposed a “translational approach”: to study 

their cognitive and learning practices in authentic settings of research and 

translate our findings about the requirements to carry out BME research 

into classroom and instructional lab educational experiences. Our proposal 

to create what they called “a cognitively informed educational program” 

was a novel conception consonant with their novel objectives. If successful, 

it would put them on the map as leaders in education as well as research. 

Indeed, eighteen years from the time we began to develop it, the program 

received the highest award in educational innovation from the United States 

National Academies of Engineering, as well as other awards along the way.7 

The project, as envisioned, would also contribute pioneering research to 

cognitive and learning sciences, as well as to philosophy of science, since 

it provided the opportunity to examine cognitive-cultural integration as it 

occurs “in the wild” of science, as well as to investigate novel model-based 

reasoning practices as they emerge in interdisciplinary practice.

Much cognitive and learning science research has established that mak-

ing students active participants in their learning is more effective than sim-

ply lecturing to them, and in the sciences especially, if they are engaged in 

attempting to solve authentic problems. In the K–12 area, there was by then 

a long history of educational initiatives based on “problem-based learning” 

activities. Given this and what we were finding about problem-solving in 

the labs, we were predisposed to find a way to make problem-based learn-

ing (PBL) central to the developing curriculum. Our choice was reinforced 

further by the fact that the method is widely used in medical education as a 

means of preparing students for the clinic, and thus familiar to the medical 

faculty. With medical PBL, small groups are presented with problems—rich 

and complex real-world medical cases—that enable them to engage in the 
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authentic practices of the field, with “scaffolding” created by the teach-

ers (who act as “facilitators” to student problem-solving) to support the 

development of expertise in diagnostic practices. In the course of working 

to solve authentic medical diagnostic problems, students develop a deep 

understanding of the human body, diagnostic capabilities, and an identity 

as medical problem-solvers.

PBL, as used in medical schools, however, was designed to scaffold the 

kind of hypothetical-deductive and inductive reasoning needed for diag-

nosing ailments. Our research determined that problem-solving in BME is 

model-based. To scaffold biomedical engineering model-based reasoning 

(Nersessian 1992a, 2002, 2008, 2009) we needed to develop a different kind 

of scaffolding in collaboration with the faculty who would run the courses. 

The faculty, at first, did not understand what we meant by model-based 

reasoning, but given a few examples, they agreed our characterization of 

their practices is apt. To distinguish our problem-solving objectives from 

the medical field, we called the new PBL-informed method for BME edu-

cation “problem-driven learning” (PDL). Over time, through several itera-

tions, this method has become woven into the BME curriculum. It is still 

a dynamic curriculum, which has continued to evolve since our research 

grants ended. At that time, the graduate level had two core PDL classes, and 

at the undergraduate level there were three core PDL courses, two classes 

and one instructional lab, we helped to create in collaboration with the 

faculty (Newstetter 2006; Newstetter et al. 2010; Osbeck and Nersessian 

2019). Notably, as the undergraduate level developed, the education pro-

vided began to create an outstanding pool of undergraduate researchers for 

the labs. Much of the rest of the curriculum at both levels, which we did 

not ourselves design and develop with them, contains significant PDL ele-

ments incorporated by individual faculty members who have been inspired 

by what they experienced as facilitators of the introductory PDL course (all 

faculty facilitate). They did continue to consult with Wendy Newstetter, our 

project co-PI, who had become a member of their department and who was 

also a facilitator in  the introductory undergraduate course, in developing 

these courses. Thus PDL, as a method, has become generatively entrenched, 

in that it provides structuring constraints for course design.

The introductory course is taken by all incoming students, who work 

in groups of eight on the problem outside of class, and with one faculty or 

postdoc facilitator during the class periods.8 The problems they work on are 
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carefully designed by the faculty, with the assistance of Wendy, to present 

complex, ill-structured health-care problems drawn from the real world, 

which encourage students to develop, integrate, and anchor their biosci-

ence and engineering knowledge in the context of medical applications. 

For example, in a problem about cancer screening, student teams need to 

formulate and address questions concerning the biology of cancer, current 

screening technologies (e.g., CT scans or MRI), as well as envision future 

screening strategies (e.g., at the nanoscale), and to develop statistical mod-

els, among other topics of investigation. There is now a substantial reposi-

tory of problems that faculty can draw from and modify to keep updated, 

as well as add new problems to.

It is important to underscore that the curriculum development is not a 

linear process. Hutchins has characterized learning as “adaptive reorganiza-

tion in a complex system” (Hutchins 1995a, 289). The development of the 

BME educational program, too, fits the notion of building we have been 

using: designing, constructing, experimenting, evaluating, and redesigning 

incrementally through numerous iterations. This kind of iterative course 

development is called “design-based research” in the cognitive and learning 

sciences areas, and was poineered in K–12 education (Brown 1992; Collins 

1992). Our research group and the BME faculty were also learners, and much 

“adaptive reorganization” took place in the early years of this curriculum 

development. We were pioneers in attempting a translational approach to 

curriculum development. Further, there had been little cognitive science, 

educational, or philosophical research on the emerging research practices 

of biomedical engineering (or any field of engineering) when we began. 

Although university research laboratories are the main training grounds 

for future researchers, they have rarely served as sites in which to study 

situated learning. Our program of translational research focused on turning 

our findings about the nature of the epistemic practices and of the effective 

strategies that support problem-solving and learning in the setting of the 

research lab into educational experiences in the instructional settings.

In both our philosophical and cognitive science research we sought to 

understand the ways in which the social, cultural, material, and cognitive 

aspects of practice and learning mutually inform, and are informed by, the 

research setting. We analyzed the ecological features of the research labs—

the cognitive, investigational, and interactive practices—that invite and 

support complex learning and used them to guide design principles for 
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instructional settings. Our findings led us to characterize the research labs 

as agentive learning environments, where student reseachers are made agents 

of their own learning, unlike traditional passive instruction via lecture and 

the canned, recipe-driven instructional lab (Newstetter et al. 2004; News-

tetter 2005). These findings reinforced our initial choice of problem-based 

learning as a pedagogical method through which to implement the design 

principles through numerous iterations. Presently, learning scientists9 and 

experienced faculty work with incoming faculty, which, together with the 

repository of PDL problems, constitute what we call a “faculty incubator.” 

The environment of the incubator provides the cognitive-cultural saffold-

ing for new faculty to rapidly participate in what, for them, is usually a 

novel pedagogical approach and learning-centered BME ecosystem. Finally, 

through the engineering education outreach efforts of Wendy Newstetter, 

the BME faculty, and the PhD students of the program who have gone on to 

university appointments, significant elements of our novel PDL approach 

have become generatively entrenched in other BME programs in the United 

States and internationally.

4.2  Summary: Lab A as “an Evolving Distributed Cognitive-Cultural 

System with Epistemic Aims”

The brief glimpse of lab A practices sketched in this chapter and chapter 2 

provide an illustration of our findings about how the devices researchers 

build in the course of specific problem-solving efforts in a lab largely drive 

the building of the lab as a distributed cognitive-cultural system. These arti-

facts possess possibilities that researchers can exploit to evolve the system 

further. At the outset, the lab A director did not envision his lab engag-

ing in tissue engineering to make vascular construct models or conduct-

ing stem cell research and gene profiling. His initial epistemic goal was to 

understand the effects of the force of arterial shear on endothelial cells, 

which in turn might help to inform understanding about disease processes 

of the vascular system, such as arteriosclerosis. At the end of his career he 

expressed wonderment at the fact that his research program had spanned 

“astronauts to stem cells.”

The director began his research program with the problem of the effect 

of vibratory forces on the cariovascular systems of astronauts by using 

his engineering knowledge to create mathematical models. Later, as he 



170	 Chapter 4

transformed into a hybrid biomedical engineer, he developed those models 

with experiments on animals. The animal in vivo research provided insight 

into important dimensions of the effects of shear on the vessels, but lack 

of control and other limitations led him to build the first in vitro model-

system, which comprised the flow loop and endothelial cell cultures on 

slides. The flow-loop device afforded more control and opened the pos-

sibility to examine selected features of arterial shear in relation to endo-

thelial cells, which were isolated from other features of the in vivo system. 

Specifically, this model-system configuration both enabled and constrained 

the research to focus on structural properties and proliferation behavior of 

cells under shear. Significant problems in conducting the flow-loop simula-

tions, especially with respect to contamination, led lab members to rede-

sign it into a compact artifact that could be assembled and run in a sterile 

environment.

The researchers realized all along that the cell cultures provided a limited 

model of the vascular wall in relation to the blood mechanical forces, as well 

as that the flow loop offered the possibility to examine the relationships 

among different kinds of cells in the blood vessel wall, if they could engineer 

a living three-dimensional tissue model. With the advent of new technology 

for tissue engineering, the lab undertook to design the construct family of 

models, which provides a range of models that instantiate more of the phys-

iological functionality of the blood vessel to use in flow-loop simulations. 

The construct device opened the application potential to create a vacsular 

graft to repair diseased arteries and led the researchers to investigate the 

requirements of such a graft, which, in turn, opened the new problems and 

avenues of research into mechanical strength and integrity and began the 

quest to find out whether it is possible to use mechanical forces to develop 

a high-yield endothelial cell source. Importantly, the tubular shape of the 

construct supported the researchers in formulating new epistemic goals with 

respect to understanding the functional properties of blood vessels in rela-

tion to a range of mechanical forces. These goals required the researchers 

to build several new devices, for instance to examine pressure and strain, 

and an instrument to test mechanical strength, as well as to introduce new 

methods and technologies to examine experimental outcomes. Eventually, 

all of this led to the lab’s ability to create a completely different kind of ani-

mal model than that of the director’s initial research.
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In sum, in vitro simulation devices provide structuring constraints for 

articulating the cognitive-cultural system that constitutes lab A as it devel-

ops over time. This system comprises researchers, goals, problems, models, 

methods,  concepts, and epistemic norms and values, together with tech-

nologies for experimentation, visualization, and analysis and with socio-

cultural practices. The material infrastructure, in particular, both drives the 

direction of and becomes incorporated into the D-cog system and subsys-

tems of a research lab, and is essential infrastructure for its epistemic goals 

and accomplishments. In the BME labs we studied, signature devices, in 

particular, contain the potential for development of future cycles of build-

ing, which often proceeds in novel and unanticipated ways.

In an important sense, then, a core activity of the lab is building itself 

as a distributed cognitive-cultural system directed toward achieving the 

overaching epistemic and application goals of the research. The initial and 

persistent goal of lab A had been to understand the role of physical forces 

on biological processes in the vascular system. The flow loop was particu-

larly generatively entrenched in that it served as a structuring constraint on 

nearly all of the research of the lab for all the years of its existence. It made 

possible taking the research in vitro because, with it, normal and pathologi-

cal in vivo forces on cells could be replicated to a first-order approximation. 

It also had the potential to simulate higher-order effects, if these proved 

important. It was generatively entrenched on two levels. On a physical 

level, as a device, it has formed a component of most experimental model-

systems. On a metalevel, it entrenched the practice of importing engineer-

ing concepts and methods of analysis pertaining to mechanical forces into 

the study of biological phenomena. Most importantly, its affordances and 

constraints served to direct the researchers in forming new problems and 

building novel technologies. What kinds of experimentation the research-

ers envisioned could be done with the flow loop led, for instance, to the 

novel construct family of models. The construct needed to be designed to 

interlock with the flow loop in experimental situations, which in some 

instances required modifications to the design of both. The construct 

device provided the lab with a more physiologically realistic model and 

opened an application possibility and, with it, a line of stem cell research. 

These features generatively entrenched the construct in the remainder of 

the lab’s existence as it opened and drove new directions of research.
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Although I have looked only at the tissue engineering lab in this chap-

ter, the features of processes of “building the lab” I have discussed transfer 

robustly across lab D, and likely those other BME labs that use similar prac-

tices of in vitro simulation modeling. The signature artifacts of a lab pro-

vide the structuring constraints that afford ways of evolving the research 

program without rigidly specifying in advance what moves can be made. 

Further, frontier research areas, such as those in twenty-first-century bioen-

gineering sciences, often require researchers located in universities to build 

educational infrastructure. The BME educational program, built to facilitate 

a specific kind of integrative interdisciplinary research, provides a demon-

stration of “the manner in which epistemic integration interacts with orga-

nizations and institutions” in interdisciplinary research (Gerson 2013, 515; 

see also Caporael 2014). Existing institutions adopted the idea that innova-

tive BME research requires a more directed and richer epistemic integration 

of biology, engineering, and medicine than collaboration alone could pro-

duce. Following out this idea, in turn, required the creation of new insti-

tutions, new kinds of architecture, and new modes of organization. Most 

notably, it led to a novel educational program, generatively entrenched in a 

new kind of cross-university department aimed at creating hybrid research-

ers, themselves poised to work at the forefront of biomedical engineering 

and to extend the frontiers for the next generation.



In the previous chapters we have examined modeling practices that isolate 

and selectively focus on specific entities and processes, separate from much 

of their contexts in biological systems, in order to develop understanding 

and control of specific behaviors. Research in the burgeoning field of com-

putational—or integrated—systems biology (ISB) aims to get a grip on how 

the higher-level functionality of complex biological systems emerges from 

a multitude of interactions among the elements of a system. The modeling 

practices in this field attempt to use as much information about the biologi-

cal system as the modeler can find, while keeping the computational model 

computationally and cognitively tractable. Although ISB is a diverse field, 

the modeling practices in labs we have been studying are representative of 

a major area that draws on the resources of engineering fields that model 

human-made complex dynamical systems, such as electrical engineering, 

control engineering, systems engineering, and telecommunications engi-

neering, as well as on mathematical and algorithmic resources from the 

computational sciences to model complex biological systems.1

ISB researchers investigate systems that comprise a range of biological 

phenomena that extends from intracellular interactions to those within 

organs or ecosystems. There are many objectives of the field, but in general, 

and especially in the bioengineering stream, the overarching objectives are 

(1) to build large-scale models that draw out the dynamics of biological 

networks and enable prediction and control with respect to phenomena 

of interest and (2) to use models to investigate what they call “the design 

principles”—or organizational principles that characterize the subcompo-

nents of the biological systems. Understanding these principles, it is hoped, 

will provide the basis for a general mathematical theory of biological sys-

tems, as well as aid efforts by researchers and clinicians to control and 

5  Managing Complexity: Modeling Biological Systems 

Computationally
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intervene on systems. Much of the research in the field is directed toward 

interventions in health and the environment, such as to design new classes 

of antibiotics, create personalized cancer therapies, produce biofuels, or 

develop protective strategies for ecosystems.

ISB researchers position themselves in contrast to traditional biological 

fields, especially molecular biology. Although biological experimentation 

can reveal local causal interactions among molecular elements, biochemi-

cal functions are coordinated and controlled through large-scale networks, 

which are networks that have wide boundaries and that involve many inter-

acting elements. These networks tend to function by means of nonlinear 

interactions (for instance, feedback loops) such that the causal properties 

of an element of the network depend on interactions happening upstream 

and downstream in the network. Further, these complex networks generate 

robustness and redundancy, and have nonlinear sensitivity to changes in 

their parameters, which give rise to variability across individual cells and 

organisms. All of these features make biological systems difficult to under-

stand and control, and explain, in part, why systemic diseases such as cancer 

or cystic fibrosis have proven so difficult to treat (see, e.g., Hood et al. 2004). 

Only quantitative simulation models of such networks have the potential 

to capture network intricacies at the scale and size required to identify 

variables and predict network behavior in response to perturbations with 

accuracy sufficient to determine how to intervene on them effectively. As 

the lab G director stated, systems-level modeling “allows us to merge diverse 

data and contextual pieces of information into quantitative conceptual structures; 

analyze these structures with the rigor of mathematics; yield novel insight into 

biological systems; and suggest new means of manipulation and optimization.”

Although the desideratum and philosophy of a systems-level under-

standing in biology has a long history (see, e.g., O’Malley and Dupré 2005; 

Trewavas 2006), many researchers, including the directors of the labs we 

investigated, look to the Human Genome Project as the origin of the con-

temporary field. As the lab G director stated in our initial interview, “So if 

you were to put a point there, it was the Human Genome Project . . . ​and at the 

same time you had the microarray and all that stuff started to come out. They 

[bioscientists] said ‘Wow! You can do then thousand data points in one pop. 

Who wants to look at all that data with the naked eye? That’s not possible to do, 

so we need computers’—whatever that meant.” The confluence, around the 

turn of the twenty-first century, of engineering developments for biological 
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experimentation, especially high-throughput technologies that produce 

reams of data from one experiment; the widespread availability of pow-

erful computing (including, but not just high-performance computing); 

the development of sophisticated mathematical and algorithmic methods 

for solving equations computationally; and the development of Internet 

browsers and search engines that enable rapid searching of scientific litera-

ture and databases all have contributed to making computational model-

ing and simulation of complex biological systems possible (see, e.g., Kitano 

2002; Krohs and Callebaut 2007; O’Malley and Dupré 2005).

The labs we studied prefer to use the descriptor “integrated,” rather 

than “computational,” to emphasize the integrative effect of putting all 

the pieces together in a computational structure—“like an integrated circuit.” 

At the conceptual level, “integration,” as one researcher noted, means “the 

tasks on this new frontier require thinking beyond linear chains of causes and 

effects—[rather]thinking in terms of integrated functional entities, thinking in 

systems, networks, and models.” This kind of thinking is about the dynamic 

behavior of complex biological systems and requires computational mod-

eling and simulation to carry it out. Based on our research, we would also 

add that ISB is integrative in another sense: it incorporates and adapts engi-

neering concepts and methods, for instance from systems theory and con-

trol theory, computational algorithms and methods from computer science 

and applied mathematics, and experimental techniques, concepts, and data 

from experimental biology. As we have discovered, “integration” in this 

sense is not smooth, since the concepts and methods drawn from different 

fields carry with them, among other issues, conflicting epistemic values and 

norms, as I discuss further in chapter 7.

ISB is a heterogeneous field that brings together researchers in biosci-

ences, computational sciences (including applied mathematics), and engi-

neering sciences in various configurations. Although some researchers have 

developed into hybrids over the course of their careers, the field of ISB 

does not aim at the kind of hybridization through education that I dis-

cussed with respect to BME. Instead, solutions to the problems the field 

poses create an essential epistemic interdependence among the participat-

ing fields. Although there are some ongoing attempts to develop hybrid 

modeler-experimentalists, the nature of the problems ISB addresses, argu-

ably, requires both specialization and collaboration. The norm in the cur-

rent state of the field (and some would say, in principle) is for modelers to 



176	 Chapter 5

be trained in engineering or applied mathematics and for experimentalists 

to be trained primarily in molecular biology or biochemistry. However, to 

function most efficiently demands a symbiotic relationship. But, with little 

knowledge of one another’s methods, concepts, technologies, and epis-

temic norms and values, at the present time symbiosis is more a desidera-

tum than a reality. Our research has focused on the modelers, who by and 

large are driving the field, although we did conduct interviews with their 

experimental bioscience collaborators, when that was feasible (most were 

located at distant universities or in industry), and those provided important 

insights into collaboration issues from their perspective.

Researchers in ISB, as well as philosophers analyzing the field, have iden-

tified two broad strands of modeling in systems biology, namely top-down 

and bottom-up (see, e.g., Bruggeman and Westerhoff 2007; Krohs and Cal-

lebaut 2007). The top-down strand relies on high-throughput technology 

that generates large quantities of time-series data (dynamic data, as opposed 

to steady-state) for many elements of a system, such as chemical concen-

trations within cells. Computational methods, especially machine learning 

algorithms, are then used to attempt to “reverse-engineer” the system struc-

ture through making correlations among those elements. The bottom-up 

strand, on the other hand, aims to “reproduce” (“simulate”) the behaviors 

of systems with dynamic computational models built using PCs. To build a 

model is an intensive process that draws on what can be pieced together of 

the network structure of the system and such features as kinetic and physi-

cochemical properties of its components. The initial data for building the 

model usually come from collaborators, especially in molecular biology. 

These initial data often lack much of the information modelers need, such 

as on the concentrations of metabolites, and are often not a time series, 

which requires the modeler to interpolate data she can extract from the 

wider literature (including in databases). Building a model in these cir-

cumstances usually also requires modelers to use, and sometimes develop, 

sophisticated algorithmic techniques to estimate parameters (numbers) 

that provide the best “fit” of the model to the real-world data.

The labs we have investigated are both situated closer to the bottom-up 

strand, although both build models that they consider mid-scale or “meso-

scopic.” Simply put, these models contain modest details of system compo-

sition and organization, in that they simplify both the target mechanisms 

used to build the model and the underlying system functions they seek to 
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represent (see, e.g., Voit et al. 2012). Such models can be informative in 

themselves, but they also provide the basis for incrementally and iteratively 

building out the system representation, in ways that can enrich both the 

lower (mechanistic) level and the higher (systems) level. Both labs work in 

the area of biochemical systems biology. Research in this area is directed 

toward representing, understanding, and controlling intracellular meta-

bolic and signaling pathways. Both labs aim to build models of these kinds 

of pathways individually, as well as those that integrate these pathways. Lab 

G gets its modeling problems from collaborators, and so works on building 

models of pathways of a wide variety of phenomena, including, during our 

investigation, dopamine regulation in Parkinson’s disease, biofuel produc-

tion from plants, yeast response to heat shock, and arteriosclerosis. Such 

modeling problems also provide material for the lab’s own agenda of devel-

oping novel algorithms for parameter estimation. Lab C’s modeling focuses 

solely on pathways in complementary processes of reduction and oxidation 

(redox), which are thought to produce inflammation, including immu-

nosenescence, cancers, and arteriosclerosis. These labs have quite distinct 

methodological practices, but they both share the feature that the research-

ers come predominantly from engineering backgrounds. It is an important 

statement about the nature of the field that, while claiming to do systems 

biology, the researchers did not refer to themselves as systems biologists, 

but rather identified themselves and their biological collaborators function-

ally, as “modelers” and “experimentalists” (alternatively, “experimenters”). 

This contrasts with BME, where we found, despite differences in subfields 

(tissue engineering, neural engineering), researchers identified as biomedi-

cal engineers.

We cast the differences in methodological practices between the two labs 

as different accommodations to numerous constraints we have identified 

these researchers to be operating under. These constraints are so challeng-

ing, that the reader might wonder how in the world researchers in this 

domain can accomplish anything. As we will see, modelers in this field 

develop such effective strategies to manage the complexity of building 

models of biological systems that they routinely produce novel and valu-

able insights into the behaviors of these systems and into how to manipu-

late, control, or modify them productively, and—as the specific case of G10 

(section 5.2) demonstrates—sometimes make quite spectacular biological 

discoveries. “Managing complexity” is a major theme we associated with 
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the codes we developed with respect to the methodological practices in 

each lab. As we will see, epistemic aims and cognitive needs intersect to 

shape problem-solving practices around managing the complexity not only 

of the biological systems, but also of the model-building process. I begin 

this chapter by laying out the constraints (section 5.1), then focus on how 

lab G modeling practices accommodate these constraints, in general and 

in a specific case (section 5.2), and then examine the epistemic and cogni-

tive affordances of the methods (section 5.3) as they enable researchers to 

gain epistemic access and achieve their aims of getting a grip on complex 

biological systems.

5.1  Adaptive Problem-Solving in ISB

A major feature of problem-solving in the labs we investigated is that the 

research lacks the reasonably well-structured task environments that char-

acterize established sciences such as molecular biology and bioinformatics. 

Nearly every step in the processes of model-building requires the judgement 

of the researcher to determine how to proceed, including how to (re)struc-

ture the problem, what modeling method to use, how and what portions of 

the biological pathway network to construct, what literature to rely on, what 

programming software to use, how to determine reliable parameters, and so 

forth. There is little available in the way of routines or protocols. Ultimately, 

what is produced in the form of a computational simulation model is a stra-

tegic adaptation to the constraints that model-building in ISB, in general and 

in the specific case, operates under in its present form. We have determined 

many of these constraints from our lab G and lab C investigations, but our 

claim that these are in effect across the wider field stems from widespread 

discussions about similar issues in the systems biology literature, including 

on education; by responses to our analyses by ISB researchers in audiences 

we have addressed and to our publications; and from findings in other eth-

nographic research I have conducted in ISB beyond this study.

5.1.1  Overarching Constraints on Model-Building

Modelers in ISB rarely can simply apply a formalism or preestablished prin-

ciples to build a model that accounts accurately for a biological phenom-

enon. In effect, they face a multidimensional problem-solving task. Any 

model is the result of numerous choices about what to model, and how, 
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with whatever resources are available. Some of the constraints on model-

building we have observed operating in the labs are as follows:

1.	 The biological problem: Biological systems possess features that pro-

duce nonlinear behaviors, with many elements playing multiple roles. 

For instance, cells contain networks of genes, proteins, and metabolites 

that interact in feed-forward and feed-backward loops and create myriad 

biochemical interactions. A modeler must restrict the considerable com-

plexity of the biological system so as to formulate a tractable problem to 

model, while at the same time representing it in sufficient detail for the 

model to simulate the target behaviors and yield predictions.

2.	 Knowledge constraints: Modelers usually have no familiarity with the bio-

logical system prior to starting on the problem. Today they might have to 

model lignin production in plants, and next, drug resistance in a cancer. 

They know little about biological entities and experimental methods in 

general, which limits their understanding of what is biologically plausible 

and what reliable extrapolations can be made from the available data sets. 

By and large, there is no reservoir of theoretical models and laws of the 

biological phenomena to provide the structure and dynamics from which 

to articulate a model, such as there is in physics-based modeling.

3.	 Infrastructure constraints: Comprehensive databases of experimental 

information for most biological systems, while growing in number, are 

still limited. There is little in the way of standardized modeling software, 

or of generally accepted routines and formalisms to apply in building 

a model. There are few textbooks and little in the way of educational 

infrastructure directed toward computational systems biology, although 

several initiatives are under way.

4.	 Data constraints: The kind of experimental data (time series) needed for 

building dynamic models and parameter fitting is often not available or 

difficult to obtain, and the available data are usually noisy. Model-building 

is data-intensive and routinely relies on data beyond what are collected by 

bioscience collaborators in small-scale experiments, leaving modelers to 

forage for pertinent data in the literature and databases on their own.

5.	 Cost constraints: New experimental data are quite costly to obtain. 

Experimentalists often do not see the cost-benefit of producing the spe-

cific data modelers need. On the computational side, it can be costly in 

time and money to update old software.
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6.	 Computational constraints: Most biosystems modeling is carried out on 

PCs, not with high-performance computing resources. Although signifi-

cant improvements in their speed and efficiency have facilitated the rise 

of simulation modeling, computational constraints still figure into the 

level of complexity a model can have to keep such processes as simula-

tion and parameter fixing manageable.

7.	 Time-scale constraints: Processes of generating experimental data and of 

model construction, simulation, and testing operate on vastly different 

time scales. Modelers can wait for months for data to build or test a model.

8.	 Collaboration constraints: The significant differences in epistemic prac-

tices and educational backgrounds of experimentalists and modelers limit 

their ability to communicate effectively and to understand and fulfill one 

another’s epistemic needs. Thus, it is difficult for modelers to obtain the 

kind of data or expert advice they need from their collaborators.

9.	 Cognitive constraints: Modelers need to be able to track many relations at 

the same time and, especially, monitor indirect influences in the system. 

The need to keep multiple constraints and other factors in mind as one 

builds a model is a multidimensional problem. In general, human cogni-

tive constraints, such as on memory and mental modeling and simulation 

capacities, limit the ability of modelers to manipulate and reason about 

the models, and therefore limit the scale of the models they can manage.

The labs we have studied have adopted different methodological approaches 

to deal with these constraints. Many of the constraints on this list indicate a 

problem situation in which there are limited data for building a model. We 

began our research with lab G, and it was immediately notable how often 

modelers started off discussing their work with complaints about how hard 

it is to find sufficient data of the right kind to build their models. These com-

plaints were frequently expressed, with considerable emotion, as the model 

“needing” data, which led us to code such expressions as a concern with 

“feeding the model.” We frequently heard the expressions “parameter esti-

mation” and “parameter fitting,” with modelers expressing considerable wor-

ries about finding parameters (due to insufficient, inadequate, noisy data). 

Parameters, roughly, are the constants in the equations and are needed to 

control the behavior of the model, such as the rate constants of an enzyme 

reaction.
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Model-building in ISB is not guided by theory the way the physics-based 

modeling that philosophers have usually studied is guided. “Theory” is, 

of course, a multifarious and contested notion. In positioning ISB model-

building with respect to accounts of physics-based modeling that have 

become standard in philosophy, we take “theory” to mean a reservoir of 

laws, canonical theoretical models, principles of representation (such as 

boundary conditions), and ontological posits about the composition of the 

phenomena under investigation that guide, constrain, and resource build-

ing models in diverse disciplines across a wide spectrum of physical sys-

tems. Model-building in ISB starts without such a reservoir. As the lab G 

director noted, in the absence of the kind of theory available in physics, 

a “big problem is where do we get functions from?” Instead, modelers have to 

make what they call “educated guesses” as to the functions, guided by math-

ematical notions, such as growth functions, and by principles developed 

in molecular biology such as Michaelis-Menten enzyme kinetics (a model 

of the rate at which enzymes catalyze in a specific reaction), often referred 

to by biologists as “partial theory.” There are no correlates, for example, 

to Navier-Stokes equations, which describe the movements of gasses and 

liquids, used by climate modelers. Such equations also help modelers deter-

mine significant parameters, in this case, temperature and wind speed. In 

physics-based modeling, theory is a resource that can inform the modeler 

how to go from a data set to a good representation. The models of lab G 

often have large numbers of unspecified or “open” parameters. Without 

experimental data of sufficient or good-enough quality, researchers have to 

rely on mathematical and computational ways to determine parameters so 

as to fit a model, such that it simulates the system behavior with sufficient 

reliability to make predictions. For this reason, a major methodological 

enterprise in lab G is to develop new algorithms to advance what research-

ers call “the art” of parameter estimation.

Lab C’s methodological approach is to have modelers also conduct wet-

lab experiments to supply data for their models—what we have called the 

bimodal strategy. This is the director’s adaptation to data limitations. We 

rarely heard modelers in this lab talk about parameter estimation problems, 

since the models they built were smaller in scale, and they would conduct 

biological experiments to determine many parameters as they were build-

ing the model. Thus, lab C models tended to be closer to the data, and open 
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parameters in need of estimation were few, though the larger-scale models 

they built had the fitting problems encountered in lab G. Lab C model-

ers did experience challenges around the need to master and coordinate 

model-building and wet-lab experimentation on their system in the course 

of developing a model, as we will see in chapter 6. The lab G director’s meth-

odological choice to collaborate with experimentalists rather than produce 

their own data is the predominant choice in ISB at present. The differences 

in methodological approach with lab C mark what the lab G director calls 

“a philosophical divide” in the field, which I discuss in chapter 6.

Both labs practice forms of what we called “adaptive problem-solving.” 

All problem-solving is adaptive to some extent, but what is remarkable about 

the practices we witnessed in these ISB labs is the extent to which routine 

problem-solving depends on the researchers’ ability to think innovatively 

while managing a range of constraints that create a significant cognitive 

load. Researchers in both labs specialize in building ordinary differential 

equation (ODE) models of gene regulatory, cellular metabolic, and cell signal-

ing networks. Their efforts to integrate metabolic and signaling networks are 

novel (at least when we began our investigations). The variables in the ODE 

equations represent concentrations of individual metabolites in the network 

in a cell. Systems of equations are used to build dynamic models that can be 

run to simulate the changes to the concentrations of metabolites in a cel-

lular network over time, where each metabolite pool interacts with specific 

other metabolites, represented as its neighbors in the network. Running the 

computational model under various conditions (“simulation experiment”) 

shows how dynamic patterns emerge through the interaction of the pathway 

components over time. In general, the modelers aim to produce models that, 

when run, make reliable predictions of the dynamic relationships among 

specific variables in the model and perform robustly with respect to varia-

tions in parameter and initial conditions.

All aspects of the process of building a model are open to decision or 

modification, including the scope of the problem, how to represent the 

biochemical reactions, what data sets to use, what pathway elements to 

include, and how to estimate and fit parameters. As I noted previously, 

every model is a strategic adaptation to the constraints the modeler is work-

ing under and the resources she has at hand. The main, interrelated kinds 

of adaptations made by the modelers in the labs we studied have to do with 

the scale of the models they chose to build and with how to adapt problems 
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to make them tractable, both of which are situated in the context of deter-

mining what kinds of conceptual and methodological adaptations to make 

to apply engineering and mathematical resources to biological problems.

5.1.2  Mesoscopic Modeling

As I noted at the beginning of this chapter, the overarching aspiration of 

the field of ISB is to build large-scale high-fidelity models of biological sys-

tems that should, in principle, facilitate understanding of the design or 

organizing principles of systems or predict the consequences of manipulat-

ing the systems towards desired outcomes, such as to produce biofuels effi-

ciently or to design personalized medical treatments. The current state of 

the field, though, as Eberhard Voit et al. observed, is that “the vast majority 

[of ISB models] are neither small enough to permit elegant mathematical 

analyses of organizing principles not large enough to approach the reality 

of cells and disease processes with high fidelity. Instead, most models con-

tain between a handful and a few dozen variables, which firmly positions 

them in a grey zone far outside both declared goals of systems biology” 

(Voit et al. 2012, 23). They call such models “mesoscopic.” We agree that 

to attain specific goals, a mesoscopic model might be the most informa-

tive, and therefore desirable, choice in itself (see, e.g., Batterman and Green 

2020; Bertolaso 2011; Bertolaso et al. 2014). However, we consider the prev-

alence of this kind of modeling, which falls short of the epistemic aims of 

the field, to be a largely pragmatic and rational response to the constraints 

of managing the complexity of modeling these systems.

A mesoscopic model provides a “coarse structure that allows us to inves-

tigate high-level functioning of the system at one hand—and to test to 

what degree we understand, at least in broad strokes, how key components 

of a biological system interact to generate responses” (Voit et al. 2012, 

23). Such broad understanding can enable modelers to make substantive 

predictions—sometimes of major significance—but also, importantly, pro-

vide insight into how to expand the model in both directions (“middle-out 

strategy”) to provide a more comprehensive representation (Noble 2006; 

Voit et al. 2012). The initial model creates an affordance in the problem-

solving environment that modelers can use to guide and structure their 

investigation in stepwise fashion. Understood in this way, mesoscopic 

modeling is a strategy for gaining epistemic access to complex biological 

systems by building out the system representation so as to be able to enrich 
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both the lower (mechanistic) and higher (system) levels. This expansion 

can be carried out by the builder(s) of the initial mesoscopic model(s) or by 

others in the field leveraging their insights.

Interestingly, Voit et al. advance a cognitive argument for the mesoscopic 

strategy, which they liken to hierarchical learning in human development: 

“This strategy of locally increasing granularity has its (ultimately unknown) 

roots in semantic networks of learning and the way humans acquire com-

plex knowledge. . . . ​Hierarchical learning is very effective, because we are 

able to start simple and add information as we are capable of grasping it” 

(Voit et al. 2012, 23). We have advanced an additional cognitive argument 

that the mesoscopic strategy is a bounded rational response to handling 

the complexity of the constraints under which a modeler works (Macleod 

and Nersessian 2020). Herbert Simon (1957) argued that when faced with 

complex decision-making problems, people do not seek optimally rational 

problem solutions, but rather settle on solutions that are good enough to 

make progress (“satisfice”). The mesoscopic strategy enables the modeler 

to make progress, while holding out the promise of producing larger-scale 

models as modelers gradually gain understanding and control. A further 

cognitive argument, developed in section 5.3.2, is that as part of a coupled 

inferential system, the complexity of these midsize models remains at a 

level at which the modeler can still develop insight and intuition about the 

model’s behavior and therefore make inferences about how to proceed in 

the model-building process.

As part of the mesoscopic strategy, modelers usually find ways to adapt 

the problems they tackle to simplify or get better traction on the specific 

problem. One way to adapt the problem is to keep the network representa-

tions relatively small through careful selection of what networks to include 

in the model at the start. Rather than attempt to model an entire complex 

network, modelers tend to focus on what their experimental collaborators 

indicate as potentially significant subsets when selecting the experimen-

tal literature to consider. An experimental collaborator of lab G relayed an 

example of this kind of adaptation when he told us of the reaction of the 

lab director after he had come to him with a large network to model: “I think 

he’s been in the real world long enough doing this systems stuff—long enough that 

he knows to start small. . . . ​So, when I came to him, I had these proteomics sys-

tems. We’ve seen about 10% changes in all the systems of the CF [cystic fibrosis] 

cell vs non-CF cell. Now when you think about the number of systems that are 
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in the cells, 10% changes in all of those systems . . . ​is a lot of information. So, 

he’s like ‘you are deluding yourself.’ So, then we decided to start with glycolysis 

and the pentose phosphate pathway of the Krebs cycle . . . ​to narrow it down to 

energetic pathways that are very well modeled.” In this example, instead of try-

ing to build a model of a large, intractable network, the director—a highly 

experienced modeler—moved the model-building process toward the strat-

egy of adapting the problem in the direction of using small models, already 

established, and building outward from those.

5.1.3  Engineering Transfer

One important kind of problem adaptation is to use strategies and heuristics 

from engineering to alter the dimensions of a problem.2 For instance, mod-

elers might situate a network under study within a broader network, on the 

basis that the broader network can reveal connections between parameters 

in a subnetwork in ways that have a significant effect on the behavior of the 

subnetwork. This strategy helps to elucidate confusing dynamics. Another 

quite common strategy is to use an engineering method called sensitivity 

analysis to isolate the elements of a network that play the most significant 

role in the dynamics of the network. Sensitivity analysis basically targets 

the uncertainty in a model by examining the change in output produced 

by the change of specific parameters. This method can be used to simplify 

the network representation or to identify parameters that do not have 

too great an effect on the dynamics. These parameters, then, can just be 

assigned arbitrary values to reduce the parameter-fixing problem. Addition-

ally, modelers often black-box component systems or component interac-

tions to reduce the complexity of the network and, conversely, de-black 

box them if it appears that a subsystem is having a nonlinear effect on the 

network. Further, if the modeler cannot see a means of directly building a 

good model for a specific network, she will work on an alternative network 

for related phenomena that is simpler or for which better data are available. 

The modelers we studied often switched systems in this way or switched 

cell types for the sake of better data, with the hope they would be able to 

modify that model in the direction of the original problem. In general, to 

adapt problems, modelers employ strategies that incorporate and integrate 

engineering methods into systems biology. These methods, themselves, 

have to be adapted for the new subject matter and research environment, 

along with the engineering epistemic values that favor precision.
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Throughout the course of model-building, modelers import concepts 

and methods that have been used in engineering for building models of 

human-made systems to transform biological problems into a form appro-

priate for mathematical and computational analysis. Such transformation 

strategies range from adapting the individual problem to designing methods 

for classes of problems. ISB modelers, in general, draw concepts and meth-

ods primarily from engineering fields, and especially control engineering, 

which has developed techniques for measuring and deciphering electronic 

signaling networks. The lab G director claimed that modelers can tackle a 

range of biological problems about which they have no prior knowledge 

because their training in engineering methods and concepts gives them 

“the right mind set”; that is, “the flexibility to recognize shared features of con-

trol/regulation across disparate domains.” Many of the methods used in the 

labs are borrowed from these fields, including, but not limited to, simulated 

annealing methods of parameter-fixing (approximating a global optimum 

of a function), and nonlinear network analysis techniques. They also used 

standard computational modeling tools that are used more widely than in 

engineering, such as Monte Carlo methods of parameter estimation (an 

approximation technique using random samples of numbers).

In borrowing from engineering, ISB modelers are following a practice 

that pre-dates modern computational systems biology. Biologists have a 

long history of borrowing concepts such as circuit, system control, modu-

larity, redundancy, noise, and sensitivity to conceptualize system-level phe-

nomena (see, e.g., Wimsatt 2007). For instance, metabolic control analysis, 

which began in the 1960s, is based on engineering analysis of network 

control, which derives from sensitivity analysis in engineering (Westerhoff 

et al. 2009a; Westerhoff et al. 2009b). Modelers in the labs we investigated 

continue to extend these practices by experimenting with their own adap-

tations from their different engineering backgrounds. For example, one lab 

G researcher we followed, who had a background in telecommunications 

engineering, was trying to figure out whether, and if so, how she could 

adapt wave-smoothing techniques from signal processing to smooth noisy 

biological data. We found the degree to which both lab directors allowed 

graduate student and postdoctoral modelers the flexibility to choose how 

to go about trying to solve their problems—what background methods and 

concepts to rely on—to be quite remarkable. A successful adaptation can 

require considerable ingenuity. Failed attempts along the way are par for 
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the course, but these are seen to provide invaluable insights into the prob-

lems, as well as information on what to try next. Importantly, as we will see, 

modelers rely on the model-building process, with its ongoing simulations, 

to develop an understanding of their systems and figure out how to adapt 

them to their specific epistemic goals.

It needs to be noted, though, that although engineering methods and 

techniques can facilitate the model-building process, some biological 

understanding is required to help discriminate good moves from bad ones. 

Modelers talked all the time about the need to get a sense of “what is reason-

able and what is not reasonable” biologically. This is a problem for which col-

laboration constraints are strongly felt. As the lab G director noted, “really 

good biologists have a feel for things. . . . ​They know what to look into, how dif-

ficult it’s going to be. . . . ​This intuition . . . ​is very hard to mimic or acquire.” In 

our investigation, we found that graduate student and postdoctoral mod-

elers relied heavily on the lab directors, both of whom had considerable 

breadth and depth of biological understanding, to help them determine 

whether their moves were reasonable. This was so even for modelers in lab 

C, who conducted wet-lab experiments on the biological systems they were 

modeling. Sometimes researchers could ask experimental collaborators, but 

lab G modelers, especially, usually found it hard to get the attention of their 

collaborators. They frequently expressed to us a desire, along the lines as 

one modeler put it, to have “a biologist in my desk drawer,” to back up their 

judgment on the moves they were making. She made that comment as I 

sat beside her to watch how she determined the steps she took to forage 

for data online. On the whole, the process of model-building is mainly 

the responsibility of an individual modeler rather than a well-coordinated 

process between modeler and collaborators. This is largely because the com-

putational model is a “black box” to most experimentalists, and modelers, 

especially those who have done no experimental work, do not know how 

to convey model details or what they require for the building process to 

their collaborators.3 We made the collaboration problem the focus of the 

educational experiences we promoted for ISB, as discussed in chapter 7.

The lab G researchers were fortunate to have, in addition to the direc-

tor, a long-time experimental collaborator who often visited the lab as he 

transitioned to being a modeler, with whom they frequently consulted. He 

found it amusing that just because he was an expert in yeasts, the modelers 

thought he could answer their questions about any area of biology. He also 
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found it problematic that often they “don’t know the right questions to ask.” 

However, as we will see, the model-building process, itself, although not 

a substitute for a biologist’s intuition, also helps the modeler build some 

biological intuition. Modelers claimed to develop this intuition through 

the extensive searching in and reading of the biological literature required 

to build out the pathway network and from their examination of the bio-

logical system’s behaviors through simulations under various conditions 

(including counterfactual). Such intuition is particularly important when 

it comes to fitting the model (a process described below). As one modeler 

claimed, over time “you get a feel for what might work and what probably 

doesn’t” with the system under study, and eventually more broadly. The 

graduate student modelers usually work on specific systems for four or five 

years—the director much longer.

As we will see, accounting for problem-solving and discovery processes 

in these labs requires analysis of a D-cog system comprising modeler, exper-

imental collaborators, lab mates, and various artifacts, including computa-

tional models, pathway representations, diagrams, graphs, pen and paper 

representations, and data sources (publications, databases, search engines). 

I turn now to the model-building practices of lab G, first providing a gen-

eral overview and then examining some of the details of one of the long-

term modeling projects we followed.

5.2  “Where Numbers Come to Life”: Getting a Grip  

on Systems Computationally

As mentioned earlier, lab G’s practice is to obtain their modeling problems 

from experimental collaborators and, hopefully, obtain experimental data 

for building and testing the model from them. The director is a senior pio-

neer in the field of ISB and he portrayed the situation when we arrived 

as “Biologists and clinicians come to my office and say, ‘we have some data, 

so you want to work with us?’” He also pointed out that this was a drastic 

change from when he started out: “Twenty years ago that would have been 

utterly, totally impossible.” When he was a student in the 1970s, he found 

it a “nightmare” to figure out how to combine his interests in biology and 

math, because the combination “was not only not supported, but outright 

considered ridiculous by biologists, and even more so by mathematicians.” He 

managed to get a PhD in developmental biology (“it was really theoretical 
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biology, but there was no degree in that”) by developing some rudimentary 

computational simulations of predator-prey relations and scar patterns on 

budding yeast cells. The work on yeast led to a postdoctoral position with 

an electrical engineer working on developing methods for how to model 

biological systems, who, himself, had managed to get a faculty position 

in a microbiology department. Together, they built mathematical models 

of yeast and developed tools of mathematical and computational analysis 

for the emerging field. The future lab G director’s first faculty position was 

in an interdisciplinary unit of epidemiology in a medical school, where 

“the chair . . . ​was a visionary guy. . . . ​He hired engineers, he hired some people 

doing signal processing and AI.” In his lab there, among other projects, he 

continued to model yeasts with local and international collaborators. He 

also continued to develop methods to analyze biochemical systems and for 

parameter-fitting for nearly twenty years, before he moved to his current 

position to set up lab G approximately six years before we entered.

Lab G, as we encountered it, had modelers who were working on a range 

of biological systems, including metabolism in yeast, atherosclerosis, neu-

rodegenerative diseases, and sustainable biofuels production, at the request 

of experimentalists external to the lab (and most, external to the univer-

sity). They also worked on novel algorithms for parameter estimation and 

structure identification in biochemical systems modeling in general. The 

general practice of the lab is that everyone works on an individual problem 

in collaboration with the lab director. The lab director has numerous one-

on-one meetings with every researcher and contributes actively throughout 

the model-building processes. Because the researchers work on problems 

from quite diverse areas of systems biology, the lab director said he felt that 

lab meetings would not be useful. At his own initiative, though, he did 

arrange several group meetings to introduce us to the research of the lab. 

Interestingly, the researchers all expressed a desire to continue to have lab 

meetings, since they found it useful to see in detail what modeling issues 

the others were struggling with, but the director did not continue. We did 

witness—and were told—that it was standard for researchers to discuss spe-

cific problems with one another as they arose, which usually proved fruitful 

despite project differences. As one member noted, “When I have to discuss, 

I grab hold of somebody and we start working on the board. It’s as simple as 

that.” The lab space consists of open cubicles with desktop PCs and is often 

empty of people, since most work from home and come in when they have 



190	 Chapter 5

a course, a meeting, or a need to find someone to discuss modeling prob-

lems with.

The cognitive-cultural artifacts of lab G comprise computational and 

mathematical resources that are essential to achieving its epistemic aims. 

In our initial interview, the director framed their epistemic aims in terms of 

the overarching aims of ISB: “We want to put pathways together and we want to 

predict what they do and then see if they do what is predicted. To do this rationally 

correct, you need to understand the types of design principles . . . ​regulation, adap-

tation, whatever. . . . ​So, ultimately, we need to understand these types of design 

principles and operating principles. We want to understand them because a) we 

are academicians and b) because we want to muck around with these things and 

change them.” In this statement, the director expressed both objectives of 

getting a grip on complex biological systems: to understand how and why 

they exist a specific way in nature (mechanisms and design principles) and 

to determine what possibilities there are to manipulate them in a desired 

direction. Achieving these goals will both further the development of bio-

logical theory and enable bioscience and medical collaborators to manipu-

late the systems, for instance to produce biofuels from plants, tailor drug 

treatments to cancer patients, or manage bacterial populations in lakes. 

In the current situation, though, the kinds of in silico simulation models 

(mesoscopic) it is possible to build are, usually, of a scale and complexity 

that can provide only limited understanding of the mechanisms under-

lying the behaviors of complex biological systems. However, the insights 

they do provide are often sufficient to make novel predictions and can lead 

to successful experimental manipulations by collaborators. Further, as the 

lab G director noted, even such limited computational models can provide 

insights into “why you have this one design in nature” by comparison with a 

model as a “hypothetical alternative,” which allows the modeler to examine 

counterfactual designs that, in principle, could exist in nature.

In practice, we found that modelers in both labs had much more limited 

goals. They tended to focus on modeling a system (1) to discover robust 

mathematical relationships among specific input and output variables 

in order to manipulate them in the in vivo system and (2) to infer the 

potential role of a specific molecular or component process in a network 

and its interactions, and to use this information to predict the effects of 

manipulations of these on system dynamics. In lab G, these goals were usu-

ally connected with requests from experimental collaborators to generate 
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hypotheses about what might be missing or wrong in their data, or to dis-

cover new relationships in the data. Such information could help them 

better direct their experiments or manipulations.

In both ISB labs, developing skills at building biosystems simulation mod-

els makes one a part of the lab cognitively and socioculturally. Many features 

of the basic model-building process are similar across the labs, but, as we will 

see, because lab C works with a smaller number of reactions, modelers are 

often able to use off-the-shelf modeling tools, and, significantly, the model-

ers conduct wet-lab experiments to collect additional data to build and test 

their models, which reduces the parameter-fitting problem significantly.

5.2.1  “I Always Start from Zero”: Overview of the  

Model-Building Process

To grasp the complexity of the problem of modeling complex biological sys-

tems, a picture is indeed worth a thousand words. Figure 5.1 is the picture 

the lab G director gave us to illustrate the biochemical systems modeler’s 

challenge. The left figure is the metabolic pathway (network of elements and 

interactions) of sphingolipid yeast, a budding yeast such as used in brewing 

and baking, that he has worked on for years. The pathway diagram repre-

sents, spatially, sequences of molecular interactions in the cell. It depicts a 

chain of reactions that result in the performance of some biological func-

tion. The right figure illustrates the limited portion one could model, and the 

abstraction of the elements and interactions a tractable model could handle.

The first step in model-building is to develop a representation of the bio-

logical network that shows the main reactions among the targeted elements 

in a system, called the “pathway diagram,” which provides the basis for 

building the model. Most experimentalists work with only a specific subsys-

tem within a network—often a tiny fraction of the overall pathway. It falls 

to the modeler to build out the pathway relevant to the biological system in 

the detail required to model it. Figure 5.2 provides an example of a pathway 

a lab G modeler was working on. In general terms, the pathway diagram is a 

conceptual model that represents, spatially, sequences of molecular interac-

tions (metabolic and signaling, for our modelers) in living cells. In essence, 

it maps out a chain of reactions that result in some biological function 

being performed. The diagram also captures positive and negative regula-

tion effects, which specify the influence of metabolites on different reac-

tions. For the modeler, the configuration of the pathway elements specifies 
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the logical structure of the model. Among the affordances of the diagram 

format are the possibility to color code segments of the pathway, which 

the modeler might use to block out various combinations to examine in 

model-building, and the possibility to annotate it in various ways, such as 

to indicate uncertainties or to provide additional information on reactions.

The pathway diagram is often likened by systems biologists to “a road-

map where we wish to understand traffic patterns and their dynamics” (see, 

e.g., Kitano 2002 2). Lauren Ross (2018) explores this analogy in an illumi-

nating analysis of the pathway concept from the perspective of biologists. 

Since developing biological pathways are a critical part of the modeling 

process, it is useful to elaborate on it here, before moving to lab G practices. 

As Ross notes, “when biologists use the pathway concept they often imply 

that some system can be understood in terms of causal routes or roadways. 

These causal routes capture interconnected paths that track the movement 

of some entity or informational signal through a system” (Ross 2018, 9). 

Her objective in that analysis is to explicate how the pathway represents the 

causal relational structure of biological entities and processes rather than 

the underlying mechanisms producing the biological phenomena. On her 

analysis, the pathway develops a fixed order of causal relationships that 

“capture the ‘flow’ of some entity or signal through the system. . . . ​Cell 

signaling pathways track the flow of a signal through molecular and cel-

lular systems, metabolic pathways trace the flow of chemical substances 

through stepwise changes” (11). The language biologists use in discussing 

pathway representations—“flow,” “flux,” “connection,” “blockage,” and so 

forth—indicates “something that is carried over from one causal step to the 

next . . . ​something that travels along causal connections” (Ross 2018, 11) 

She also notes, importantly that, as with a road map, a significant amount 

of causal detail (for instance, temperature and Ph) is not represented in 

the pathway diagram, which makes it a more abstract representation than 

would be needed to represent causal mechanisms. This does not mean that 

the pathway diagram is devoid of mechanistic information, for instance, 

regulatory processes.

Ross does not discuss how pathway representations are used in com-

putationally modeling biological systems, but her analysis accords with 

the features of those representations we have seen modelers in both labs 

emphasize when they build pathways to model the behavioral dynamics of 

a system. Modelers use the same descriptive language, but in addition, from 
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the modelers’ perspective, they say “the mathematics is in the arrows” that 

represent the causal flow. The map itself is a static representation, but the 

modelers see the dynamics of the system in the arrows, which provide, as 

one modeler stated, the “functional dependencies from which [they] derive . . . ​

differential equations.” The model is built to capture the flow of interactions 

among the pathway components over time so that the model produced 

from it will act out the dynamics of the system-level behaviors of the target 

system that produced the data. In effect the pathway representation pro-

vides an analogue model that exemplifies the causal relational structure of 

the processes that produce system behavior, without specifying the under-

lying causal mechanisms that produce the behavior. From this represen-

tation, modelers can use the representational affordances of mathematics 

(such as power laws that represent relational changes) to create models that 

enact the causal dynamics. Understanding the dynamical behavior does 

not require knowing the underlying mechanism.4

What is remarkable about the process of developing this network map 

is that, usually, modelers receive only a small piece of the diagram from 

their collaborators, if anything at all, and it is their responsibility to build 

this network of reactions through foraging in the literature and available 

databases. The modelers we followed were engineers with little biological 

knowledge, and no knowledge of the specific biological systems when they 

started to model them. As one modeler noted, “I always start from zero.” 

After sitting with this modeler to watch how she collected data and other 

information through Internet searches to build her model, I nicknamed 

this process “google biology.” In publications modelers often insert num-

bers in parentheses at locations where specific references from the litera-

ture have been used to build out the pathway. Importantly, the primary 

means by which modelers begin to learn about the biological systems they 

are responsible for modeling are through literature searches, from which 

they not only gather data, but also develop conceptual understanding, and 

through building and simulating partial models in the course of building 

out the pathway network.

Our interviews with modelers and experimental collaborators show the 

pathway diagram to function as a boundary object (Star and Griesemer 1989) 

in that it is a representation used with sufficient flexibility in interpretation 

so as to provide a means of communication among the different communi-

ties. Importantly, the pathway diagram provides a tool to identify and track, 
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visually, causal movements within the network, for both communities, as 

Ross’s and our analyses show. These movements provide a basis for reason-

ing about the network both in molecular biology (see, e.g., Sheredos et al. 

2013) and in mathematical modeling. When we began our investigation, 

we had thought the computational model would perform the function of a 

boundary object, but soon realized bioscientists have little to no understand-

ing of it. To them it is largely a black box. From what we witnessed, collabo-

ration is rarely smooth, but one important interaction modelers have with 

experimentalists is to check whether a modification they have made to the 

pathway is “reasonable.” This important check is possible because, as we saw 

above, for experimentalists the pathway diagram represents a set of qualita-

tive causal relationships among molecular elements, and they usually can 

infer whether the proposed modeler modifications are plausible within the 

causal structure. Sometimes they are even aware of additional experimental 

literature that will aid the modeler in confirming their modifications.

For modelers, the pathway diagram represents a mathematical structure. 

As one lab G researcher expressed it, modelers “in some sense translate it [the 

pathway] into a map we can deduce math from.” For the modeler, the nodes 

are variables and they put “[mathematical] meaning into the arrows,” by giv-

ing them precise quantitative values for the rates of a reaction. This process 

necessarily involves much simplification and abstraction of what modelers 

often refer to as “messy,” “dirty,” and “noisy” biological systems so that they 

can be modeled quantitatively. The model is built on a generic pathway, such 

as the lignin pathway in plants, and is a generic dynamic representation in 

that it simulates the behavior of systems of that kind—of a generalized target.

It requires considerable effort and judgement on the part of the modeler 

to find the data in the literature and databases and evaluate which ones are 

relevant to and important for their problem. As part of their judgements, 

modelers need to determine what data sources are “trustworthy.” That is, the 

modelers need to exercise judgment about the source, quality, and relevance 

of the data. The modelers we studied pointed out that they try to select data 

from labs that they consider to “produce reliable data,” based on their lab’s 

experience with them, especially those of the director. Similar judgements 

are made about databases, which are developed and curated in significant 

sociocultural negotiations (Leonelli 2016). There are many missing pieces 

(e.g., the pink portion of the lower right quadrant of figure 5.2 was built 

out entirely by the modeler) and many open questions (note the question 
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marks), which require the modelers to guess potential reactions. When pos-

sible, they present their guesses to experimental collaborators in the form of 

hypotheses to determine, as G12 explained, if the addition is “reasonable.”

Notably, our investigations have shown that building the pathway is an 

iterative and incremental process in which model simulation is itself a critical 

resource. That is, the pathway structure is assembled in an exploration that 

involves preliminary simulations. Often small pieces of the pathway are 

simulated by the modeler, for instance by running through specific values 

for variables, using pen and paper (or marker and whiteboard) and their 

imaginations, before running segments in a computational simulation (see 

figure 5.3).

Figure 5.3
A lab G whiteboard on which a modeler is working out pieces of the pathway under 

investigation “by hand” and imagination.
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Once the pathway is developed in sufficient detail, preliminary models 

usually are built in a modular fashion, with and without pieces of the path-

way (such as the different color-coded sections of figure 5.2). Simulations 

of these help to determine, for instance, what can be trimmed or where 

there are possibly missing pieces. Through these simulations the modeler 

builds up an understanding of the dynamics and relevance of specific path-

way elements. This enables her to make judgements about adding elements 

that might be playing a role but are not discussed in the literature on the 

system, or about feedback relationships that are not documented, or about 

what can be safely left out of the pathway. Such determinations are often 

based on elements in the literature that are thought to be related to the 

system, such as from different species and different cell lines. Modelers also 

use simulations to determine values of parameters often missing from the 

literature, such as the speed of the reaction (rate constant) and the sequence 

of reactions to the product (kinetic order), which experimentalists usually 

do not measure. Determining parameters from the literature is itself a com-

plex process in which modelers have to reverse engineer the graphs they 

encounter into the numbers they need for their models. As one modeler 

explained, “There might be graphs that have trends or what not, and then I have 

to quantify the graphs and then either figure out slopes or things of that nature to 

get at a particular number.”

The processes of building the pathway create a unique composite net-

work of metabolites and parameter values. The pathway brings together 

pieces of information that are spread over a wide set of papers, databases, 

and unreported experimental data. The pathway diagram not only provides 

the basis from which the modeler builds the computational model but is 

itself a visual representation of a conceptual model of a network of causal 

interactions. The computational model built from it creates a synthesis that 

is, in effect, a running literature review that exists nowhere else. Thus, simula-

tion is not used only to “sound out the consequences of a model” (Lenhard 

2007, 181), but, notably, also to learn and assemble the relevant ontological 

features of a system. The process of adapting the pathway network contin-

ues throughout the model-building process until pathway, experimental 

data, and parameter fit coalesce into a model (or small set of models) that 

simulates the behavior of the target system (model output matches experi-

mental data), at which point the model can be diagnosed and tested until 

it is considered validated. If the model fails testing, diagnosis is, as one 
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modeler explained, “a big problem . . . ​because you don’t know if the pathway 

structure may be wrong. Second, maybe the parameter is wrong. So, maybe the 

algorithm is wrong. So, I have to check every part of it to make sure of everything 

if something goes wrong. . . . ​It’s actually a cycle, an iterative process—so we go 

back and forth.”

For the modelers in our labs, model-building is a labor-intensive process 

that usually takes several years. Building the model requires the modeler to 

make numerous choices along the way. Modelers can choose a variety of 

formalisms to build the model. Choices include, for instance, whether to 

use phenomenological models, such as agent-based models, or mechanistic 

models, discrete or continuous models, spatial (partial differential equa-

tions, PDEs) or nonspatial (ordinary differential equations, ODEs) models, 

stochastic or deterministic models, and multiscale or uniscale models. Lab 

G most often chooses to represent the interactions in sets of coupled ODEs 

that capture how the concentration levels of different metabolites in the 

pathway change over time. The number of reactions investigated by the lab 

G modelers during our study ranged between fourteen and thirty-four—a 

number that the director characterized as “just a handful,” when compared 

with those in the actual system (figure 5.1). The number of equations 

needed to capture these reactions varies with the specific questions the 

modeler is exploring, the nature and availability of data, and the computa-

tional resources. The advantage of ODE models is that they are both rela-

tively simple conceptually and have the potential to be highly informative. 

In addition, there exists a wide range of computational and mathematical 

resources for analyzing system dynamics and for estimating parameters for 

ODE models.

Selecting an ODE framework opens another range of choices about 

whether, for instance, to model the system as steady state (static) or away 

from equilibrium, whether to use a mass-action stoichiometric model 

(based on rate of chemical reactions), or to use a canonical mathematical 

template such as biochemical systems theory (BST) that averages over the 

details of the interactions, or a mechanistic model that sticks closer to the 

molecular details in the form of rate laws of individual enzymatic reac-

tions.5 The choice depends on the nature of the problem, the goals of the 

modeler, and the nature of the available data. In the culture of lab G, BST 

plays a major role in ODE model-building. Even so, there are no set choices, 

and much depends also on the preferences of the modeler. As one modeler 
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told us in discussing the model-building process, for many choices, “It’s a 

pragmatic choice. That’s why modeling is still an art—it’s a choice people make. I 

make one choice and another one would make a different choice.”

The modelers usually split the experimental data into two sets, one 

used to develop and fit the model (training data) and the other, to validate 

or test the fitted model (test data). The complexity of the tasks of fitting 

and testing a model is highly dependent on the nature and quality of the 

experimental data available. Rarely do lab G modelers have access to rich, 

dynamic data (time series). Most often, they have steady-state data that 

show how an experimental manipulation led to a change in metabolite 

level from a baseline. These data are reported by experimentalists usually 

as a single data point going up or down or holding steady (“steady-state” 

data), which provides the experimentalists with all the information they 

need, but not the modeler. This difference in needs again points to how 

differences in epistemic aims create problems in collaboration. A common 

lament we heard about experimental collaborators was expressed by one 

modeler as: “They just care up/down. . . . ​They don’t care time series . . . ​how 

this dynamically changed. They just care what is the result.”6 I used the word 

“lament” because this complaint was always expressed emotionally, with 

considerable frustration. In the absence of good dynamic data, the modeler 

faces considerable uncertainty because a range of parameter values can gen-

erate model results that fit sparse data, so the fit is not unique. The modeler 

can use algorithmic techniques and various computational tricks to figure 

out how the parameters might be changed and at least narrow down the 

range of acceptable fits. But it is often unclear whether the lack of a unique 

solution is because the parameter estimation is poor or whether some ele-

ments are missing in the pathway.

If the data generated by the model do not fit the test data, the modeler 

tweaks the parameters (“tunes the model”) until the results provide a satisfac-

tory fit. The modelers we studied do not use real-time dynamic visualiza-

tions of model behavior (as in lab D). Rather, they generate graphs that plot 

the concentration value of a molecule in the pathway across time for the 

model and for the experimental data, and compare a stack of graphs for 

different parameter values to judge how good the fit is. All of the modelers 

we interviewed pointed to parameter estimation as the most difficult part 

of the model-building process. In lab G, modelers often use optimization 

algorithms to estimate a significant number of open parameters. But just 



Managing Complexity	 201

as often they need to use novel reasoning about the problem to develop 

fitting options, such as to determine what reactions might be set to zero 

or what kinetic orders the free parameters might be. One technique we 

saw was to use data available on the same metabolic elements from other 

cell lines, such as using neural cell data to get parameters for a metabolite 

in smooth muscle cells. Modelers justify this move on the basis of their 

judgement that the systems in the diverse cells are reasonably homologous. 

Other common techniques modelers use include sensitivity analysis, which 

enables them to set parameters that do not affect network dynamics (insen-

sitive) to a default value, or to explore the dynamics of different param-

eter values and ranges by running through random numbers with Monte 

Carlo simulations. In lab G, modelers sometimes create new algorithms 

for parameter estimation as part of the fitting process for the specific case, 

which, if useful, they will try to extend to other cases. All of these processes 

for parameter estimation and fit involve running numerous simulations 

(on the order of hundreds of thousands). Thus, simulation is not simply the 

end phase of problem-solving. Simulation is a resource for iteratively building 

the simulation model itself.

Once a satisfactory fit is achieved, the model is run through a series of 

diagnostic tests, including for stability (does not crash for a range of val-

ues), sensitivity (input is proportional to output), and consistency (reactant 

material is not lost or added). If these diagnostic tests fail, the modeler can 

tune the parameters again or modify the pathway. In general, modelers 

employ strategies that adapt and integrate engineering modeling methods 

into systems biology. These labor-intensive processes, as well as others I 

have not mentioned, continue until the model fits the available experi-

mental data, as established by the data output of its simulation runs. The 

simulation model created by these means is generic in that it makes mani-

fest the dynamics of all the available data on that type of system, including 

natural systems, in vitro systems, and engineered or modified systems. In 

an important sense, the “system” modeled is an abstract general system, 

and the dynamical behavior the model exemplifies is that of a system of 

that kind. As such, it enables the modeler to examine a range of behaviors, 

including counterfactual cases, which can provide insight into, and predic-

tions about, how the pathway might be reengineered for specific purposes.

That the model produces a satisfactory “fit” does not mean it provides a 

point-by-point replication of the data, but, rather, that the behavior of the 
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model replicates trends (metabolite production going up or down) for most 

of the variables. The three main elements of the model—data fit, parameter 

values, and pathway structure—are mutually constraining, since they are 

tuned together in an incremental and iterative process until a model is con-

sidered validated. The pathway representation, for instance, is both tailored 

to fit the capacities of mathematical frameworks and shaped by parameter 

fitting in terms of available parameters and of the estimation tools used. 

All of these elements are kept in dialogue throughout the model-building 

process. Every version is “just a version of your knowledge at the time—of what 

you think is going on. And it will keep changing as you learn more and more about 

the system.” In the end, this modeler noted, “the best your model can do—is 

a verifiable hypothesis about what you think is going on.” That is, the objective 

of ISB modeling is to build a computational model of the target biological 

system that exemplifies its behavior under selected conditions, which in 

this case means that it replicates the existing experimental data and pre-

dicts new data that experimentalists can verify. At the completion of the 

model-building process, the goal is to have a robust model, stable for a wide 

range of parameter values, from which to derive novel behavioral predic-

tions that have sufficient warrant to transfer as hypotheses to the target 

system, and, hopefully, will be tested experimentally by collaborators. As all 

of the modelers pointed out, making predictions—not just fitting the avail-

able data—is the only way to get past the underdetermination of a model.

In sum, modelers assemble the structure and local dynamics of the 

system being modeled largely from scratch by gathering empirical infor-

mation from a variety of sources and piecing it together into an effective 

representation using a variety of assumptions, abstractions (modelers noted 

especially simplifications and approximations), and mathematical and 

computational techniques. Each modeler chooses the methods and strate-

gies he or she thinks best to solve the problem without any formal proce-

dure governing the selection process. Similar to the way a bird will gather 

whatever is available to build a stable nest, a modeler pulls together bits 

of biological data and understanding, principles developed in molecular 

biology, mathematical and computational theory, and engineering prin-

ciples from a range of sources in order to create stable robust simulations of 

the behavior of a biological network (“bird-nesting process”). Modelers rely 

on the building process, especially their ongoing simulations, to come to 

understand their systems and adapt their representations of them to their 
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specific epistemic goals. Thus, modelers rely on the dynamical behavior 

of the model, itself, to make inferences about how to proceed in building 

both the pathway network and the model. This important role of simula-

tion for the modeling-building process has not received sufficient attention 

in the literature on the epistemology of simulation.7 A major benefit of 

ethnographic investigation is that it can uncover the hidden creative work 

modelers carry out with the choices they make in model-building, as well as 

the ongoing processes of developing epistemic warrant for the model and 

the model-building practices, which are unlikely to be included with the 

formal analysis presented in a publication.

Building computational simulation models in lab G requires a sophis-

ticated grasp of mathematics, computational methods, and systems engi-

neering analysis methods. It is notable that students begin their research 

with little to no prior experience in biosystems modeling. We followed 

three of the graduate students intensively, two (electrical engineering back-

ground) from near the start to the finish of their dissertation research (~four  

years) and one (telecommunications engineering) during the course of her 

first year, in which the lab director gave her projects to help out on, which 

was his usual training procedure. We also conducted numerous interviews 

with the other graduate students and the postdoctoral researchers, includ-

ing about the algorithm development work, and with two experimental 

collaborators. We were able to grasp enough of their model-building prac-

tices to inform our research questions. Section 5.2.2 briefly outlines the 

model-building processes of one graduate student we were able to track 

from start to finish, to provide an exemplar of how researchers in this field 

achieve their epistemic aims. We did not anticipate that he would make a 

significant biological discovery. G10’s model-building process is typical of 

the nature of the problems lab G modelers address and the strategies they 

use in handling problems. As noted earlier, there are a wide variety of mod-

eling practices in ISB, but, in general, lab G practices are representative of 

practices in the field that use ODE models. It is a remarkable feature of their 

modeling practices that engineers with little knowledge of biology, and 

none of the system under study, are able to construct models that not only 

replicate the available data but also produce highly specific verifiable pre-

dictions about complex biological systems. The exemplar demonstrates the 

need to examine the processes of model-building, which to a large extent 

cannot be gleaned from published papers, in order to develop an account of 
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the epistemic and cognitive affordances of computational simulation (sec-

tion 5.3).

5.2.2  A “Model-Based Signal Postulate”: Finding a Remedy for Lignin 

“Recalcitrance” 

G10 has an undergraduate degree in electrical engineering and a masters in 

bioengineering. For his MS degree he had worked on a bioinformatics mod-

eling project for which he took a couple of biology courses (without labs), 

but he was not familiar with systems biology modeling when he arrived at 

lab G. He had read a biosystems modeling text by the lab director before 

deciding to apply. G10 had started on his dissertation project shortly before 

we entered the lab and finished in four years. In our initial interview, G10 

stated that his “engineering background contributes a lot to my way of thinking 

to solve a problem.” He contrasted his engineering perspective, derived, in 

particular, from control theory, with that of a biochemist as evidenced in 

“the biological journal literature”: “[Engineers] look at things more at the systems 

level than the individual level, . . . ​Biochemistry look at the single protein or the 

single pathway—they don’t really look at the whole system and how each pathway 

will interact with each other.” He considered the systems perspective essential 

“if you really want to understand how the human works or how the plant works.”8 

G10’s project started with a request from biofuels industry researchers for 

the lab to help them figure out how to tweak the lignin pathway in alfalfa 

to develop transgenic plants with lower lignin, so they could more easily 

extract sugars for the production of biofuels. Lignin is a natural polymer that 

hardens plant cell walls and enables the plant to grow upright. It is difficult 

to break down (it exhibits “recalcitrance”) when biomass is processed into fer-

mentable sugars using enzymes or microbes. The experimentalists had been 

developing genetically engineered plants with lower lignin content but were 

finding it difficult to determine a balance that would keep the plant structur-

ally sound. Further, their transgenic species decreased only one of the three 

lignin monomer building blocks (called monolignols H, G, S). Although they 

had not collaborated with modelers before, they felt that modeling might 

be able to help them understand something about the mechanisms underly-

ing lignin production, which would enable them to develop transgenic spe-

cies with low lignin content and good growth. They also hoped, at the very 

least, that modeling would provide information that would enable them to 

develop plants with different ratios of lignin monomers, especially a lower 
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S/G ratio, which would improve the extraction of sugar from plant cellulose. 

This was a new modeling area for systems biology. Other modeling efforts 

in the biofuels domain were in the area of bioinformatics, or were models of 

organisms that are used to break up the plant mass. G10 expressed the hope 

that “model-based insights will become the foundation for the rational design of 

metabolic engineering strategies” for biofuel production.

G10 described his own “bird-nesting process,” generally, as follows: “We 

just search the literature and find the necessary data from it. . . . ​But most of the 

time you don’t have much data. . . . ​I need to, you know, add other components 

from other theories, for example, the flux balance analysis . . . ​and I combine 

that with biochemical systems theory to build a model.” One unusual feature 

of this case is that G10 had a fairly well-established lignin pathway in the 

literature to start from and, in the end, lots of data for the fitting process, 

though he still had a considerable number of open parameters. To carry 

out parameter fitting for the specific lignin system he was working on, he 

needed to develop several novel modeling strategies for his analysis, one of 

which he also published separately as a potential community resource for 

handling systems of this kind.

In the beginning, G10’s collaborators gave him few data, and what they 

did give him was of poor quality for modeling. As he noted, “They don’t mea-

sure the concentration, for example. And they have few kinetic data. . . . ​Most of 

the data they have is just output, the final output.” This created a significant 

problem because there was little literature on alfalfa, the plant they were 

working with. Complicating things further, they were unresponsive: “Some-

times you want to ask question, and he would get back to you in a month—or even 

two months—or even don’t reply. . . . ​That’s a problem because we are not expert in 

the field. . . . ​They have more information than we know from the literature.” This 

is not an unusual “collaboration” situation for ISB modelers. Even when the 

bioscientists request the modeling, it often is low priority for them. Impor-

tantly, these bioscientists were unwilling to part with unpublished data, 

which constituted the bulk of their data. They seemed not to understand that 

the modelers would use it only for building the model and would not publish 

the data: “Right now they just give us the data they have published. . . . ​They told 

me they need to publish it first—and then they can give me the data later.”

The collaborators projected it would be about six months before they 

would give G10 the additional data, so he decided to build a model of lig-

nin biosynthesis in poplar—a related species for which there were ample 



206	 Chapter 5

data in the literature, because it is the preferred biofuel species in Europe. 

His idea was to build the poplar model as a “proof of concept” for biosystems 

modeling in that domain, which would also help him understand the lig-

nin pathway better. He assumed some of what he did would transfer to the 

alfalfa case. It turned out, unexpectedly, that to build the poplar model he 

needed to develop what he called “a new two-step modeling approach” to deal 

with the mathematical complexity and parameter estimation for the lignin 

pathway. He thought this novel method might then provide a template for 

modeling in the lignin domain. His approach was to integrate dynamics 

models with fluxes (the rate at which a metabolite is processed) derived 

from constraint-based models. The two steps were first to build a static, 

constraint-based model, which assumes the metabolic system is in steady 

state, and then use flux information derived from that to build the dynamic, 

kinetics-based model. The static model used the flux balance analysis (FBA) 

method, which assumes that the metabolic system is in a steady state in 

which, for each metabolite, the sum of fluxes coming into the pool equals 

the sum of fluxes coming out of the pool. The dynamic model made use of 

the BST modeling framework, where each differential equation in a model 

represents the time-dependent change in one metabolite as the sum of pro-

duction fluxes minus the sum of degradation fluxes. For this model, G10 

used the BST framework’s generalized mass action (GMA) representations, 

which model the flux as a sum of the inputs minus the outputs.

The attractiveness of the BST framework in data-poor modeling is that it 

can account for a variety of dynamics by modeling the flux of dependent 

variables as a product of power law functions (relative change in one quan-

tity gives rise to a proportional change in another), with each individual 

flux represented separately with one power law function. This means that 

even if the nature of the interactions among elements is not well known for 

the system, there is a good chance the model will capture the underlying 

causal regularities in the system, and so account for the system dynamics 

within the range of the realistic parameters. The parameters used are the rate 

constant, which determines the turnover rate of the process, and the kinetic 

order, which characterizes the influence of one variable on a given process.

The two-step process still left G10 with twenty-seven open parameters 

and required using optimization strategies to fit. To reduce the parameter 

space, G10 set all but the parameters considered significant (small change 

leads to large change in S/G) to what he considered “biologically reasonable” 
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values (determined to be so from reading the literature and discussion 

with the director). He then optimized the significant parameters by using 

various computational techniques. The results of this approach generated 

an ensemble of models (there was no unique model) with minimal error 

(SSE: sum of squared error) between model results and experimental data. 

Our modelers use “ensemble” to refer to a small group of models with dif-

ferent parameter settings that they settle on to cover uncertainties in the 

parameter values.9 These models enabled G10 to identify key reactions that 

influence the S/G ratio in poplar, and he was able to make some predic-

tions about how the pathway might be tweaked by knocking down specific 

enzymes to lower the S/G ratio.

The process of building the lignin model for poplar prepared him to deal 

with the more complex modeling problem presented by the alfalfa lignin 

system. The alfalfa model would contain twenty-four ODEs. In addition, 

the collaborator data included points in the growth of the plant over time 

(eight different internodes), where the lignin levels were different for each 

of these points. G10 used a slightly modified two-step procedure to analyze 

several internodes simultaneously, while interactively building the model 

and modifying the pathway in an incremental and iterative process.

Once G10’s collaborators had published the relevant alfalfa research, 

they gave him the Excel files for all their data—which meant that, unlike 

the typical case, he had “many data . . . ​for seven transgenic experiments and 

each experiment generate about seven sets of data. . . . ​They have more data than 

we need to know.” The collaborators did not give him any pathway structure, 

but again he was fortunate: “The [generic lignin] pathway structure is from the 

literature—everybody is using it.” But, as he discovered, species-dependent 

data would be important in building out—and significantly altering—that 

lignin pathway, which had been established for twenty years. At the outset, 

his own literature search led him to add new elements to the pathway net-

work, noted in red in figure 5.4.

The first model he built was for a wild-type system at steady-state, using 

the modified pathway (left diagram, figure 5.4). G10 discovered that this 

model could not produce accurate data when inputs were perturbed out 

of equilibrium, which suggested to him that some regulatory mechanisms 

controlling excess flux needed to be figured into the pathway. He tried out 

several pathway variations from studying the model structure with simula-

tions, and then selected those that were the most “biologically reasonable” 
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ways of removing flux (“overflow fluxes”: highlighted blue arrows in the 

right diagram, figure 5.4). He translated these into precise mathematical 

modifications that would relieve the system. As he explained his process, 

“We have data from our collaborators and we analyze it with very simple lin-

ear models, and based on our analysis results, we suggest there—this original 

pathway needs to be modified so that this data can be explained. . . . ​This is an 

important piece of knowledge that comes from the model,” that is, through the 

understanding of its system dynamics provided by the model. With the 

new pathway structure, G10 was able to build a dynamical model for each 

internode in each wild-type or transgenic plant and make hypotheses about 

the metabolic control of this pathway.

He used the data for each of the seven transgenic plants to build models 

on the biological assumption that the genetically modified strains would 

function as close to the wild-type as possible, within the limits imposed 

by the modification. Fitting the models was again a complex process, with 

numerous open parameters for each model, which he handled in a manner 

analogous to that of the poplar model. In the end, for the final modified 

alfalfa pathway, G10 arrived at a consistent convergence of five optimized 

models that tested well, and each gave similar predictions. He argued that 

the fact that this ensemble of models converged on similar mathematical 

relations for the target variables “provides validation” for the model. These 

models provided specific new causal information about which enzymes 

could potentially be targeted to decrease the S/G ratio, but did not provide 

an overall mechanistic explanation for the system behaviors. Altogether, 

G10 arrived at what he called seven “model-based postulates,” which are 

mapped out on his final representation of the pathway (figure 5.5).

Two important postulates are, first, the reversibility of some reactions 

(straight arrows pointing upward in figure 5.5A and B) in the path where 

he had earlier removed excess flux. Second, he hypothesized the possibil-

ity of independent pathways (“channels”) for synthesis of G (blue) and S 

(red) monolignols. Channeling can make a metabolic pathway more rapid 

and efficient, and the potential role of these channels in the lignin path-

way was an important new hypothesis. He offered this second postulate 

as a solution to what he called a “puzzle”: given the data he had on up-

regulation and down-regulation of specific variables, the S to G ratio was 

considerably higher in transgenic plants than in the wild-type. But now he 

claimed the model enabled him to “see what happens inside the pathway,” 
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and this postulate made biological sense in addition to making the model 

work. However, it led to a significant new problem: based on hundreds 

of thousands of simulations of possible variations of the channelization, 

these channels appeared unlikely to be regulated by enzyme kinetics. G10 

carried out this examination of all possible experimentally supported path-

way designs with another novel method he developed of computational 

enumeration “to permit an expedient and exhaustive assessment of alternative 

regulatory schemes.”

Based on the dynamical behaviors of his model, G10 inferred that the 

easiest way to resolve the problem in the model was make a spectacular bio-

logical hypothesis: the established lignin pathway of twenty years is impor-

tantly incomplete in that there appears to be an element outside the current 

pathway that has a significant regulatory effect on its behavior. This element 

would selectively regulate (figure 5.5 curved purple arrows) the pathways 

(channels) responsible for generating S (figure 5.5A) and G (figure 5.5B) 

lignin. Because of his limited knowledge of biology, he called the element 

“X” and had no way to hazard a guess as to what it might be. The postulate 

is warranted on the basis of the model: if excess cinnamic acid produced a 

substance X that both up-regulated the G channel flux and down-regulated 

the S channel flux, then the model produced highly accurate dynamical 

behavior. His postulation of a heretofore unknown metabolite in the lignin 

pathway derived from the understanding that the model-building process 

provided of the quantitative dynamics within the network and of how to 

control the parameters effectively. As he stated, “So this is actually the biggest 

finding from our model. So, by adding this reaction you can see that we hypoth-

esize there is another compound that can give a regulation . . . ​to other parts of the 

pathway. And this finding will not be possible if we haven’t done any modeling—

because, well, if you just look at the data, the data only tells you the composition 

of these three lignin.”

The model-building process gave G10 a comprehensive view of how 

the existing data on lignin fit the pathway structure and led him to ques-

tion that structure as a last resort, because the model dynamics appeared to 

require it. This prediction finally got the attention of his collaborators, and 

they conducted experiments that confirmed the hypothesis, identifying 

“X” to be the signaling molecule salicylic acid. They determined that the 

molecule acts as an inhibitor of monolignol biosynthesis, which was hailed 

as a significant biological discovery. G10 also predicted, “I guess this finding 
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will give them more confidence in what we are doing so maybe in the future they 

could be more willing to give us—to share more data.” This prediction was also 

borne out, in that they went on to collaborate further with G10 in postdoc-

toral research.

The G10 case leads us to a more general question about computational 

model-based reasoning in ISB: How is it possible for an engineer with a few 

months of biosystems modeling experience and little knowledge of biology to 

make fundamental discoveries in biology? To answer this question, we need to 

fathom how “discovery” is the outcome of processes that create cognitive-

cultural systems that extend the capabilities of scientists beyond their basic 

human limitations to more effectively probe the natural world. Our inves-

tigations into discoveries made by in silico simulation modeling, as with in 

vitro simulation modeling, show these are the epistemic achievements of 

complex evolving distributed cognitive-cultural systems. For lab G, the dis-

tributed problem-solving systems comprise the modeler, model, lab direc-

tor, other lab members “grabbed” for discussion, model-building resources 

specific to the culture of the lab (here, PCs, ODEs, BST and so forth), con-

ceptual and methodological model-building resources from engineering 

and computational sciences, epistemic norms and values, experimental col-

laborators (even if interaction is limited), Internet resources (search engines, 

data bases, literature), diagrams (pathway, graph), “pen-and-paper” repre-

sentations, and presentation and publication venues, which provide com-

munity feedback. As with all D-cog systems, these systems have properties 

that are different from those of the individual.

In what follows, I focus on epistemic affordances of specific components 

of the distributed model-based reasoning system, namely, the coupled sys-

tem of interaction between two kinds of models, researcher mental mod-

els and computational simulation models. I consider ways in which the 

processes of building the artifact model enhance the inferential powers of 

the researcher. The back-and-forth interactions between these components 

of the coupled system create changes that are particularly important to 

account for the ability of the D-cog system to improve its investigations 

of a given biological system. I then address the nature of the warrant for 

believing the outcomes of sufficiently credible models are worthy of pur-

suit as hypotheses about target systems, which all the modelers noted is an 

important epistemic aim of these D-cog systems.
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5.3  Computational Model-Based Reasoning: Building “a Feeling  

for the Model”

Interest in the methodology of computational modeling and simulation in 

science has been growing in the philosophy of science. There is now a sub-

stantial body of philosophical research that focuses primarily on physics-

based modeling, such as conducted in quantum mechanics, nanoscience, 

and climate science (see, e.g., Galison 1997; Humphreys 2004; Lenhard 

2020; Parker 2009, 2010a,b; Winsberg 2010). These analyses have pro-

duced important insights, some of which do pertain to what we have been 

learning about computational simulation across the board. However, as we 

argue, there are important differences, as I indicated earlier.

In general, the characterization of computational simulation models 

Eric Winsberg (Winsberg 2001) has formulated as downward, motley, and 

autonomous is widely accepted. “Downward” signals that established sci-

entific theories provide the starting point from which to develop a com-

putational simulation model, and that they contribute to the credibility 

of the model and to the warrant for the belief that modeling outcomes 

can be transferred, provisionally, to real-world phenomena. “Motley” indi-

cates that the model-building process introduces arbitrary elements that 

work against any claim that the model is fully derived from theory. To 

build a stable, robust model requires using a range of such elements, which 

include abstractions, parameterizations, ad hoc assumptions, mathemati-

cal tricks, numerical methods, and much trial and error. In view of their 

motley nature, in particular, Paul Humphreys (2004, 148) has dubbed com-

plex physics-based simulations as “epistemically opaque” (see also, Lenhard 

2007) This means that although they begin from theory and depend on it, 

the ingredients needed to make a simulation work obscure the operations 

of the theory’s laws and make analytic solutions to equations impossible. 

Thus, a model can be theory-driven, but in an important sense it is autono-

mous from theory (see also, Morgan and Morrison 1999). “Autonomous” 

(or, better, “semi-autonomous”) in Winsberg’s characterization, also under-

scores that simulations, customarily, are used in situations where data are 

sparse because real-world experiment and observation are quite difficult 

or not possible, and thus simulation provides a source of predictions and 

understanding that often cannot be checked against—or warranted fully by 

comparison with—data from real-world sources.
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As we have seen in the previous sections, our research on computational 

modeling and simulation in ISB agrees with the motley characterization 

(which we likened to a bird building a nest) and the autonomous nature of 

computational simulation. However, as we also have seen, model-building 

is not a “downward” process; rather, lacking a theory of the system phe-

nomena, models are built “from the ground up” (MacLeod and Nersessian 

2013).10 There are differences to be discerned from practices that lack a the-

oretical basis from which to draw resources to build models that are impor-

tant for understanding how modelers achieve their epistemic aims.11 One 

such difference derived from our analyses of ISB practices is to bring out 

additional, different roles for simulation than have been discussed in the 

physics-based literature. An important insight from our investigation is that 

simulation in this domain contributes to building the pathway representa-

tion and, so, to the model-building process itself. These and other findings 

I discussed in the section on general lab G modeling practices underscore 

the benefit of collecting ethnographic data on the model-building process 

as it is going on, rather than just relying on published scientific literature, 

augmented possibly with archival records, retrospective accounts, and 

anecdotes. There is much that is important for understanding how com-

putational simulation affords epistemic access that is omitted from final 

reports or not recalled retrospectively.

Much of the recent philosophical literature on computational simulation 

focuses on issues about whether a new epistemology of science is needed 

to accommodate computational simulation as an investigative practice or 

on whether simulation experiments are the same as or different from wet-

lab experiments (see, e.g., Beisbart 2018; Frigg and Reiss 2009; Winsberg 

2009). These are interesting and important issues, but rather than address 

them, I consider a largely neglected issue that is important to the discovery 

question I raised at the end of the previous section. This important issue 

has only been hinted at in the philosophical literature: the need to bring 

considerations about human cognition into the epistemology of simula-

tion. Humphreys, for instance, has cast the situation in which science is 

conducted at least partially by computers as a “hybrid scenario,” by which 

he means “one cannot completely abstract from human cognitive abilities 

when dealing with representational and computational issues” (Humphreys 

2009, 616).12 Witness, also, the main title of his book, Extending Ourselves. 

Humphreys argues that computational methods and simulation belong to 
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a long line of “technological enhancements” that scientists have developed 

as tools to extend human capabilities. Some of these have targeted a spe-

cific modality, such as microscopes and telescopes, which have enhanced 

our native abilities to see. Computational simulation was developed to deal 

with the problem of processing vast amounts of data, which human cogni-

tion cannot. Computational technologies, as Humphreys claimed, provide 

“enhancements our native cognitive abilities required to process this infor-

mation” (2009, 8). I agree, and would add, to make inferences from it. How-

ever, his claim is not backed up with any account of the nature of the native 

cognitive abilities that are enhanced by computational technologies—and 

how they are enhanced. “Extending” is left only as a metaphor.

As I indicated in chapter 3 and as we will see even more so here, there 

is a significant difference between Humphreys’ tool view of extension by 

means of computational simulation and the coupled system view we have 

been advancing. In the tool view, over the course of science, scientists have 

been extending their sensory and cognitive abilities by creating instruments 

(e.g., telescopes) and analytical tools (e.g., models) that allow them to use 

the artifact as a tool to perform new operations, such as the fast numerical 

solutions to complex equations performed by computational simulation 

models. This view suggests the cognitive-cultural divide, from the cogni-

tive side: the individual is able to perform different cognitive tasks—or do 

them better—using the new artifacts. When our perspective shifts from 

using a simulation model to building this artifact, we come to understand 

how the back-and-forth interaction with the human agent incorporates 

the computational model, along with other elements of culture, such as 

conceptual and methodological resources and epistemic norms and values, 

into a hybrid, coupled human-artifact model-system that accomplishes simu-

lative model-based reasoning. This construal is compatible with the notion 

of models as “epistemic tools” (Knuuttila 2005) but focuses attention on 

the processes of building and incorporating the tool rather than using the 

final product. “Extending ourselves,” in our account, is an iterative and 

incremental process that incorporates humans and the epistemic tool into 

a cognitive-cultural system with properties different from those of the indi-

vidual. This process provides an example in the domain of science of what 

Hutchins meant more generally by “humans create their cognitive pow-

ers by creating the environments in which they exercise those powers.” 

These system-level properties of the “hybrid scenario” facilitate epistemic 
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access to otherwise inaccessible processes in complex biological systems. 

We interpret, then, Humphreys’ claim that “in extending ourselves, scien-

tific epistemology is no longer human epistemology” (2009, 8) as meaning 

that scientific epistemology is the epistemology of a D-cog system (not only in 

the case of computational modeling, as we have seen in previous chapters). 

In the following sections I elaborate on the epistemic and cognitive affor-

dances of building in silico simulation models that I outlined in chapter 3. 

Specifically, I consider how the modeler’s inferential capabilities (“cogni-

tive powers”) are extended in model-building processes and the warrant for 

their claims that these processes can provide epistemic access to the behav-

ior of the biological systems.

5.3.1  Extending the Capacity for Simulative Model-Based Reasoning

As I have discussed in previous chapters, analyses within the D-cog frame-

work customarily cast the human component of a system as “off-loading” 

cognitive functions to specific artifacts and “coordinating” among system 

components to accomplish a task. These metaphors, even when explicated 

in terms of specific tasks, are insufficient to understand how the scientific 

D-cog system improves its ability to investigate target phenomena. Such 

improvement is driven by learning on the part of the human component, 

which in turn leads to the further development of the artifact model. We 

have argued, based on cognitive science research and our own data, that 

this kind of learning involves building more accurate mental models. We 

have, thus, cast model-based reasoning with in silico models as a system of 

interaction—a coupling—between two kinds of models (mental and arti-

fact), which creates changes in the D-cog system that improve its ability to 

investigate, in the case at hand, complex biological systems.

The reasoning by the modelers captured in our interviews and observa-

tional studies, as well as self-reports of their reasoning processes, provide 

evidence that many of the inferences they make in the course of build-

ing a computational model, especially with respect to how and where to 

modify it, rely on simulative mental modeling. The modelers we have 

studied across both ISB labs articulate their reasoning in terms of causal 

interactions in the biological networks, which, we claim, allow them to 

simulate and perturb limited aspects of the network dynamics mentally. 

They have walked us through how these simulations—often performed in 

conjunction with pen and paper or whiteboard representations (see, e.g., 
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figure 5.3)—enable them to perform various kinds of reasoning tasks, such 

as to identify possible errors, explore hypotheses about network structure 

or parameters in a limited fashion, and identify dominant variables. These 

simulations enable the modeler, in particular, to screen plausible candi-

dates for fixing errors in the structure of the model before implementing 

them. This ability is important, because errors in the structure of the system 

model can have numerous causes and be in numerous locations, so many 

different manipulations of the computational model might resolve them. 

The modeler’s ability to screen candidates by limited mental simulations 

cuts down on the work of parameter fitting, which, as we have seen, is 

a highly labor- and time-intensive process. Our findings are in line with 

cognitive science findings about how scientists and engineers use mental 

simulation as they try to solve problems in their research (Christensen and 

Schunn 2008; Trafton et al. 2005; Trickett and Trafton 2007). Of particular 

note, that research shows that the use of such mental simulations increases 

in cases of inferential uncertainty when scientists are trying to develop a 

general grasp of the phenomena under investigation.

There are three aspects of the character of the simulative mental models 

our study participants build that we have analyzed as especially significant. 

First, from the way they reason out loud with their models, we infer that 

their mental models are qualitative. Modelers, for instance, track qualitative 

effects of specific variables on other variables using terms like “increasing” 

and “decreasing” to describe these relations, such as “an increase in variable 

A produces a decrease in variable B.” Modelers often do sketch out on paper 

or whiteboard some quantitative details of what they are thinking, but they 

do not compute precise numbers and values in these activities. Our char-

acterization of their mental models as qualitative is consistent with a range 

of cognitive science research, especially studies of causal-mechanical rea-

soning by physicists and engineers (see, e.g., Roschelle and Greeno 1987; 

DeKleer and Brown 1983).

Second, also in accord with the cognitive science literature, modelers 

reason about the pathway networks and models in piecemeal fashion in 

interaction with pen and paper representations (Roschelle and Greeno 

1987; Hegarty 1992, 2004; Schwartz and Black 1996). For instance, they 

track only a limited number of interactions in the network mentally or 

make inferences about the consequences of manipulating the values of 

a limited set of variables to explore what might be the effects of specific 
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modifications to the computational model. As one modeler recounted, the 

modeler “has to visualize the pathway in his head and divide it up into parts and 

write codes for each part,” which is why the modeler “draws so much and uses 

so much paper.”

Third, and likewise in accord with cognitive science research, modelers 

appear to reason by carrying out simulations with these piecemeal models. 

Research on nonexpert reasoning about simple mechanical pulley systems 

(Hegarty 2004; Schwartz and Black 1996), for instance, establishes that par-

ticipants reasoned by carrying out simulations of intermediate pulleys in 

the system, which facilitated their ability to reason over a larger scale. This 

strategy is consistent with constraints on working memory that limit how 

much information can be processed at a time. For modelers, these con-

straints mean that they should be able to track and manipulate only a lim-

ited number of variables at any one time, which accords with our research. 

We have seen modelers use selective and piecemeal representations of the 

system, for example, to identify and bracket nonlinear relations into sepa-

rate behaviors and simulate each separately to make inferences. In their 

mental simulations, modelers usually focus on elements of the pathway 

network that interact directly, but are not necessarily contiguous. These 

qualitative simulations of pieces of the network help them to understand 

the qualitative effects of the quantitative mathematical relations repre-

sented in computational model as they build the model. In the cognitive 

literature, such qualitative simulations have been called “envisioning” 

(DeKleer and Brown 1983). As one modeler described her envisioning pro-

cess in building an intuition about her model, “So the thing is—when you 

want to solve a mathematical problem . . . ​sometimes you use numbers and try 

numbers, something to give you a feel of—like intuitively how this, for example, 

equation works and all. So, I’m trying out numbers and then trying to make the 

steps kind of discrete—like sort of a state machine, kind of thinking like we’re in 

this state. And then, now this much is going to this other metabolite pool and 

then, at the same time, we have less of that. So, I’m trying to see what the con-

straints are by actually like doing a step-by-step sort of thing.” While she was 

describing this to us, she was also using her finger to point to and trace out 

her sketches of these “steps” sketched in her notebook.

As I discussed in chapter 1, some cognitive scientists have proposed the 

way to understand how mental models and external representations work 

together during reasoning is as coupled inferential processing (see, e.g., Greeno 
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1989a,b; Zhang and Norman 1995; Gorman 1997; Hegarty 2004; Nersessian 

2008). However, unlike the case of coupling between mental and static arti-

fact representations considered in this literature (mainly diagrams), in the 

case of computational representations, both kinds of models have their own 

simulation capabilities. Our extension of the coupling proposal to include 

in silico models proposes that the incremental and iterative processes of 

building and simulating the computational model create a key change in the 

D-cog system. Namely, the process builds a close dynamic coupling between 

the modeler’s mental model and the artifact model that incorporates mod-

eler and model into a powerful simulative model-based reasoning system that 

significantly enhances the limited human capability to reason about the 

behavior of complex biological systems (Chandrasekharan and Nersessian 

2015; MacLeod and Nersessian 2018). Notably, the coupling enhances the 

human cognitive powers used in mental modeling, such as memory, infor-

mation synthesis, visualization, simulation, abstraction, imagination, and 

intuition. In the way we propose to understand the model-building activity, 

cognitive functions are not off-loaded to the computational model, but are enriched 

and extended into a coupled system by virtue of it.

As we saw, the computational model can integrate a vast amount of 

information from disparate sources. Further, computers have the capacity to 

process complex systems of quantitative representations, such as the twenty-

four equations needed to build G10’s model. Their speed and manipulability 

enable the modeler to implement changes quickly and efficiently so that he 

can run through pathway options or hypotheses in quick succession. The 

computational model can generate many kinds of visual representations, 

such as graphs to track only specific relations or three-dimensional visual-

izations to track dynamic system behaviors. The choice depends on what 

the modeler thinks most useful for the problem. The computational model 

can, also, be put through thousands of simulations of many configurations 

in a matter of seconds. Configurations that use, for instance, different time 

points or parameter values produce different network behaviors that the 

modeler can partition into families of mental models, which can be used 

to build her intuition about the behavior of the model and develop insight 

into how to proceed with the building process. In addition, numerous and 

diverse simulations enable the modeler to develop a holistic, global perspec-

tive on the system dynamics. Model simulations, in addition, enhance the 

modeler’s ability to think about possible worlds and make counterfactual 
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inferences in ways that outstrip her capacity for thought experimenting 

alone.13 The model’s representation in variables, in particular, promotes 

such counterfactual explorations. Thinking in variables, too, helps to build 

what the lab G director called “the flexibility to recognize shared features of 

control/regulation across disparate domains.” This kind of cognitive flexibility 

allows the modeler to move with relative ease from modeling yeast to mod-

eling cancer, and so forth.

The overall effect of the back-and-forth exchange between these compo-

nents of the D-cog system is to extend human inferential powers such that 

the modeler can make reasonable inferences about how to build out the 

pathway or improve the parameter fit of the model. The model-building 

process is not always successful. However, a stable and robust model (or 

model ensemble, such as G10 developed) can lead to hypotheses about how 

to understand the system-level behavior in the target or how to manipu-

late it, such as the significant and novel “model-based postulates” made by 

G10. G10’s major biological discovery did not involve gaining expertise 

in biology (thus the designation “X” for the unknown biological entity) 

but did involve developing confidence in his judgement in the warrant 

for the inference that computational model did enact the behavior (exem-

plify) of the in vivo system (hypothesis transfer)—a confidence buoyed 

from numerous iterations of model-building and simulation. In the end, he 

could postulate with confidence that some heretofore not considered ele-

ment is part of the regulation of the lignin pathway, because the addition 

of it produces stable dynamic behavior in the model. The warrant for mak-

ing such a bold move derives from the processes in which G10 created and 

examined numerous model variations and found that every plausible bio-

logically reasonable change other than this one fails to provide a good fit.

To verify, hopefully, this hypothesis and determine what “X” is required 

action by the collaborator component of the D-cog system, and, as we 

saw, they were scarcely involved beyond supplying data. Here we see that 

another epistemic affordance of simulation modeling in ISB is to enhance 

collaboration, when biologically plausible hypotheses intrigue experimen-

talists sufficiently to pursue them. Every experimental collaborator we 

interviewed expressed a degree of skepticism about computational model-

ing, even when they had sought out the collaboration. The collaborators 

often complained that modelers seemed to want to build models “for their 

own sake,” and were content with just replicating data—sometimes very old 
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data (“who cares about that?”)—which the experimentalist characterized as a 

“tautology.” As an experimentalist stated in discussing another lab G mod-

eler’s work with us, “I think it’s absolutely essential for anybody who is going to 

model to build in a step of their modeling where they test its predictive power. . . . ​

If we get some answer [experimentally], as she did, I’m going to have a lot more 

confidence in your model.” Having confidence in the possibilities of model-

ing on the part of the experimentalist is prerequisite to effective collabora-

tion. As we saw with G10, once his collaborators had that confidence, they 

actively pursued further, more engaged, collaboration.

In all our investigations, we encountered the claim by computational 

modelers that it is of great importance to develop “a feeling for the model.” 

Our analyses interpret this “feeling” as having several dimensions. One 

aspect refers to the intuition and confidence modelers develop about the 

behavior of the model through the coupling process, as well as about their 

ability to correct deficiencies in the desired direction of a stable and predic-

tively robust model. The central role modelers ascribe to developing a feel-

ing for the model in order to make progress underscores, for our analysis, 

that although model-based reasoning is carried out by a coupled inferential 

system, specific attention needs to be paid to the human component. Ulti-

mately, it is the human agent who has to draw the inferences about how 

to proceed to improve the model or to flesh out the potential implications 

of the model’s behavior, as well as possess confidence in the direction they 

choose. As such, the level of complexity a modeler can handle likely con-

strains the size of the models that are productive for the modeler to attempt 

to build. This consideration provides an important additional rationale for 

the mesoscopic modeling strategy that Voit et al. 2012 have observed to be 

prevalent in ISB.14

We think this phrase, too, is an important indicator of how the processes 

of building the simulation model provide insight and understanding about 

the target biological system; the “feeling for the model” in turn provides 

the modeler, by analogy, with a “feeling for the biological system.” The 

model-building process gradually builds intuition about the dynamics of 

the target behavior through a large number of iterations of simulations 

wherein a range of factors such as sensitivity, stability, consistency, com-

putational complexity, and so forth are explored. In the process the mod-

eler, interactively with simulation, builds out the structure of the pathway 

network, which delineates a sequence of causal interactions among the 
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elements of the biological pathway. The simulations of the model’s behav-

ioral dynamics build an intuitive understanding of how the pathway gener-

ates the existing experimental data and what interventions might be made 

in the target while its stability is maintained. Simulations can also be used 

to explore why other sets of values are not (or have not been) seen in real-

world systems, which can provide the modeler some insight into “design 

principles” that underlie the values seen in in vivo experimentation. These 

repeated interactions with the model, pathway, and biological literature 

develops the modeler’s capacity to judge the biological “reasonableness” of 

the hypotheses or predictions they make about the system.

In order for the experimentalist to intervene on a target system, the 

model does need to provide specific causal information about the system. 

As we saw in the case of G10, he made causal predictions, based on the 

behavior of the model, about what enzymes might be knocked down to 

lower the S/G ratio but maintain structural integrity of the plant and pre-

dicted by what percentage these knockdowns would decrease the natural 

ratio. How to tweak the lignin pathway was the objective of the modeling, 

but the model also enabled an unanticipated, even more significant, causal 

prediction (figure 5.5): if cinnamic acid (postulated flux leaving the system) 

produced a compound (“X”) that both up-regulated the G-channel (path-

way) flows and down-regulated S-channel flows, then the model would 

produce highly accurate dynamic behavior in accord with the existing 

experimental data. In our discussion with the lab director about this case, 

he pointed out that such mesoscopic models can provide “a certain level of 

explanation . . . ​something causal you didn’t know before,” pending, of course, 

experimental verification.

In general, as seen in the G10 case, the director claimed, “if you can trace 

out a causal pathway, then it’s an explanatory model even though you may not 

know every single detail.” However, this kind of explanation is not mecha-

nistic because “with every [such] explanatory model, you have some regression 

in there or some association. . . . ​It’s not pure.” That is, the top-down abstrac-

tion strategies—such as those associated with canonical mathematical 

frameworks, shrinking and fixing the parameter space, and global fitting 

algorithms—used to build the model wash out or obscure details of the 

mechanisms underlying the causal connections. Nevertheless, the causal 

information provided by the model about the pathway structure (“trace 

out a causal pathway”) does provide a “certain level of explanation” about 
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the dynamical behavior of the in vivo biological system, and, in particular, 

how, possibly, to manipulate it.

In most instances, the kind of understanding mesoscopic modeling pro-

vides is largely pragmatic—understanding about the target system sufficient 

to propose ways to manipulate or control it to attain desired outcomes, but 

not sufficient to explain its behavior fully. Lenhard (2006) has argued, with 

respect to a case he investigated in nanoscience, that there are instances in 

this kind of understanding in physics-based computational modeling too. 

In such instances, models begin from theory but the equations produced 

for the complex phenomena are impossible to solve analytically. Instead, 

“simulations squeeze out the consequences in an often unintelligible and 

opaque way” (612), because of abstracting and averaging techniques that fit 

the equations to the data, as well as the numerical methods that render equa-

tions computable. He argues that, even though such simulation models do 

not provide the kind of explanatory understanding one derives from laws, 

these models do provide understanding about how, possibly, to intervene, 

control, or manipulate the phenomena, and thus, pragmatic understanding.

Systems biologists often write that the goal of the field is to attain 

“systems-level understanding” of complex biological phenomena, which 

they cast in terms of theories that capture general mathematical features 

and properties of biological systems, from which models of individual sys-

tems can be derived (to the extent possible in physics) (see, e.g., Kitano 

2002; Westerhoff and Kell 2007). We interpret this aspiration to mean 

systems-level understanding, eventually, should be not just pragmatic, as 

a capacity for manipulation and control alone, but a genuine theoretical 

or mathematical form of understanding from which the ability to manip-

ulate and control would follow. This is the ideal scenario. In practice in 

the current state of the field—at least from what we have witnessed—the 

complexity of the systems and the constraints on model-building are such 

that modelers pursue more limited goals with respect to what they can 

learn about their systems. They make the pragmatic decision to pursue less 

detailed and robust models that, in principle, can be predictively accurate 

for only certain elements of the systems. The understanding such models 

provide is pragmatic also in content, in that they provide neither a higher-

level mathematical/theoretical understanding nor a mechanistic explana-

tion (MacLeod and Nersessian 2015). Thus, the situation Lenhard describes 

in some physics-based modeling is the current state of computational 



224	 Chapter 5

modeling in at least the area of ISB we have investigated, if not more 

widely.

Another aspect of the modeler’s claim to have a “feeling for” the model 

is that it indicates a belief in the credibility of a validated model’s predic-

tions. In our interviews with modelers and in the presentations of their 

research that we witnessed, computational modelers (in lab G, lab C, and 

lab D) exhibit a high degree of confidence that their models, when fitted 

and rigorously run through diagnostic and cross-validation testing, pro-

duce simulations that do exemplify the dynamic behavior of the target sys-

tems. What warrants that confidence? In some cases, it will not be possible 

to conduct experiments on the system to back up this belief, and where it is 

possible, it often requires a considerable investment of time and resources 

on the part of experimental collaborators, so the modeler’s confidence that 

predictive inferences are credible and worthy of pursuit needs to be quite 

high. Of course, this belief is fallible since models can be wrong even if they 

fit the available biological evidence, but modelers do express confidence 

that a validated model is correct “in respects that matter.”

5.3.2  Building Epistemic Warrant

The most detailed philosophical account of the epistemology of compu-

tational simulation modeling is that of Eric Winsberg (2010), based on an 

analysis of physics-based modeling largely as recorded in the published lit-

erature. As he points out, models are built in data-scarce situations to serve 

as alternatives to real-world experimentation, which in many instances 

cannot be carried out (think of colliding galaxies or climate change). He 

proposes that the credibility or epistemic warrant for a model rests on two 

pillars, which are related to his characterization of simulation models as 

downward, motley, and autonomous. The first pillar is the credibility of the 

theory of the phenomena, such as fluid mechanics, that informs the build-

ing process (downward). But the methods required to build a stable and 

robust model always introduce extraneous and arbitrary elements into the 

process (motley), which give it autonomy from theory. So, the epistemic 

warrant also, importantly, derives from the second pillar, the credibility 

of the methods used in building the model. As we have seen, the case of 

ISB modeling is importantly different with respect to these sources of cred-

ibility. There are no guiding theories of the biological phenomena under 

investigation. Instead, modelers assemble the network of reactions and 
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regulatory relations among elements (in our case, metabolites and signaling 

molecules) of the system in conjunction with literature searches and pre-

liminary simulations of the model as they are building it. To build a com-

putational representation, they use bits of what they sometimes refer to as 

“theory,” such as enzyme kinetics, and canonical frameworks, such as BST, 

that provide a possible structure by which to glue together the lower-level 

information. With respect to the various methods used to build the model, 

these have, largely, been developed to model human-made systems. These 

methods have considerable credibility for modeling those kinds of systems, 

but are, here, being used on living systems—natural, modified (e.g., geneti-

cally), or engineered (e.g., synthetic).

In the physics-based modeling fields Winsberg considers, the methods 

do have considerable “antecedently established credibility,” in that estab-

lished “disciplinary tradition” supports their reliability in application to 

new cases—that is, they are “projectible” (2010, 137). Further, there are, 

of course, computational techniques related to fitting numerical models 

generally, such as Monte Carlo methods, that can be applied whatever the 

subject. In the ISB case, though, it is often an open question whether and 

what engineering modeling methods can be applied or how they might be 

adapted. As I noted, we often saw modelers experimenting with the applica-

tion of methods from the engineering domain in which they were trained, 

such as wave-smoothing techniques from telecommunications to smooth 

noisy biological data. Still, with respect to the credibility of model-building 

methods, even though these are drawn from a discipline other than that in 

which they are used, much of what Winsberg argues about how they gain 

credibility does apply.

He calls techniques and assumptions made in applying various methods 

“self-vindicating,” by which he means “whenever they produce results that 

fit well into the web of our previously accepted data, our observations, the 

results of our paper-and-pencil analysis, and our physical intuitions; when 

they make specific predictions or produce engineering accomplishments—

their credibility as reliable techniques or reasonable assumptions grows” 

(Winsberg 2010, 122). His is a thoroughly pragmatic stance: methods are 

vindicated by the fruits they bear, which is the case across the history of 

development of scientific methods. So, too, the techniques and assump-

tions of the methods that are transferred from engineering systems and 

adapted to biological systems gain this kind of pragmatic credibility and 
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become projectible as they develop an interdisciplinary history in bio-

systems modeling. Further, productive strategies used to solve frequently 

encountered problems gain traction as reliable parts of the practice for both 

the individual and the community, as do the novel methods for building 

models of a specific type (e.g., G10’s two-step method for modeling in the 

lignin domain) developed within these emerging epistemic cultures, which 

have not yet become established tradition.

Winsberg’s other claim is that well-established theory in physics-based 

modeling plays an important role in helping to mitigate some of the arbi-

trary features of the model, and enhance its credibility. In lieu of that source 

of credibility, I consider what aspects of the model-building process in ISB 

might serve to confer credibility on the model, especially as these relate to 

the role of the pathway representation in the process.

First, the scope and range of the data integrated into the model cover 

data for all related systems. Initially, the data are split into two sets, one 

the modeler uses to build the model and the other the modeler uses to 

run cross-validation tests after the model is fitted. The integration of data 

develops in interaction with building out the pathway structure, which 

lays out the causal sequence of connections among the elements of the 

system. In this interactive process, the modeler can take different pieces 

of the network and simulate their behavior in various combinations and 

configurations. The modeler can run unlimited simulations (recall G10 ran 

ten thousand to examine just one piece of the pathway). These simulations 

enable the modeler to consider whether adding or deleting pieces of the 

pathway are biologically reasonable moves.

Second, the simulation process provides the modeler with significant abil-

ity to control and manipulate the model’s behavior. The modeler can stop 

and start the simulation in every state, which enables her to track the sys-

tem variables (nodes in the pathway) that generate specific behaviors and to 

determine detailed measures of significant variables. The modeler can also 

track every time point of the state of the simulation, which enables her to 

change the time at which some process kicks in, among other modifications. 

Such manipulations enable the modeler to interrogate the dynamics of the 

system and develop a sense of how the pathway as constructed could gener-

ate the experimental data, as well as a sense of what changes in the pathway 

might be productive, again, consistent with their biological reasonableness.
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Third, the mutually constraining nature of the data, parameters, and 

pathway in the model-fitting process helps to mitigate some of the arbi-

trariness of model-building. The notion of fit is complex. It does not mean 

that the model provides a point-by-point replication of the data for all vari-

ables. Rather, at least for the kind of modeling we have studied, it means 

that the model replicates trends in the experimental data for most major 

variables. “Fit” is often construed as a matching process in which there is 

a satisfactory match between the data generated by the final model and 

the experimental data, usually determined by comparing graphs of each. 

However, from studying the practices of the modelers in our labs, we have 

come to understand fit as a dynamic and interactive process among the 

three elements that works to enable the modeler to home in on a satisfac-

tory representation for both pathway and model.

There are three changeable components—pathway structure, experimen-

tal data, parameter values—that become increasingly constrained by their 

interactions in the highly recursive fitting process. To estimate unknown 

parameters, the modeler uses fit with experimental data as an anchor. For 

each change in parameter, the way the output of the model maps to the 

experimental results changes. Only parameter values that improve fit, or 

keep it at its current state, are retained. Although it cannot be done for 

all parameters, the modeler screens parameters for their biological plausi-

bility to the extent possible. Each replication of experimental results in a 

simulation infuses more, and disparate, data into the model and changes 

the parameter structure. During the process, fit is used to add or delete 

components of the pathway network. As we saw, inferences about how to 

build out or modify the causal network derive largely from the behavior of 

the simulations. These simulations enable the modeler to infer whether her 

conjectures as to network structure are on the right track by running the 

model with and without various pieces, which requires changes in param-

eters. Equally important, simulation enables modelers to infer missing net-

work structure, which they check for biological plausibility, such as G10’s 

addition of reverse fluxes and channelization of the S and G monomers. 

And, although we were told such outcomes are rare, simulation has the 

potential to point even to the possibility that an element thought to be out-

side an established pathway could be affecting the behavior of the system, 

as in the inference about the element “X” made by G10.
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Through the three-way locking-in process, the model gains complexity. 

The fitting process is, of course, not without risk of introducing unwar-

ranted elements into the model, especially as there are often some param-

eters that can only be fit by Monte Carlo simulation. Even a well-fitted 

model is underdetermined. However, there are ways to further enhance 

its credibility. Once a satisfactory fit is obtained, for instance, the modeler 

performs cross-validation tests on the model (or a small ensemble if the 

fit is not unique) with additional data and diagnostic tests, such as how it 

responds to perturbations, which, if passed, add to its credibility.

At the end of these constructing, fitting, and validating processes, the 

modeler can build sufficient warrant to believe, provisionally, that a robust 

and stable model does enact the behaviors of a generic system, that is, it 

exemplifies the behaviors of the class of biological systems. As repeatedly 

expressed by the modelers in our labs, though, they aim to build mod-

els that not only replicate the available data, but also provide substantive 

predictions. As with the in vitro models built in BME, ISB modelers trans-

fer predictions about behavior from the in silico models they build to the 

target systems using analogical inference. ISB modelers deem predictions 

that derive from a stable and robust model that exemplifies the known 

behaviors of the target system sufficiently credible to warrant investigation 

by experimentalists. If these predictions are verified, it further enhances the 

credibility not only of the model, but also of the model-building methods.

5.4  Summary: “Getting a Grip” with/on In Silico Simulation Modeling

For some time, scientists have been using computational simulation to gain 

epistemic access to the behaviors of complex dynamical systems, from col-

liding galaxies to climate systems. Only recently, though, has it been used 

to investigate biological systems. This has been due, in part, to the method-

ological problem of how to build computational models of these systems in 

the absence of the resources provided by a theoretical basis and, in part, to 

the technological and methodological problems of how to collect sufficient 

data of the right kind (time series) or to get around the lack of data with 

appropriate algorithmic strategies. Although ISB is a diverse field, the mod-

eling practices in labs we have been studying are representative of a major 

area that draws conceptual and methodological resources from engineer-

ing fields, including electrical engineering, control engineering, systems 
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engineering, and telecommunications engineering, to build models of 

complex biological systems. Although the long-term objective expressed 

by researchers in the field is to develop a systems-level theory by which to 

understand and predict behaviors of complex biological systems, our labs 

expressed more modest aims. The lab G director is the one who expressed 

their more immediately obtainable aim with the particularly apt phrase, 

“getting a grip” on systems behavior—that is, an understanding sufficient for 

predictions that at least can enable manipulation and control. As we have 

seen, modelers also need to get a grip on the challenge of building models 

of large-scale biological systems in the face of numerous constraints. We 

have examined in detail some of the practices modelers in lab G have been 

developing to manage the complexity of this challenge.

Instead of articulating theories into informative computational models, 

researchers in this area of ISB need to compose their models by collecting 

the needed dynamical and structural information themselves from a vari-

ety of sources, including their own simulations, in an iterative and incre-

mental fashion. Our cognitive-ethnographic investigations on how they 

build models provide valuable insights into the processes that are unlikely 

to be found in examining only the published literature, as has been the 

case with most of the philosophical accounts of physics-based computa-

tional modeling, or even archival material, to the extent it exists. We have 

been able to detail how they build models from the ground up by piec-

ing together in nest-like fashion principles from molecular biology, experi-

mental results, information gathered from literature surveys and databases, 

canonical frameworks, and computational algorithms to create representa-

tions of biological systems in data-poor environments.

Simulation, which is the central methodology for experimentation in 

computational modeling, is often seen as the end phase of the research. Our 

in situ examination of the model-building processes brings to the fore the 

key roles of simulation in building the model itself. Simulation is a means 

through which the modeler develops the biological pathway and comes to 

learn and assemble the relevant ontological features of a system. The mod-

eler continues to adapt the pathway network in conjunction with simula-

tion throughout the model-building process until pathway, experimental 

data, and parameter fit coalesce into a stable and robust model (or small 

set of models). The pathway representation is shaped by issues of available 

parameters and parameter estimation tools. Likewise, pathways are tailored 
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to fit the capacities of the mathematical frameworks and whatever math-

ematical tools the modeler can bring to bear. At the same time, these frame-

works determine the extent of the parameter fixing problem. The modeler 

keeps all these elements in dialogue during the model-building process. In 

this regard, simulations play an important functional role in how modelers 

learn how to assemble information and to construct a computational model 

that gives the right kind of representation. Modelers assemble the needed 

information in the course of an exploratory process that involves prelimi-

nary simulations, both computational and pen-and-paper, and subsequent 

refinements and revisions. This process enables the modeler to build up her 

own understanding of the dynamics and relevancies of particular pathway 

elements. Building this understanding can require the modeler to make 

judgments about adding elements to the pathway not discussed in the lit-

erature, such as hypotheses about elements that must be playing a role or 

about feedback relations that are not documented but are required by the 

model, as we saw with G10.

In sum, we have analyzed ways in which the processes of incremental 

and iterative model-building and their attendant processes of simulation 

are the means through which modelers come to understand their model 

and their biological systems. This, in turn allows them to make better 

judgements about what to include or exclude and which tools and tech-

niques will help and which, not. As per the nest analogy, simulation pro-

vides them with the means to work out the best, or most stable, way to 

pack the pieces together.15 There, thus, is an important cognitive dimension 

to simulation in that the iterative back-and-forth interaction between the 

modeler’s mental model and the computational model, which we charac-

terize as “coupling” between these parts of a D-cog reasoning system, is 

an essential part of the ISB problem-solving practice that builds models 

of complex systems that lack a basis in theory. The affordances of simula-

tion as a cognitive resource in the ways we have delineated make building 

representations (pathway and model) of such complex systems without a 

theoretical basis possible.

Modelers uniformly use the expression “a feeling for the model” to charac-

terize the understanding they develop of the behavior of the model over the 

course of the building process. Simulation is a major source of this feeling. 

The modeler comes to understand the model’s dynamics through numer-

ous iterations of simulation under various conditions and uses the feeling 
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to guide the direction to develop the model. From our observations and 

interviews, other aspects of this “getting a feeling” include a growing insight 

and understanding into the target in vivo system and a growing belief in the 

credibility of the simulation model as a dynamic enactment of the behav-

ior of the system. A further aspect that needs to be considered is the affec-

tive dimension. The “coupling” developed between the researcher’s mental 

model and the in silico artifact model creates an intimate connection, the 

importance of which should not be discounted.

“Feeling” is intimate language. In computational modeling it is directed 

toward an artifact with dynamic behaviors with which the modeler is inter-

acting intimately (“coupling”) as she creates it.16 Some readers are likely 

to recall Barbara McClintock’s expression of a “feeling for the organism,” 

which she deemed critical to her biological research, especially to her 

discovery of genetic transposition, which was dismissed at the time but, 

many years later, was awarded the Nobel Prize. What Evelyn Fox Keller, 

a scientist herself, has said in her penetrating biographical analysis of 

McClintock, applies equally here: “Good science cannot proceed without 

a deep emotional investment on the part of the scientist. It is that emo-

tional investment that provides the motivating force for the endless hours 

of intense, often grueling, labor” (Keller 1983, 198). We have witnessed 

such emotional investment across the labs we investigated, and have ana-

lyzed how expressions of it, too, are tied, importantly and intimately, to 

epistemic achievement. We have examined this investment in depth in the 

BME labs in particular (see, especially, Osbeck et al. 2011, chapter 3). Affec-

tive engagement with the objects of one’s research does not taint scientific 

knowledge, rather it makes it possible. The computational modelers in the 

ISB labs themselves recognize their “feeling” develops only through the 

hard, slow work of building out the model, which is necessary for them to 

develop insight into and understanding of the model, as well as the target 

system. The lab G director shows his recognition of the importance of this 

work when he strongly encourages his modelers to invest considerable time 

in exploring and playing around with their models. He does the same in the 

biosystems modeling classes he teaches.





As ISB develops as a science, it continues to face a classical methodologi-

cal problem that has been present since its inception: how to manage and 

integrate wet-lab experimentation with model-building. As I have discussed 

in chapter 5, the enterprise of ISB is to model large-scale biological systems 

using modern computational and modeling techniques. In that undertak-

ing, modelers are dependent on bioscientists for data to build models, for 

experimentation to validate models, and for biological expertise to under-

stand the possibilities and limitations of model-building. ISB is far from 

settled on what are the best methodological practices or on what are the 

best modes of research organization to further its model-building practices 

(see, e.g., Calvert 2010; Calvert and Fujimura 2011; Nersessian and Newstet-

ter 2013; O’Malley and Dupre 2005). As a field in development, it has some 

flexibility to experiment with respect to its methodological practices. The 

labs we have investigated belong to the area within ISB in which the lack 

of data of sufficient quantity or quality are among the foremost problems. 

Contrary to the widespread ’omics rhetoric, these researchers rarely have 

easy or sufficient access to high-throughput, time-series data. In chapter 5, 

we saw how this data problem runs through the range of constraints within 

which ISB modelers have to work. There I cast the process of managing 

the complexity of the model-building task as “adaptive problem-solving.” 

Adaptive problem-solving ranges from specific practices of individual 

researchers to strategies by lab directors to organize their labs in the con-

figurations they consider most effective to facilitate model-building. In this 

chapter I examine how the lab C director has organized her lab primarily 

around what we have called the “bimodal strategy”: modelers are trained to 

conduct the wet-lab experiments they need to build their models.

6  The Bimodal Model-Building Strategy
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Lab G was organized to comprise modelers, with backgrounds in engi-

neering or applied mathematics, who collaborate with experimentalists 

external to the lab. The adaptive problem-solving in lab G relies totally 

on what highly mathematically and computationally skilled modelers can 

do to build a computational model. What we call the “unimodal strategy” 

is the typical organization of ISB model-building. As we saw, in unimodal 

model-building, adaptative problem-solving takes the form of such prac-

tices as reducing the scope of the problem; taking advantage of the affor-

dances of simulation to build out pathway networks and the model, as well 

as to validate the model; and using and developing sophisticated algorith-

mic techniques to fit parameters in the absence of data.

Most often the modelers are collaborating with bioscientists in differ-

ent labs, but there are some labs that are organized to have both within 

them. With this organization, the hope is that collaboration might run 

more smoothly, with data produced in a timely manner. The lab G director 

was skeptical. He thought this organization unlikely to work unless you 

had many experimentalists per modeler, and large amounts of funding to 

support them. He pointed to the well-known lab of Douglas Lauffenburger 

at MIT, which has around fifty members to accommodate modelers and 

experimentalists in productive collaboration as a prime exemplar of such 

an effective lab organization. Further, he contended, the biological systems 

investigated would be limited by the constraints of the experimental setup. 

We did not investigate this kind of lab. When we learned that lab C had a 

wet lab, we anticipated it to be that kind of lab, so we were surprised to dis-

cover its novel bimodal strategy. We decided to continue with it because it 

seemed a potentially important attempt at hybridization in ISB, despite the 

fact that it meant our project would not be studying pure experimentalists.

The lab C director was trained in combined research labs, where she was 

the only modeler in her PhD lab and one of several modelers and experi-

mentalists in her postdoc lab. As I detail in the next section, she had unusual 

training as a “hybrid” researcher in ISB, having learned, sequentially, first 

to do modeling and then to do wet-lab experimentation. To organize her 

own lab C, she decided on an unusual form of adaptive problem-solving 

in which modelers were to be trained concurrently to conduct their own 

biological experimentation as part of the model-building process. The 

“coupling” of modeling and experimentation builds a kind of distributed 

cognitive-cultural system with some epistemic affordances and limitations 
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different from those of lab G. Although both labs build mesoscopic models, 

lab C, as we will see, builds models more “bottom up” by accumulating 

parts and dynamics of systems through the interaction of modeling and 

experimentation to solve problems. In contrast, lab G uses the averaging 

power of power laws and the parameter flexibility of the models it builds to 

close “downward” on a satisfactory representation.

6.1  Lab C: Redox Systems Biology

Lab C had been in existence less than three years when we entered. Its lab 

director was, then, an assistant professor, who, as with the lab G director, 

described for us an original and serpentine route to becoming a systems 

biologist, which was still not an established field when she began, even 

though she was much younger than he. By the time we met her, she had 

developed into the experienced kind of hybrid researcher the BME program 

was envisioning. However, even from the perspective of the senior faculty 

in that program, as well as from the perspective of her developing field 

of ISB, her vision to build a lab that trained graduate students to perform 

research that required they simultaneously learn to build systems models 

and to conduct wet-lab experiments to investigate complex biological pro-

cesses was a high-risk undertaking.1 In her own training, she had learned 

to do these sequentially, and she felt strongly that path had held her back: 

“I tell my students to never do this because you should always do these things in 

parallel. It kind of delayed my graduation date because I ran into all the learning 

curve issues that [my] early graduate students face, only here, I was 4.5 years in 

and starting from scratch.”

As the director recounted her learning trajectory, she had set out in col-

lege to be a biomedical researcher, having decided not to be a doctor, and 

so began as a biology major. Because she had tested out of freshman biol-

ogy through her high school AP exams, her college education started with 

the required physics (thermodynamics), calculus, and chemistry courses. 

The thermodynamics course was full of premed students, which most of the 

biology majors were at her institution. She found what she experienced as 

a “cutthroat environment” of premed culture, where “it’s a big game of ‘if I 

didn’t get an A on the first test, I drop the class.’” This was off-putting, so she 

decided to change her major. During a summer internship at a medical 

institution with a physicist who conducted research on protein structures, 
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she discovered you “don’t have to do a bio major to do bio research.” In what 

she described as “flipping through the course schedule . . . ​in a kind of process of 

elimination,” she discovered that the nuclear engineering department had a 

radiological sciences track, which required cellular physiology and included 

other biology selections a student could take as part of their degree require-

ments. She called it a “general engineering degree” that has a curriculum “very 

close to today’s BME majors.” With that major she was able to take enough 

biology courses for a biomedical engineering minor (there was no major 

yet). For her undergraduate research, she joined a lab that was building 

computational models to investigate the effects of X-rays passing through 

soft tissues and did a modeling thesis.

She decided to focus on computational modeling with a bioengineering 

PhD. In the lab she selected, she “wound up with a professor that wasn’t a 

modeler at all. . . . ​He’s a jack of all trades.” Her supervisor conducted research 

on muscle physiology, mainly with NMR spectroscopy. She described her-

self as “the only modeler in the group—everyone else was an experimentalist.” 

Her research focused on building models of the temporal dynamics of sup-

ply and demand of phosphorous (P-31) metabolites in muscle contraction 

based on the data the lab collected. She described her modeling (ODE) work 

as requiring “a lot of applied mathematics” that used “third party software.” 

The final step in her development toward being a bimodal researcher came 

when she found that to test her model, she “had utilized all the literature 

possible” and that “there were certain things we couldn’t measure with a magnet 

[by NMR].” She stated that she realized that the only way to put her model 

“through stringent tests to see if some of the things that were emerging as proper-

ties of the system actually happen was if I did some of the experiments myself.” 

So, at the point where she should have been graduating, she began a whole 

new line of wet-lab research with mouse muscles. Although she character-

ized this as a setback (quoted above), she also saw it as a “opportunity,” since 

her adviser was an expert experimentalist and she “hadn’t taken advantage 

of that aspect of his skillset.”

She conducted postdoctoral research in a lab that specialized in model-

ing protein signaling networks and “where a lot of mathematical and modeling 

advances were being made.” Signal transduction, basically, is a process that 

communicates a message to a cell to grow, divide, alter metabolism, and so 

forth, in which proteins are the main actors. That lab comprised both mod-

elers and experimentalists who worked in collaboration. She decided, in the 
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context of this lab, to work only as a modeler on an immunology project 

using T cells, in part because “it would be kinda cool, because I didn’t know 

anything about it.” To figure out how to model such systems, she had to 

learn a lot of immunology and develop a new, “more of a statistical,” mod-

eling method based on partial least squares, both of which would prove 

important for the research projects in her own lab. Her two model-building 

experiences with quite different biological systems also made her aware 

that there was a “disconnect” between metabolic pathway and signaling 

pathway research, even though in a biological system metabolic and signal-

ing processes are integrated in vivo. She felt her training offered “a way of 

integrating those things together”—a way of building models to “understand 

the way all these things are regulated.” The more she investigated, the more 

she both “realized, wow, no one studies this because it’s just too complicated” 

and that this is “all the more reason why you need to do these computational 

approaches in parallel with the experimental while you were making progress.” 

So, at the outset of establishing a research program, she saw the “parallel” 

approach as both a necessary and a justified risk, because the novelty of her 

project meant that the kind and quantity of data required for the model to 

do the “integrating” could not only be found through searching the litera-

ture and databases, but also would need to be determined and collected as 

the models were being built. She stressed in her interviews, as well as several 

of her research presentations we attended, that her lab’s wet-lab research 

was in the service of model-building.

That said, every presentation the director made of her lab, including the 

numerous visual representations she made of the lab’s research, put the 

biological dimension of the research at the center, rather than the model-

building, whereas the director of lab G always gave the model pride of 

place. This difference in emphasis, which reflects how they conceptualized 

their research, as well as organized their labs, can be seen quite clearly in 

the representation each drew when we asked them to “draw us a picture of 

your lab, that is, the problem-space of the lab’s research.” Unfortunately, 

the lab G director finished his first and showed it to the director of lab C, 

so she chose the same format. But it turned out to be a good thing, because 

it made for a striking contrast. His depiction (figure 6.1a) placed the model 

and methods for model-building at the center of the lab’s activities, while 

hers (figure 6.1b) placed the biological context there. Hers also depicted 

the technologies the lab was developing to carry out their experimental 
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including chemists and electrical engineers, and at a nearby medical school. They 
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which I have removed.
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research, as well as the different kinds of models they built, most using 

off-the-shelf packages. In addition, their recommendations for reading to 

help orient us on their research also underscored this difference between 

the labs. The lab G director recommended a graduate text on modeling 

biochemical systems using the BST framework and the lab C director, an 

undergraduate immunology text.

As mentioned in chapter 1, these lab directors were not collaborators, 

though they had significant interaction, and occasionally served on the 

dissertation committees of each other’s students. The students in these 

labs did not interact much. Our research project introduced the only occa-

sion we know of in which they presented their research to one another in a 

joint lab meeting. Since we were studying both labs, the directors thought 

it might be a good idea for their students and their research projects to be 

introduced to one another, and so they arranged two joint lab meetings for 

these purposes. The students did, of course, attend one another’s presenta-

tions of research in departmental community forums and, often, dissertation 

defenses. In working with our group, the lab directors developed and taught 

together a graduate-level introductory systems biology modeling class.

As I noted in chapter 5, the lab G director stated there was a “philosophical 

divide” between ISB modelers who typically take the unimodal approach of 

his lab, with collaborators at a distance, and those who work more closely 

connected to experimental research, and he especially noted the divide with 

respect to the bimodal approach of lab C. Importantly, lab G and lab C have 

differences in their epistemic agendas. As we saw in chapter 5, the lab G 

director was quite emphatic about the importance of his lab’s aim to advance 

and enrich mathematical theory and mathematical analysis to further inves-

tigation of complex biological systems. Sophisticated biosystems modeling 

requires rigorous and novel mathematical analyses that can capture a wide 

range of nonlinear behaviors within a tractable formalism that keeps com-

plexity under control. To produce these kinds of models and the tools for 

mathematical analysis, however, requires high levels of applied mathemat-

ical and computational skills that, in the lab G director’s view, cannot be 

achieved in combination with doing one’s own experiments. As he saw it, 

the trade-offs are, “If you do the experiment yourself, you know what the data are 

like; you know how reliable they are. You know the kind of assumptions you made 

in order to produce the data. . . . ​So, you get a better idea about the whole context. 

On the other hand, life is complicated, and to do good modeling is a full-time job; 
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to do experiments is a full-time job. And if you don’t want to do two full-time 

jobs, then something will suffer from it.” From his perspective, lab C’s modeling 

“suffers” in the respect that “the models that are being developed . . . ​are . . . ​by 

and large, off-the-shelf type modeling approaches that are, not always, but that are 

often rather simplistic. . . . ​Our models are at least going into much more depth.” 

But, as we saw, parameter-fitting was a significant, overarching problem in 

lab G research, because adequate data and data of the right kind for the sys-

tem they are modeling are often missing. Lab C modelers rarely experienced 

these problems. Further, as we saw, the need for unimodal modelers to col-

laborate with experimentalists is fraught with difficulties that increase the 

complexity of the model-building task. As we will see in this chapter, lab C’s 

epistemic agenda tracked more closely with contributing to medical research 

and molecular biology through getting a grip on targeted biological systems.

The “philosophical divide” the lab G director referred to might well reflect 

deeper attitudes in the field as a whole. As O’Malley and Dupré (2005) have 

argued, there are, in organization and in research strategy, divisions over the 

practices and aims of systems biology, even though they might not always 

be debated openly. Some systems biologists are relatively pragmatic and aim 

to use modeling as a tool to further develop molecular biology, while largely 

pursuing that field’s theoretical agenda; others have a strong systems-

theoretical agenda to advance the role of mathematics in systems analysis 

and to promote the development of a mathematical theory of biological 

systems. In the case of lab C and lab G, these divisions are acknowledged 

explicitly and are expressed in the form of laboratory organization that each 

director has chosen, and in the kinds of model-building practices they favor.

As mentioned earlier, lab C research is driven by a specific theoretical 

agenda: to determine whether and how particular biochemical systems play 

a key part in the regulation of cell signaling2 and metabolic processes. The 

director sees this issue as critical to the advancement of molecular biology 

and physiology: “So they are almost like two different camps in cell biology—all 

enzyme-based people cared about was how it got into the cell, all the metabolites 

that are involved, and didn’t really think all that much about what was control-

ling the expression of these proteins or how the muscle was responding to any 

other cues from its environment or anything . . . ​and all these signaling people 

were interested in is what’s connected to what and how this receptor is, you know, 

causing changes in gene expression, but they don’t think about basic things like 

the energy supply in the cell. . . . ​So, there was this disconnect between the two 
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camps.” She claimed that she “was thinking about this in a really different 

way,” likely because of her unusual hybrid training, which also provided 

her with “a way of kind of integrating those things together.” Thus, as with the 

other lab directors we have discussed, she staked her claim to be conduct-

ing innovative, frontier research. But she also noted that the problem was 

recognized, if not addressed, in the field: “It’s not like there are no other people 

out in the world thinking this, otherwise I wouldn’t have gotten these ideas. But 

I realized no one was trying to take this [integrative] approach.” She framed her 

overarching research goal as to make a contribution to molecular biology, 

but distinguished her lab as importantly different from those of molecular 

biologists: “What we really specialize in—what can we do that no one else can 

do—is put it in terms of the context with respect to the rest of the network.”

This goal likely explains the director’s clear preferences for working with 

more tractable and experimentally accessible systems than those of lab G. The 

models lab C builds tend to be smaller-scale, more mechanistic, models that 

help to demonstrate how specific mechanisms operate within the system. The 

modelers’ preference for Michaelis-Menten or simple mass-action models of 

interactions engages with common representational techniques of molecular 

biologists.3 Unlike in lab G, we heard few complaints in lab C about parameter 

estimation, because wet-lab experimentation by the modelers serves to keep 

the unknown parameters of their models mostly under control. As the director 

noted, with the bimodal approach, when faced with “this issue of having more 

parameters than we’re capable of fitting with the data, we have to say, ‘ok, what data 

do I need to collect just to fit the model to these parameters?’” Her goal was to train 

the modelers in her lab to be able to design and “run the experiments under these 

conditions, do the analysis, and then plug these values into the model.”

The overarching epistemic goal of lab C is to understand cellular oxida-

tion (a metabolic process) in regulating immunological and cancer cell signal 

transduction.4 Such understanding has the potential to be used to develop 

interventions for numerous diseases associated with the oxidation state of 

cells (atherosclerosis, HIV, Parkinson’s disease, lupus, cancer, and so forth) 

and can, especially, be utilized in personalized medicine. In particular, the 

lab conducts research on the impact of the redox environment on proteins. 

“Redox” is an abbreviation of reduction-oxidation, which is a chemical 

reaction that changes the oxidation state of atoms. Under normal physi-

ological conditions, cells maintain a reduced oxidation environment. How-

ever, oxidizing molecules and free radicals are produced by cells as part of 
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physiological processes, or they can enter them, and can react with cellular 

components, including DNA, cell membranes, and proteins. Such reactions 

have been implicated in several diseases. Cells use enzymes to counteract 

these oxidants and proteins to mitigate the effects of oxidation. The com-

munities that investigate redox and oxidative stress have only recently 

begun to appreciate the need to understand the interplay of these processes 

in order to determine the mechanisms of disease and to conduct therapeutic 

interventions.

Lab C’s research focuses on the impacts of oxidants on proteins, which 

are part of signaling pathways. As we saw above, the lab is a pioneer in 

seeking to integrate these phenomena, as they are in the in vivo biological 

system. As she explained it, “Oxidative stress is coupled with metabolism. . . . ​

I realized that there is a way that the byproducts of oxidative stress, which are 

these reactive oxygen species, can bind to signaling proteins and affect the way 

they operate. For me, that’s the kind of missing link, ’cause oxidative stress is 

controlled by metabolite levels. . . . ​I saw this as a really different perspective on 

the traditional signaling cascade.” Modeling provides the means to study the 

dynamics of these metabolic and signaling processes in an integrated man-

ner. However, given the novelty of this biological problem, the modelers 

need also to conduct experiments under specific conditions to obtain much 

of the data they need to build out the integrated pathway and find the 

parameters required to fit the model. In the period of our investigation, the 

lab’s specific modeling problems within their redox agenda were both gen-

erated from the interests of the lab director and brought to her by experi-

mental researchers outside of the lab.

Lab C is located in a new building that was designed to facilitate collabo-

ration among labs. The lab spaces are largely open, with dividing walls sur-

rounded by a wide corridor in which the expensive technologies in common 

use are housed. Lab C comprises a large wet lab where experiments are con-

ducted, in which there is a walled-off cell culturing room and a dedicated 

space for conducting western blot assays, and a “grad cave” with cubicles 

where the graduate students do their modeling work on laptops and store 

their stuff. The wet lab has the typical accoutrement of a molecular biology 

lab, which includes pipettes, centrifuge, test tubes, a biohazards waste bin, 

a cryogenic freezer for the immortalized cancer cells they purchase in bulk, 

incubators, and wall pegs for hanging the clean white lab coats all members 

don when entering the space. Importantly, the wet lab was the center of 
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social as well as experimental activity in lab C. As one researcher reported, 

“In doing experiments you just sort of gain an understanding of how the lab [lab 

C] runs. . . . ​I’m not even talking about just the technical skills that you gain—I’m 

talking about more of the social aspect of the lab. . . . ​A lot of stuff happens in the 

[wet] lab area not in the desk area where I do my computing.”

Cells of various kinds figure in the experimental research of the lab 

members. The immortalized cells line they purchase are, primarily, HeLa 

(cervical adenocarcinoma), JurKat (acute T-cell leukemia), and Caco-2 (epi-

thelial colorectal adenocarcinoma). Given the sensitivity and cost of pri-

mary cell types, such as T cells and neutrophils, they use the lab members 

own cells from freshly donated blood drawn in the health center when 

these are needed, which they can maintain for a short period. There was 

considerable joking among the researchers around their donations and the 

characteristics of their donated cells. All these types of cell lines provide 

what the director called the “model-systems” of the research, because they 

are used “in substitution of what may actually be occurring in normal [in vivo] 

cells.” She explained that in biological research, such cell lines are called 

“model-systems” because the processes of maintaining them alter them in 

some ways, and, further, some cell lines, for instance cancer cell lines, are 

not “even normal to begin with.” However, all in vitro cell types still provide 

a “fairly good representation of what’s happening in the real cell.”

The lab absorbed the considerable expense to purchase its own Bio-

Plex machine for immunoassays, which sits on a dedicated counter space, 

because the researchers use it so frequently for studies of temporal dynam-

ics on the primary cells, which are difficult to acquire and age rapidly in 

vitro. The director thought the investment worthwhile, given that it can 

run eight different time points on one sample. As she commented with 

considerable enthusiasm when she demonstrated to us how it works, “My 

machine can do these things simultaneously and then it’s like ‘Wow you got eight 

different measurements with one single time point, you got sixty-four measure-

ments with this one input!’ So, it’s a way of generating the data that can supply 

our models.” The last statement is indicative of the way this lab differs, sig-

nificantly, from a customary molecular biology lab, even though it has the 

look of one: the data are collected by modelers who need it to “supply,” or 

“feed” (a commonly used expression), their models.

The grad cave space has several whiteboards the students use for work, 

leaving reminders, playing games, and joking with one another. Unlike lab 
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G, the students were in the lab space much of the time, even the one dedi-

cated modeler, and “the lab” had the feel of an active community. They 

often ate lunch together and reported gathering for social activities out-

side the lab. (Lab G researchers also reported such gatherings.) There were 

weekly research meetings with one or two presenters to update lab mem-

bers on research or to troubleshoot experimental or modeling problems. 

There were also weekly “journal club” meetings in which the lab members 

discussed pertinent papers in the literature, selected by the members on 

a rotating basis. The lab director was frequently in the wet lab, where she 

conducted her own experimental research as well as supervised the student 

projects. So, she was usually on-site when students ran into difficulties or 

had questions. None of the students had conducted experimental research 

prior to entering the lab, nor had any developed biosystems models. Not all 

of the students were bimodal modelers when we entered, but by the time 

we ended our investigation all had followed that path. The process of devel-

oping skills in both modeling and experimentation had become central to 

what made one a part of the cognitive-cultural system of lab C.

When we arrived, the lab consisted of the director, three PhD students, 

nine undergraduates (all in the new BME major), and a research technolo-

gist, who had an MS in biology and who carried out the responsibilities of 

lab manager as well as conducted some experimental research in collabo-

ration with the director and grad students. Although the lab membership 

expanded while we were conducting our research, because our time and 

resources were limited, we focused on “founding” members. The lab mem-

bers were a diverse group internationally, spanning four continents. The 

grad students had undergraduate degrees in electrical engineering (C10), 

materials science and engineering (C9), and biotechnology (C7). Because 

there was no PhD degree in ISB, their current degree programs were located 

in electrical engineering, biomedical engineering, and bioinformatics, 

respectively, while the lab and the director were in the newly formed BME 

department. Interestingly, just as with the director, the students all charac-

terized their degrees as “general engineering” in their initial interviews. C10, 

for instance, contrasted her degree program with electrical engineering 

programs in the United States, such as her current department, by saying, 

“They learned us to learn, not to learn something.” I suspect that the fact that 

the broad-based engineering programs they came from had required less 

rigorous education in the high-powered applied mathematical skills than 
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we saw lab G members possessed might have attracted them to the research 

agenda of lab C and predisposed them to be more open toward learning 

biological experimentation methods.

The research technologist’s undergraduate and MS degrees were in biol-

ogy, and she had worked for several years in the biotech industry before 

joining lab C. We interviewed her and followed her research, as we did 

with the PhD students. She provided an interesting case as the only per-

son trained as a biologist and, initially, solely engaged in experimentation. 

Near the end of our research, she transitioned to a PhD student, and we 

did continue to follow her progress for a case study on learning even after 

we had stopped intensive data collection. She intended at first to do only 

experimental work, but ended up building models as well, after she took 

the introductory biosystems modeling class we helped the lab G and C 

directors develop for the PhD program. I say more about her experience in 

chapter 7.

C10 and C9 were bimodal researchers and had been in the lab two and 

three years, respectively. C7 had just joined, did only modeling, and main-

tained he would not be doing experimentation, but, as our study ended, 

he, too, began experimental research because his modeling project needed 

data that were not available in the literature. To carry out her research, 

C10 needed to collect high-throughput data, and so her first project was 

to collaborate with members of an engineering lab to design and fabricate 

a microfluidics lab-on-a-chip device that she could use to collect sufficient 

experimental data for her modeling project. Since our primary interest was 

to understand the epistemic affordances and limitations of the bimodal 

strategy for research, as well as the challenges it poses for learning, we 

developed detailed, longitudinal case studies of the practices of C10 and 

C9, and a briefer one of C7.

A primary research contribution of all of the undergraduate researchers 

was to conduct western blot assays, which identify specific proteins and 

measure their amounts in a sample, for the graduate students to which they 

were assigned. The students assigned to C10 and C9 assisted in other aspects 

of their research projects as well. One undergraduate, who had joined when 

the lab started, had his own research project supervised by the lab director. 

The director had collaborations with researchers (engineers, chemists, bio-

chemists, and medical researchers) located within her department and at a 

nearby medical school, some of whom we were able to interview.
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As with lab G, lab C researchers identified functionally in accord with 

their epistemic practices rather than as systems biologists. To us, they identi-

fied primarily as modelers. When we asked the bimodal researchers, includ-

ing the director, how they identified themselves to other researchers, they 

all responded that it depended on the person with whom they were talking: 

sometimes as a modeler, sometimes as both modeler and experimentalist. 

The students noted how their engineering education provided them with 

the skills for model-building and technology design. They expressed confi-

dence in their ability to use and modify the third-party software, as well as 

do limited de novo coding when needed, but they also noted, explicitly, their 

technical skills were not at the level of the modelers in lab G—whom they 

called “theoretical modelers.” The director and all the graduate students noted 

the importance of concepts, theory, and methods from control engineering, 

in particular, in their model-building practices. Control engineering, itself, 

could be called a “general engineering” area, since it is an interdisciplinary 

mix of various engineering fields, including electrical, mechanical, telecom-

munications, computer engineering, and product engineering.

All the graduate students said that learning to conduct experiments pre-

sented a significant challenge. Their research required specialized in-depth 

knowledge of a specific system, so they, too, felt that taking a number of 

biology courses, beyond those that their degrees required, would not be 

useful. Biological concepts and experimental techniques were the subject of 

most journal club sessions. With respect to experimentation, the standard-

ization of molecular biology techniques and the availability of prepared 

assay components from vendors were significant factors that contributed to 

their ability to carry out experiments. They often commented that experi-

mentation mainly comprised skills one needed to practice repeatedly, such 

as “pipetting to make sure it was accurate” and “following a recipe.” The latter 

comment would elicit vehement objections from the research technologist, 

who had the uncanny ability to hear these and other comments she consid-

ered disparaging of the complexity and sophistication of biological research 

even when uttered quietly across the room from her.

As in the BME labs, anthropomorphic language figured prominently in 

discussions about the cells and their behavior in this lab. Lab members 

talked about seeing things from the “perspective of the cell” and of the need 

to keep cells “happy,” especially so that they do not “commit suicide” (apop-

tosis). They often took the perspective of the cells when discussing their 
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behavior, using phrases such as “if I were a cell.” The researchers exhib-

ited the same kind of affective engagement with their cells that we saw in 

the BME labs. A vivid example is the explanation one researcher offered 

about why they need to stimulate the cells in an interview that turned 

into a three-way discussion with another researcher, who concurred: “You 

have to stimulate them . . . ​so they are happy—and so it basically, because it is 

stimulated—it tells her [the other researcher], ‘oh, I am useful, so I cannot com-

mit suicide because somebody needs me.’”5 We interpreted such language as 

an expression of how their intensive interaction with the cells developed 

cognitive partnerships with them, as in the BME labs.

To examine the bimodal strategy, I first take a brief look at C10’s design 

of the microfluidic device to demonstrate that an important dimension of 

lab C’s ability to conduct their own experiments is the members’ ability, as 

engineers, to create technologies for experimentation, as were depicted by 

the director in figure 6.1. Once the microfluidic device is built, it changes 

experimental biological practice and, in this instance, makes it possible for 

an engineer to more easily collect her own “gold-standard” time-series data, 

since it replaces a complex series of experimental manipulations. The data 

from the device allows the researcher to build detailed models that can make 

more accurate predictions than those built on scant data. Such predictions 

often lead to novel experimental manipulations, which create still more data 

for modeling, thus generating a positive feedback spiral in the direction of a 

more accurate model representation and deeper understanding of the system.

We followed the iterative and incremental design process for this device, 

as it was constructed and tested in experimentation with cells, through 

to its completion. We were not able to follow her research through to the 

phase where C10 conducted the experiments needed in the course of her 

modeling project. In this case study, we detailed the nearly three-year pro-

cess through which C10 designed and fabricated a high-throughput device 

to automate the experimentation she would need to conduct to build a 

model of T-cell senescence. In addition to our coding of it as a part of the 

research in the lab, we recoded our data for the project, separately, as a case 

of engineering design (for a detailed analysis, see Aurigemma et al. 2013). 

The rest of the chapter focuses on an in-depth examination of how C9 used 

the bimodal strategy to couple experimentation and model-building in her 

investigation of the differential sensitivities of cancer cells to a chemothera-

peutic drug, and its implications for our research themes.
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6.2  “You Need Very Precise Stimulation at Very Precise Time Points”: 

Turning Experiments into Devices

When we were initially told about the research to design a microfluidic device 

so the lab could carry out their own experimentation on T-cell senescence, 

we, of course, thought it might be something along the lines of the simula-

tion devices in the BME lab, where we first heard the terminology of “device.” 

However, once we understood that this was a high-throughput data collec-

tion technology and not an in vitro simulation device, we asked the director 

about the term. She explained that engineers use “device,” generically, to 

mean “the man-made object that’s being used to manipulate cells and change them 

in some fashion. In our case, we are breaking them open at some point. . . . ​We’re 

able to treat them, break them open, and collect all the outlet proteins that come 

out of it [microfluidic device].” Thus, in vitro simulation, as carried out in labs 

A and D, is just one way in which a device can manipulate and change cells.

The lab director explained that they wanted to understand the possible 

role of redox processes in T-cell senescence (the aging of the cell that leads 

to an inability to replicate), especially with respect to a clinical applica-

tion. Clinicians were starting to develop procedures to boost a person’s 

immune system by harvesting their T cells, multiplying them in vitro, and 

then returning them to the patient. Although they had some success with 

the procedure, the rapid aging of the cells in vitro presented a considerable 

obstacle. The lab director suspected redox processes were the culprit, and 

C10’s project was to investigate these processes in T-cell signaling. How-

ever, there were little data available on their behavior, so lab C needed to 

collect their own in order to build a model of this system. They needed pri-

mary T cells for the research, and the fact that they could obtain only small 

quantities of these, coupled with the fact that T cells age rapidly, presented 

problems for the research. They needed to be able to collect multiple data 

time points rapidly—more than were feasible by hand. High-throughput 

data collection technologies are designed to overcome these problems. 

Engineers develop what they call “lab-on-a chip high-throughput devices” 

(hereafter, LOC) to bring together in a single apparatus—and replace—a 

complex series of experimental activities that would need to be executed by 

researchers in biology labs. This technology has been a major contributor to 

the development of computational systems biology, since vast amounts of 

time-series data can be collected quickly and efficiently from a population 
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of cells (thus, the designation “high-throughput”). These LOC devices 

improve the accuracy and quality of measurements, as well. C10 decided 

to build a specific microfluidic LOC device to conduct her experimental 

research on T cells.

Initially, C10 came to a microfluidics lab in an electrical engineering 

department to do research on LOC design for a MS degree. Microfluidics 

engineering builds devices to precisely control and manipulate fluids that are 

geometrically constrained to a small scale. As C10 explained, “When I arrived, 

I didn’t know anything about microfluidics, about biology, and about research.” 

When we met her two years later, after she had completed that degree, she 

had developed expertise in microfluidics and was learning T-cell biology. She 

had also transitioned to being a member of lab C, as well as of her origi-

nal lab—indeed, she served as the bridge in a collaboration between them. 

She came to know lab C because the director had become interested in LOC 

devices. To develop computational models of cell signaling requires time-

series data that are difficult to collect in benchtop experimentation, because 

signaling events happen rapidly (sometimes within twenty seconds of stim-

ulating a cell). The LOC device can automate the stimulation of the cell and 

the collection of cell samples at different time points simultaneously. This 

automation improves data collection, particularly for early signaling events 

that occur right after stimulation, and signaling events that occur in quick 

succession, thus providing cleaner and richer data for modeling.

The problem C10 wanted to investigate using the device was to quantify 

senescence in T cells, specifically, to determine which biomarkers change 

in correlation with age. This research required primary T cells, and those 

she planned to use were collected freshly from human donors, which were 

available in limited quantities. These cells also immediately begin to age 

rapidly, and so can be used for experiments for only a few days. One of 

the advantages of the LOC is that C10 would need only a limited number 

of cells to collect a significant amount of data as compared to benchtop 

methods. To investigate senescence with this approach, the T cells need to 

be stimulated (mixed well with a reagent), which causes different proteins 

to form in the cells (as a result of the signaling process), and then measured 

at many time points, ranging from twenty seconds to twenty minutes after 

stimulation. With the data from the LOC, these measurements can be done 

at both the population level (a certain number of cells) and at the single-

cell level. The measurement of proteins, itself, is not done in the LOC, but 
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separately, with biological instruments. The device freezes the cells’ internal 

state at different time points by quenching the biochemical reactions in the 

cell. This is done by lysing the stimulated cells (adding a reagent that breaks 

open the cells, which creates population samples) and fixing them (adding 

formalin, which creates single-cell samples). Proteins, whose internal states 

are frozen by the LOC at different time points in the signaling process, can 

then be measured.

The LOC design process, in general, requires the designer to translate the 

goals and actions of an experimentalist executing a complex lab routine into 

mechanical procedures that can be accomplished by the device, which is only 

a few centimeters in size. In this case, the device C10 was building needed to 

automate three processes: (1) stimulate the cells (by mixing with stimulant); 

(2) freeze the cells internal state by lysing (by mixing with lysis buffer) half of 

the samples and fixing (by mixing with formalin) the other half; and (3) do 

this at precisely the right moments (as defined by the desired time points). 

In the initial stage of the design, she only considered lysing and added fixing 

toward the end of the design. One of her early design decisions was to have 

a modular design, one module for the mixing process and another for the 

freezing process. The two modules would be connected by tubing of different 

lengths, so that the liquid (stimulated cells in media) in each tube would take 

different amounts of time to reach the second module, where the biochemi-

cal reactions in the cells are then quenched. The varying tube lengths thus 

function as an analogue for different time points, turning time into space. 

C10 built the device in PDMS, which is a 3D CAD (computer-aided design) 

software program, using soft lithography.

Although I will not detail it here, the device design involved complex 

iterative and incremental processes through which C10 distributed her cog-

nition across various kinds of representations she constructed as she cre-

ated what would become the final LOC, which she would use to build a 

computational model of T-cell senescence (see Aurigemma et al. 2013 for 

a detailed analysis of these processes). These processes involved numerous 

interactions among components of a D-cog system that comprised C10’s 

mental models, computational models that simulated design possibilities 

for various geometries for the modules, sketches, fabricated device pro-

totypes, different cell lines, and visualizations, which included those cre-

ated by tagging cells, computational visualizations, and sketches, as well 
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as numerous problem-solving sessions with lab mates and experimental 

collaborators in the microfluidic lab and lab C. The LOC device needed to 

accommodate and integrate engineering and biological constraints. C10 

encountered numerous problems, and each time she would develop a com-

putational model of the LOC (in MATLAB) to simulate the effects of design 

possibilities. The most difficult problem was to develop a solution for the 

geometrical configuration of the pressure drop chamber (PDC).

The PDC was designed, initially, as rectilinear channels folded in a rect-

angular zigzag pattern, which she thought a good solution to the engineer-

ing constraint that the PDC needed to be long and thin, but fit into the 

footprint of the device. When the device was tested with fluids, it worked 

perfectly. But, when she tested with JurKat cells, which they used in the 

design process because they are plentiful and longer lasting, they became 

stuck in the corners and were “getting stressed.” As C10 stated her frustra-

tion, “If you don’t have cells, it’s almost perfect. You put cells, nothing works 

anymore.” She tried various zigzag configurations with fewer turns, but the 

problem became even worse when she tried with primary T cells, which 

she discovered were larger than the JurKat T cells. The final design solution 

came at a lab meeting where she once again discussed the problem with the 

cells still getting stuck. C11 hit upon the idea of circles and then, echoing 

one another rapidly, the lab members proposed it could be “like a spiral,” 

which they elaborated could be drawn from the center, “the way a seashell is 

made . . . ​like nature.”6 C10 balked at the idea because it would be “painful to 

draw one—drawing a circle in AutoCAD is painful,” to which they responded 

“but you only have to draw it once.” In the end, the spiral design solved the 

problem. C10 fabricated the final version of the LOC device and was ready 

to begin collecting data to build and test models of T-cell signaling pro-

cesses when we finished our data collection.

This C10 case shows how the lab could use the affordances of their engi-

neering skills to obtain the experimental data they needed to carry out, 

and manage the complexity of, the bimodal model-building strategy. In the 

next section I develop a case in which we followed how a researcher, C9, 

used the bimodal strategy of coupling experimentation and model-building 

to manage the complexity of modeling a biological system about which she 

and the lab director had formulated a novel hypothesis.
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6.3  “As I’m Building the Model, Things [about Experiments] Are Popping 

Up in My Head”: Investigating Cancer Cell Drug Sensitivities

C9’s research provides an example of a distributed cognitive-cultural system 

with epistemic affordances different from those we have considered thus 

far in ISB. An examination of the path C9’s research took over the course 

of her PhD is central to understanding how the bimodal strategy works as a 

form of adaptive problem-solving, which aims to manage the complexity of 

biosystems model-building. The bimodal strategy directed and determined 

C9’s investigative possibilities. Through this strategy she was able to lever-

age affordances of both in silico simulation and wet-lab experimentation as 

an effective means to handle her complex problem-solving task. As is likely 

common in bimodal research, her problem-solving process took a circu-

itous path, driven by how the dynamics of her interactive methodological 

system, in particular, generated novel relevant phenomena. C9 was the first 

graduate student to enter the lab, and when we began our research, she was 

in her fourth year. However, until that time she had been building models 

with data obtained from the literature and from a large, unused data set 

provided by an experimentalist whom she called “a mentor” to both her and 

the lab director. So, we were able to follow her use of the bimodal strategy 

from start to finish.7

By the time we first interviewed her, C9 clearly saw herself as distinct 

in terms of the kind of research she undertook and the kind of researcher 

she was. She was investigating a problem about cancer drug sensitivities 

and thought “it was very interesting because no one had approached it that way 

before.” She clearly saw herself and her lab as on the frontiers of research. 

In her undergraduate education, she had not taken any “hard core biology” 

courses, but only chemistry “with sprinklings of biology.” She had also taken 

applied math and done some modeling with MATLAB software as part of 

her engineering degree. She stated that what had drawn her to biosystems 

engineering was the “interesting” idea of “using math to describe biology.” She 

thought her lack of intensive training in molecular biology had allowed her 

to begin model-building without the typical experimentalist biases against 

modeling: “So coming in I might not have had those biases, you know, that some 

experimentalists might have—so I had, maybe I was more of an open canvas for 

accepting modeling.” At the same time, she also distinguished herself from 
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what she called “theoretical modelers” (of the lab G type): “We don’t just come 

up with ideas and then just shoot them out there and wait for people do to them 

[wet-lab experiments].”

The overall aim of C9’s research was to try to explain different sensi-

tivities in cancer cell lines to the chemotherapy drug doxorubicin (Dox). 

A clinical researcher at a medical school had brought this intriguing prob-

lem to the attention of the lab director. The director hypothesized that 

the sensitivities are somehow related to signaling functions of ROS, such 

as hydrogen peroxide within cells. She ventured this hypothesis on the 

basis of two plausible assumptions, which would inform C9’s research. The 

first assumption is that this signaling system is sensitive to drugs like Dox, 

which generate hydrogen peroxide, and the second is that this signaling 

system modulates pathways relevant to cell apoptosis (self-initiated cell 

death) and proliferation. C9’s research goal was to figure out whether redox 

systems play a role in Dox metabolism and Dox-mediated cell signaling and 

what that role might be. They hoped that this research would contribute to 

understanding the mechanism behind the differential sensitivity of cancer 

cells to Dox and, thereby, make a contribution to personalized cancer ther-

apy. C9 saw this research as very much a joint project with the lab director, 

and often shifted between “my” and “our” when talking about it.

Over the course of her research, C9 constructed four models (which we 

have labeled Model 1 to Model 4). These were constructed consecutively 

and form the problem-solving tasks around which her research was orga-

nized. Although C9 carried out all the model-building and experimentation 

for her project, as the research progressed, she had extensive discussions 

about how to interpret what she was finding and how to proceed with the 

director and a senior biochemist from outside the lab who, as mentioned 

above, had become an informal mentor to the director and later joined 

C9’s dissertation committee. The lab G director was also on her committee, 

although they did not have as much interaction. She was well into the work 

of building Model 2 when we arrived, and she had recently defended her 

dissertation proposal. So, I present abbreviated descriptions of Model 1 and 

2 from her retrospective accounts, and focus on the latter models, which 

required her to do wet-lab experimentation, and for which we have concur-

rent data in the form of progress interviews, field observations, presenta-

tions, journal club discussions, and dissertation.
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6.3.1  Phase 1: From Local Simulation to Global Simulation

C9’s research began with the task of modeling a specific pathway thought 

to be an important instance of how the redox environment of a cell (the 

balance of oxidants and antioxidants, or of oxidized and reduced chemical 

agents) affects signaling processes within the cell. The particular signaling 

pathway with which her research began is that of the activation pathway 

NF-κB (nuclear factor kappa B), which is a transcription factor that regulates 

genes responsible for immunity and is involved in programmed cell death or 

apoptosis. C9 framed the “working hypothesis” of the research in the following 

way: “So, our working hypothesis has always been that, some cells are preferentially 

resistant to Dox because Dox does something that leads to signal transduction with 

the cell that leads to, you know, anti-apoptotic transcriptions or something like that. 

And we know in the literature, also, that there are certain points in the NF-κB path-

way that are ROS-regulated. So, then it didn’t take too much to say, ‘ok if you have 

this drug that induces ROS, it is a possibility that the ROS that’s induced can affect 

this pathway within this cell that might lead it to be pro-survival.’”

They suspected the NF-κB transcription factor might be relevant in this 

respect to the response of cancer cells to redox environments. She claimed 

this line of thinking was a new “perspective” on NF-κB, the pathway for 

which was well-known, because it had never been approached in terms of 

“the underlying mechanisms that control” calcium fluxes that influence NF-

κB. C9 spent her first year constructing an accurate topology of the NF-κB 

pathway by searching through the literature and looking up or determining 

rate constants and chemical concentrations, building an ODE model on the 

basis of these, and then testing the model simulations against published 

data. By the end of the first year, she and the director reasoned that they 

had a “pretty good model” that simulated the interaction of the products of 

ROS processing with NF-κB and the regulation of these processes.

She reported that her presentations of this model at conferences drew 

reactions that took two forms. On the one hand she received encourage-

ment for the basic concept the model seemed to illustrate: NF-κB is redox 

regulated. On the other hand, she encountered resistance to the fact that 

the model represented such a small fraction of the in vivo physiological 

process, and so the conditions used to build the model were “very far from 

what occurs physiologically.” At this point their biochemist mentor encour-

aged them to shift their attention from the small NF-κB model to the whole 

system of redox regulation itself—that is, from the entry of ROS, such as 
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hydrogen peroxide, into the cell through to the processes by which ROS 

are processed and cycled. She could then situate the NF-κB model within 

this larger global system and would have a more accurate and realistic 

understanding of the smaller system through simulating, in particular, the 

environmental factors that influence the NF-κB model’s various inputs or 

control points. The biochemist had been interested in how redox buffering 

and regulation could explain more general disease phenomena, and had 

collected relevant experimental data on cardiovascular disease, which he 

gave them for the general model.

The process of building Model 2 required C9 to build out the biological 

pathway from the existing literature and the biochemist’s data. The pathway 

diagram from which she built the simulation model appears in her disserta-

tion defense presentation, announced as the “first ever comprehensive account 

of the mammalian antioxidant system.” Model 2 was an ODE model that used a 

simple model of enzyme kinetics (Michaelis-Menten) commonly assumed by 

modelers of metabolic systems (as we saw in lab G) to describe the changes 

in concentration of cellular redox buffering components. It contained four 

branches or pathways of H2O2 elimination. The model follows the entry of 

H2O2 into the cell and the processes of redox buffering that eliminate the 

incoming hydrogen peroxide. Her simulations with Model 2 replicated the 

basic dynamic data for key proteins in the network, glutathione (GSH) and 

thioredoxin (NADPH). The pathway/model does not mention NF-κB, but 

its modular structure would allow for Model 1 to be incorporated, as was 

her original intention in building the global model.

Although the model reasonably accounts for the structure of the system 

and its participating elements, the move to a “whole cell” perspective and 

a general model of redox buffering multiplied the number of components, 

which in turn multiplied the number of rate constants and concentrations 

she needed to unearth. In all, there were twenty-two kinetic parameters, 

and C9 spent nearly two years foraging through the literature for these 

parameter values. In this process she encountered the kinds of problems 

I discussed in the general description of lab G modeling practices. She 

was just finishing up this process when we met her. C9 was able to draw 

on successful simulations with Model 2 to make a number of inferences, 

including a sensitivity analysis of parameter responses and an analysis of 

the relative burdens of different proteins in peroxide removal. In the former 

instance, she analyzed membrane permeability as the factor that produced 
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the greatest network response in the model. In the latter instance, she found 

the protein thioredoxin (Trx1) does much greater antioxidative work than the 

protein glutathione (GSH). In possession of a global model of how a cell deals 

with oxidative stress, C9 was now in a position to move on to the problem 

of how cells might respond to different parameter configurations or, more 

specifically, how DOX might alter redox environments.

6.3.2  Phase 2: Building the Dox Bioactivation Network Model

In building Model 2, C9’s task had been more or less to assemble the infor-

mation in the form of a dynamic model, since the structural features of the 

system had already been well-established in the literature. In the next phase 

of her research, C9 faced the situation of needing to derive, experimentally, 

unknown features of the system. Once she began wet-lab experimentation, 

the literature took on a different role: she mainly went to the literature 

when something unexpected came up. In the process of experimentation, 

she discovered that some of her expectations, based on the literature and 

her previous models, about how the system should behave were wrong and 

that the essential mechanics of some of the components of the system were 

in fact unknown. She had to localize and isolate these inaccuracies and 

unknowns. This part of her discovery process started with Model 2, the global 

model of ROS. As she explained her problem-solving strategy up to that point, 

“So, one of the main [questions] that came up was how does the cell . . . ​deal with 

these increases in oxidative stress? No one really knew about that so . . . ​we need 

to answer that question before we can move on to how is this drug able to alter the 

redox environment—to explain how something modulates that redox environment—

why or how that works.” C9’s plan, after she had built Model 2, was to move 

on to formulate a mechanism that could confirm their hypothesis that it 

was redox regulation of Dox that up-regulated NF-κB activity, thus helping 

insensitive cells survive the drug. She planned to model this mechanism by 

perturbing the values of hydrogen peroxide entering the Model 2 system, 

given that Dox was known to raise its levels, and then feed the outputs into 

the redox-sensitive points of the pathway for Model 1. But, to “get [that] 

model up and running,” she would need to do “a lot of [wet-lab] experimenta-

tion . . . ​to go in and get some of the rate constants and concentrations.”

Knowledge of how Dox functions to cause toxicity was in fact limited, 

although it was thought to intercalate DNA and thereby lead to apopto-

sis. One of its main known side effects is, though, the production of ROS, 
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which made it a candidate for C9’s analysis. From the clinical researcher, 

who had introduced them to the problem, she knew that different cell lines 

have different responses or sensitivities to Dox. C9’s goal was to explain 

these sensitivities: “If you ask in the field how exactly does doxorubicin work, 

they would not be able to give you a set answer. Specifically, particularly since 

in different cell types you have different responses and no one understands why 

that is. So hopefully, by the time I am done with my dissertation, we can shed 

some light on whether or not the ROS generation portion of the doxorubicin story 

is something that leads to differences in the sensitivity of cells to—to this drug.”

The clinical researcher provided two patient cell lines, EU1 and EU3, for 

her wet-lab experiments. EU1 is Dox-insensitive and was retrieved from a 

patient who had not responded to treatment. EU3’s patient, however, had 

had a good response that led to remission. As mentioned previously, when 

she began the wet-lab experiments, C9 planned to combine her global model 

(Model 2) with the NF-κB pathway (Model 1). But then a significant problem 

emerged. It happened early in the course of putting together the findings 

from her initial experimental research to draft a paper she planned to submit 

to an experimental journal of her research linking Dox to the NF-κB path-

way.8 As she posed the problem, “The issue that I think we are having or, I don’t 

even know if it’s an issue, not really sure yet ’cause we, we don’t know what’s going 

on, is that, the cell lines are what would be logically expected based on literature and 

what not, with regards to the cell that’s insensitive to Dox should have more NF-κB 

activation—and that’s what our model is sort of predicting, but experimentally, we 

are seeing kind of the opposite and we’re not really sure how reconcile that.”

This observation from her initial experimentation led C9 to an extended 

novel investigation in which she went back and forth between modeling and 

experimentation. Her experiments with Dox were producing data that were 

the opposite of what her model was giving and of what would be expected 

from the existing experimental literature. It is unclear (from our records) on 

which model she based her expectations, but they were most likely based on 

a combination of the Model 1 and Model 2, by extrapolating from different 

levels of ROS input to NF-κB levels. Those levels, according to her models and 

the experimental literature, were expected to be more active or up-regulated 

in the case of the insensitive EU1 cells, and down-regulated in the case of the 

sensitive EU3 cells. Her wet-lab experiments had, however, found more up-

regulation in the EU3 cells. The extra ROS generated by Dox should regulate 

NF-κB, but at this point she was beginning to doubt whether NF-κB was even 
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“a link in the story”—or at least a link in the way she had anticipated. As with 

all the research undertaken in the bioengineering labs, C9 often encountered 

impasses or failures. As she recounted, “Some days I come into work and I don’t 

feel like doing anything. . . . ​I mean, if your models aren’t working, experiments are 

failing, you need that extra push to keep you going.” What helped to motivate her 

were “the camaraderie” with the other researchers who were also “struggling” 

and also thinking about “the patients that could benefit from it.” She also noted 

that, now, “talking about it” in our interviews “reinforces what you’re doing, so, 

I can go back and feel motivated.”

To isolate the conflict between her model output and her experimental 

data, she conducted further experiments with the cell lines, while at the 

same time she planned to use Model 2 to “try and explain what we are seeing 

experimentally.” Her experimental study of ROS in those cell lines did con-

firm something expected; namely, there was more ROS in EU1 cells due to 

Dox, which ruled out that the problem was something in the general ROS or 

NF-κB mechanisms of the cells. She then found a paper that associated the 

generation of the toxic form of Dox with a ROS-reducing enzyme, NADPH, 

which she and the lab director thought to be an important experimental 

result. Her further experiments showed that the NADPH levels were low in 

EU3 and high in EU1. This suggested that both toxicity and the extra ROS 

emerged from the mechanisms by which Dox is activated into its toxic or 

reduced form. As a result, the lab director decided that an additional step 

was required in their problem-solving process: C9 needed to model the pro-

duction of ROS by Dox, that is, to build a new Model 3, rather than simply 

input the estimated amount of ROS produced straight into the global Model 

2, as she had planned. The new model-building would serve to open up an 

area of Model 2, otherwise black-boxed, in order to look for differences 

between EU1 and EU3. Instead of combining “all these reactions into one 

single arrow [black box] and then just have an estimate of what the culmination 

of all of these reactions would be—we realized that there were areas where there 

are differences between the EU1 and EU3 cells particularly with their NADHP.”

Once again, she was turned away from her intentions to follow the 

downstream aspects of Model 2 and return to the role of NF-κB. Instead, 

she focused on the processes involved in the reception of Dox into the cell 

and the production of ROS. To build Model 3 she relied on a two-pronged 

strategy. In the first part, she constructed “hypothetical mechanisms” in close 

conjunction with her NADPH and other wet-lab experiments on different 
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interactions needed to “build out the model.” For instance, she investigated 

the role of superoxide (SOD), O2, and CPR (an enzyme that catalyzes redox 

reactions) when feeding Dox into the different cell lines and compared the 

results. As she went along, she simulated the hypothetical mechanisms she 

constructed and checked the simulation outputs against controlled wet-lab 

experiments on the different interactions. Finally, she ran simulations in 

interaction with experiments in order to fix parameters. The model con-

tained ten parameters and ten initial conditions (concentrations) for what 

she called “a relatively simple network.” Only two parameters needed to be 

estimated. Through this interactive process she built Model 3 as she con-

structed a bimodular pathway structure for Dox metabolism (figure 6.2).

In the second part of her strategy, once a model was up and running, 

C9 tested it by running simulations to perturb the model and performing 

corresponding controlled wet-lab experiments, which she cast as having 

“physically experimented on the model.” For instance, she conducted compu-

tational simulation experiments to rule out other possible causes, such as 
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Figure 6.2
C9’s proposed bimodular pathway of Dox metabolism in leukemia cells for Model 3.



260	 Chapter 6

efflux of Dox from the cell at different rates in the different cell lines. She 

also “experimentally perturb[ed]” the model to test it outside standard clini-

cal ranges by simultaneously inhibiting the key elements of the cycles that 

had been determined by the model, namely the enzyme G6pd (important 

to the production of NADPH) and superoxide (SOD). In parallel with these 

simulations, C9 conducted wet-lab experiments on the two cell lines using 

chemical agents to inhibit these elements physically and determine the 

outcomes.

In accord with her experiments, the Model 3 simulations predicted that, 

in the case of low NADPH, redox cycling takes place. When NADPH is high, 

however, it absorbs the oxidative species that would otherwise be reduced 

by toxic Dox (Dox- in figure 6.2) leaving toxic Dox to go free. The reduc-

tive conversion/toxic Dox production model is represented by the pathway 

module on the left in figure 6.2 and the redox-recycling model is repre-

sented by the module on the right. C9 stated that the agreement between 

her model and her experiments “is again proving that our model has stood these 

different perturbations and interventions and it’s still predicting what’s happening. 

So, it further validates the fact that we might have actually gotten it right.” Because 

of the successful outcome of the close interaction between computational 

model simulation and wet-lab experimentation, she was able to assert with a 

high degree of confidence that they had discovered the mechanism behind 

the relative sensitivity of the EU1 and EU3 cell lines. She had been able to 

trace back the cause of sensitivity to the levels of G6pd possessed by each 

line and, thus, to whether or not the line could replenish stocks of NADPH 

quickly enough to keep cycling Dox. This result had immediate potential 

clinical relevance, because G6pd is measured regularly by clinicians, and so 

the study indicated that its level could be used as a signal as to whether Dox 

treatment is likely to kill a patient’s cancer cells or not.

There is a final twist in this story, however. C9 and the lab director 

wrote a paper on this research and sent it first to an experimental journal 

that rejected it because the reviewers thought a two-cell-line study would 

likely not be generalizable, and therefore would “lack impact.” They then 

sent it to a well-known computational biology journal. In this case, they 

were surprised when the reviewers complained that the levels of Dox that 

they were using to study their cells were higher than those used clinically, 

even though she and the director maintained to us that they had seen 

numerous experimental papers that used their levels. So, C9 went back and 
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used lower values with the cell lines. These experiments produced radically 

different behavior, which—somewhat to their surprise—the model repro-

duced. She considered the fact that her model was able to reproduce her 

experimental observations as a powerful validation of her discovery of a 

new mechanism.

6.3.3  Phase 3: Wrapping Up: More Surprises, More Discoveries, Model 4

Even though her research thus far had led to the discovery of a novel 

mechanism to explain Dox sensitivity, with, of course, some help from the 

literature, she still found herself dealing with unexpected and unknown 

behaviors in the final phase of her research that again required interac-

tive experimental and modeling work. In this phase, she had planned to 

return to her original problem, namely, the redox regulation of transcrip-

tion factor NF-κB. The questions of how EU1 cells handled both the extra 

oxidative stress these cells generated under Dox treatment and how they 

survived whatever toxic Dox they generated still remained. The answers, 

they thought all along, had to lie in the redox regulation of the NF-κB 

pathway. She declared she felt she had now “gone full circle,” and had finally 

done “the preliminary stuff I needed to do in order to answer this question.” Of 

course, that she had needed to build those models and do those specific 

experiments had not been clear to her at the outset, but had only emerged 

as she tried to formulate and tackle pieces of the problem.

C9 had already built a validated computational model for NF-κB (Model 

1) based on the literature, so the issue now was to establish a connection 

between it and the other models and make whatever modifications might 

be required. To do this, she started a new line of experimentation. First, 

she established that Dox treatment in EU1 cells created higher levels of 

hydrogen peroxide. Second, she showed that Dox is correlated in these cells 

with increased NF-κB production. When she introduced antioxidants at the 

same time, NF-κB went down again, which established the relation between 

Dox-induced ROS and NF-κB levels. She continued in this vein to establish 

that adding antioxidants to cut the production of NF-κB pushed cell sur-

vival rates down. C9 told us that she thought this level of experimental 

detail or “fine resolution” is necessary to convince other researchers of these 

causal relations. It enabled her to show that the causes she hypothesized 

in her models were robust: “There’s nothing written in stone about the steps 

you take. You need to sort of say to yourself, ‘ok, how fine of a resolution am I 
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comfortable with, or how fine of a resolution do I actually need . . . ​to get other 

people to believe this is actually what’s happening?’”

Once she established these relations experimentally, it was time to get 

into the “nitty gritty” details of the NF-κB pathway itself. Returning to Model 

1, the question was which pathway elements would be modulated by the 

increase in ROS; in other words, what are the potential points in the NF-κB 

network that govern redox regulation (see figure 6.3, left pathway). With 

the model as the basis, she planned to work through wet-lab modulations 

of the different components using a specific antioxidant (NAC: N-acetyl 

cystine). She intended, initially, to use an experimental procedure of soak-

ing up oxidants to see whether she could confirm model predictions about 

which pathway modulations are due to excess oxidants caused by Dox and 

which are not.

When she went through elements of the NF-κB pathway, such as NEMO (an 

essential NF-κB modulation gene), with a more detailed wet-lab examination 

adding Dox, she discovered one protein, IKK-β, whose s-glutathionylation 

levels changed when Dox was added. S-glutathionylation modification 

is caused by oxidation of the protein and thus provides an indication of 

the sensitivity of that protein to oxidative agents. She isolated the IKK 

complex (which binds IKK-β) as a ROS-sensitive component, circled in 

the NF-κB pathway above, and confirmed this in the wet lab by adding 

NAC and seeing IKK-β levels drop accordingly. However, when she tested 

with this antioxidant more expansively, she discovered that the effects 

of IKK-β varied non-monotonically with the levels of NAC in the system. 

This was unexpected and non-intuitive for her and the lab director, and 

put them again in the situation of having discovered complexity that they 

had not anticipated. Once again they would need to draw on C9’s interac-

tive experimentation and modeling strategy to untangle the knot. They 

decided C9 needed to build out Model 1 by adding a model of the IKK 

complex s-glutathionylation (Model 4) to see if they could explain the wet-

lab findings. C9 built this model by working quite closely to the chemical 

details, targeting the “mechanisms by which a protein such as IKK-β can be 

s-glutathionylated in the presence of an ROS promoting agent like Dox.”

C9’s literature search yielded ten potential biochemical reaction mecha-

nisms by which IKK-β s-glutathionylation could occur. She used both the 

conditions under which those mechanisms were observed in the literature 

in comparison to the mechanism she postulated, and what conditions were 
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possible under the treatment conditions she employed in the wet-lab experi-

ments, to narrow the ten down to three possible mechanisms. She used 

simulations of different concentrations of NAC to build the models of these 

candidate mechanisms and to fit them to the experimental conditions in 

order to choose the best of them. The fitting process revealed certain modi-

fied parameters that suggested NAC has both pro- and antioxidant effects 

(see figure 6.3, right pathway). Through more literature searches, simula-

tions, and parameter fitting, she was able to postulate a mechanism by which 

NAC operates on the glutathionylation process. Her model reproduced the 

nonlinear response of the IKK-β protein. Above certain concentrations it has 

pro-oxidant effects. In clinical terms, her findings indicate that it might be 

counterproductive to use NAC to treat cancer in certain instances.

When C9 began what she thought would be her final examination of 

the NF-κB pathway, she had not intended to build a model to describe NAC 

effects, but found herself compelled to in her attempt to explain the coun-

terintuitive effects she saw in her experiments. She separated the use of 

a model in this instance from other uses she had made in the first two 

phases, where she had needed the model at the outset of her investiga-

tion to develop a basic understanding of the phenomena. Here, she had 

presumed she could do without it and rely on a black-boxed relation (an 

“arrow”) for the input of antioxidants into the system, but had found her-

self short: “It was doing an experiment, seeing that it was crazy, and having 

to build a model. . . . ​With the other two I started with the model and used the 

model to try and inform experiment. And in this, I did the experiment not expect-

ing to build a model, but had to build the model to explain what I saw experimen-

tally. So that’s the relationship there.”

She found this final model-building process quite difficult, and it was 

the one time she expressed the wish that she had been able to work with 

the director of lab G to build a better model. But time was short to complete 

her dissertation within the allotted time. The model applies a relatively 

straightforward set of functions to the relationship between NAC and the 

rates (‘k’s in Model 4, figure 6.3) of various protein syntheses in the ROS 

network. The process of building Model 4 was tightly reasoned on the basis 

of chemical reactions she found in the literature. The model was able to 

capture their nonlinear interaction and to replicate the nonlinear effects 

observed in her wet-lab experiments. In all, although not an exhaustive 

representation, C9 thought “it’s a good enough approximation to get things 
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done.” As she explained what she felt she had achieved in this part of her 

research, “Since the experiments were good and done, I think we accomplished 

what we needed there, but . . . [in] the generation of the model—I wouldn’t neces-

sarily call it a full-blown model, it was more of a mathematical framework to try 

and understand what was going on.” This framework could provide a basis 

for another graduate student or postdoc to work from. She also felt, “in 

hindsight,” that if she had collaborated more with the lab G director, she 

could have gotten more “feedback from him to tweak the model and make it a 

little more robust and applicable. . . . ​But I feel I’ve done enough in my doctoral 

career.” So, although it might have been possible to negotiate more time 

to her degree, given its interdisciplinary nature, she also felt she had spent 

enough time as a student.

This work proved to be the final research of the dissertation, and the 

focus of her third paper. However, as she discussed in her final post-defense 

interview, the primary aim of discovering how manipulation of NF-κB 

affects cell viability through ROS signaling remained an open and unre-

solved problem. When looked at as a whole, she saw the result of her PhD 

research as reinforcing the idea that “redox mechanisms do play a role in che-

motherapy administration and more attention should be paid to those mecha-

nisms.” She characterized her research as having opened up the discussion 

without having come to precise conclusions that could be used clinically. 

In acknowledging the limitations of their research into Dox and NF-κB, she 

noted, “I would say [it is] even more far removed from a clinical setting because 

we only looked at one anti-oxidant, a particular range, and we didn’t even look 

at the effect of altering NF-kB signal transduction on viability. All we said is this 

does alter NF-kB. There is a huge question that’s left to be answered that is: once 

you have found out that it alters NF-kB what does that mean for viability?”

In the end, her research never managed to make the final connection 

between the NF-κB pathway and the insensitivity of EU1 cells. Overall, 

her findings definitely were novel and important, but as with most PhD 

research, time constraints, and the feeling of having “done enough,” at this 

point shared by the student and the committee, in the end led C9 to not 

continue on to the “viability” question. She settled (or satisficed) for having 

shown that Dox did interact with certain parts of the system without hav-

ing determined the mechanism by which it produces its ultimate effects. 

She had made substantial progress, though, and based on her research, a 

future member of the lab, or someone else in the field at large, could pick 
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up the research from where she left it. The complexity of the biological 

system was greater than C9 and the lab director had anticipated. As the 

director would say, “we started out doing this project, and realized we kind of 

had to back up a few steps.”

6.4  Epistemic Affordances of Coupling Simulation and Experimentation

The foregoing analysis of C9’s investigative pathway tells the tale of an 

intensive research process that ranged over different systems and took turns 

and detours on the way, meeting unexpected obstacles while making valu-

able discoveries. Our reconstruction and analysis of her model-building 

process offers important insights into the ways in which the bimodal strat-

egy can provide researchers in ISB another means to manage the complex-

ity of modeling biological systems through creating a kind of distributed 

cognitive-cultural system different from the typical one, which requires 

collaboration between modelers and experimentalists. C9 built a D-cog 

system that, through their intensive interaction, coupled experimentation, 

computational modeling, and mental modeling in her model-based rea-

soning processes. The epistemic affordances of this system enabled her to 

undertake the challenge of building models of a system for which there was 

little understanding, and which required new experimental information 

and experimental testing to succeed.9 As a result of being able to collect the 

data she needed as she was building the model, she was able to find most of 

the parameters required to fit it and to test its simulation outputs, so there 

were considerably fewer arbitrary features in the models.

The system-nature of her research practices also informed and shaped 

the ways in which she was able to make progress on her epistemic project. 

Chief among the affordances of the bimodal strategy is the ability to do her 

own experiments when and how she determined, which facilitated, sig-

nificantly, her ability to fit and test her models. As we saw, she was able to 

design experiments to target the specific data she needed. As she described 

her process, “I like the idea that as I’m building my model things are popping 

up in my head: ‘oh wow this would be a good experiment’. I plan out the experi-

ment myself and then go into the lab and I do it.” Further, those processes 

were much more efficient when compared with modelers who have to rely 

on experimental collaboration alone—often significantly delayed, as we 

saw in lab G. For one thing, the bimodal strategy solved the considerable 
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problems pure modelers face when trying to convey their experimental 

needs to pure experimentalists: “I personally think [my approach] is better only 

because—I could tell someone what I needed, but—I think, not really understand-

ing the modeling aspect, they can’t accurately come up with a good enough experi-

mental protocol to get what it is I need.” Importantly, doing both modeling 

and experimentation enables the researcher to “understand the links between 

them.”

In collaborative relationships, experimenters and modelers interact with 

respect to a model, but as we have witnessed, and been told numerous 

times, there are typically many inefficiencies involved in such relation-

ships. On the one hand, experimentalists often do not understand what 

kinds of experiments and data modelers require, because they do not 

understand model-building. On the other, modelers do not understand 

the nature of wet-lab experimentation sufficiently to know how to frame 

a request appropriate to the affordances and constraints of experimenta-

tion or, more precisely, those of their specific collaborators. Experimental 

collaborators usually conduct experiments to test hypotheses derived from 

the models only after the modelers are finished, not during the building 

process. A failed collaboration within lab C of C7 and C11 bears out this 

point. C11 tried to conduct the experiments C7 needed in the course of 

building his model, but the lab director ended up having to take over the 

experimental work to get at what the modeler needed. Only much later, 

while she was taking the biosystems modeling course, did C11 realize what 

was needed by C7. As she formulated it, “You know, I wish I had taken this 

class two years ago . . . ​and it would have been very helpful for me to understand 

what kind of data he needed, to understand what kind of questions he should be 

asking of me. . . . [I] didn’t have an insight to what exactly—what kind of data 

would be useful for him.” She also noted that C7 had begun conducting his 

own experiments, so he had “figured out the same thing from his end. It’s easier 

if you have more knowledge on the other side.” Chapter 7 discuss insights from 

our experiences in these labs on ways to facilitate collaboration in bioengi-

neering sciences and other interdisciplinary practices.

C9, of course, was not confined by such problems. As a result, she was 

able to coordinate her modeling and experimental activities efficiently 

and, most importantly, to make sure that her experimentation was well-

adapted to obtain the information she required, within the constraints of 

her experimental abilities. This coordination gave her the ability to run 
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experimentation and modeling (computational and mental) as an effective 

coupled system. Here, as with the coupling between model and modeler I 

discussed in chapter 5, the overall effect of the back-and-forth exchange 

between these components of the D-cog system is to extend human infer-

ential powers so as to facilitate the modeler in building out the pathway 

while building out the model and improving its parameter fit, as well as 

to provide model validation. Such a coupled system has all the epistemic 

affordances of a modeler-model coupled system we discussed in chapter 5. 

However, adding wet-lab experimentation to the coupling provides signifi-

cant new epistemic affordances in that it enables the modeler to discover 

and extract relevant and needed experimental information from a com-

plex jumble of biochemical interactions, as well as to control and direct the 

information flow in the course of building models.

Further, wet-lab biological experimentation, in general, has important 

epistemic affordances that “google biology” lacks. Experimental engage-

ment with target systems provides another, different kind of epistemic 

access to the target system from that possessed by those who do only mod-

eling. For one thing, in developing the ability to design and run biological 

experiments, C9 was able to develop her own sense of what is “reasonable” 

biologically, which we saw was a constant question for lab G modelers. Her 

embodied engagement with the biological entities informed her mental 

models and, undoubtedly, gave her an understanding different from uni-

modal modelers, for whom these are abstract entities, known only through 

literature, pathway logic, and simulation.10 C9, too, talked about getting a 

“feeling” for the behavior of her models, and, as with the lab G modelers, 

the system properties and dynamic behaviors of the biological system were 

only available to her through the model simulations. However, her “feeling 

for the system” was not based solely on the model and literature, but also 

on her engagement with the phenomena as she designed and conducted 

experiments. As we saw with lab G, aspects of developing a “feeling”—for 

the model or system—in the context of research include a growing insight 

into and understanding of the target system, belief in the credibility of the 

model, and affective engagement in the research.

6.4.1  “I Did Them at the Same Time”: The Coupled System

To discern the epistemic affordances of this kind of coupled system, I start 

from an overview of C9’s modeling practices. As with other model-based 
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reasoning, once she built an initial computational model, it became the 

main cognitive apparatus through which C9 interpreted the experimental 

data and advanced her research by her choices as to what to investigate, 

experiment on, and model further. She relied on the behavior of the model 

itself to inform her on the properties and functions of its parts, particularly 

to reveal the existence of missing parts. The model provides information 

only available at the system level, such as the relationships between indi-

rectly related variables. As she ran simulations and produced visualizations 

of the resulting variable and parameter relations, each model provided infor-

mation otherwise inaccessible to wet-lab experimentation. For instance, the 

model provided measures not possible to determine in experiment, and sim-

ulations helped to reveal which pathways bear most of the burden in a sys-

tem or which points are relevant to control a network. Determining network 

control points enabled C9 to black-box mechanisms that did not appear to 

affect control, as well as to target her experiments. In comparing experi-

menting in building the model (simulation) and in the wet lab, she pointed 

out that she could “tease apart” things in experiments with the model that 

she could not in the wet lab and claimed, “You have access to everything in the 

model . . . ​in that sense, I can actually see deeper into the experiment in my model 

than I can in the real experiment.” However, she had more “trust” in what she 

could “see” in the wet-lab experiment, which “obviously is showing you what 

actually happens.” Of course, what she could “see” there is what “happens” 

in the context of an experimental—in vitro—situation.

As we saw, in many instances C9 conducted experiments while in the 

process of building and running simulations with her models. She called 

her research process “iteration” between them. When we asked which was 

driving her results—models or experiments—she replied that she was doing 

them nearly simultaneously: “You can say that I did my model first, but I 

don’t . . . ​I don’t see it as I finished my model and then I did my experiments. I 

see it as kind of like I did them at the same time.” She referred to their inter-

action as “synergistic.” We detailed the aspects of this coupled interaction 

by looking at the reciprocal roles model-building played in directing her 

experimentation, and conversely the role experimentation played in her 

model-building. Figure 6.4 provides our schematic of the way her model-

building and experiment interacted.

C9’s usual strategy was, in the first place, to construct a diagram of the 

topology of the biological pathway based on her extensive review of 



270	 Chapter 6

the literature. This process is much the same as what we saw in lab G, that 

is, she would trace and piece together parts of the network from different 

sources in the literature and add or alter components on the basis of simu-

lations of the preliminary model. In our interviews on how she was build-

ing the pathways, she describes an iterative and incremental interactive 

process that contributes to building her model-based understanding of the 

system. She noted the specific value of the visual nature of these pathway 

representations, that are themselves “models” that are “just visual now. They 

Modeling Experiment

Compose Topology: from
literature

Parameter investigation

Confirmation testing

Validation

Experimental investigation
of hypotheses

Parameter investigation

Model Analysis: simulations,
predictions

Model-based hypotheses:
new pathways,
new elements

New topology

Different permutations

Invalidation

Figure 6.4
The diagram illustrates the coupling of modeling and experimental procedures in the 

course of C9’s model-building as an iterative interactive process of discovering 

the correct topology and parameter values for the networks on which she was con-

ducting research. The process ends when validation is achieved. Experimental results 

that depart from the model simulations (“invalidation”), require the generation of 

new hypotheses, which are derived from the existing models or their modification/

elaboration.
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don’t have any math affiliated with them. I have to visually see what’s happen-

ing before I can start writing the equations.” As I have discussed, the pathway 

representation provides both a conceptual and a visual model of a causal 

chain of interactions within the biological system that lead to the observed 

data. C9 further explained her process of “visually seeing” to us as, “I have a 

notepad where I do a lot of my calculations, thinking, sketching, different things. I 

have notes and sometimes, like right now with the NK-κB model, I have to come up 

with some of the connections. I have to hypothesize for some of those because it’s 

not known in the literature. So, I’m going back and forth drawing different things.” 

These processes of diagramming, sketching, and calculating on paper while 

thinking and making inferences contribute to coupling her mental models 

with the pathway model and the computational model.

As with lab G modelers, to build the topology, she also needed to collect 

as much parameter information from the literature as she could. However, 

after she had gathered and pieced together whatever information she could 

find through those searches, there was an important difference: her next 

move was to rely on her own wet-lab experimentation to obtain pathway 

and parameter information that was not available in the literature. Once 

she put together this information in the form of an ODE computational 

model, she could begin the process of running preliminary simulations to 

get a feel for the model’s behavioral dynamics and to build out the pathway, 

as well as to produce predictions that she could investigate and possibly 

verify experimentally. The bimodal strategy enabled her to run simulations 

and experiments nearly simultaneously, as we saw in the drug Dox (Model 

3) case. She could try to replicate interventions and perturbations she made 

in the models in the physical systems as, for instance, she did with the aid 

of known blocking or suppressing agents.

The systematic and organized manner in which she coupled experimen-

tation and model-building had a range of epistemic affordances. A prime 

affordance was the ability to evaluate, experimentally, parts of the model as 

she was building it. When simulations did not replicate the experimental 

data, she could rely on the elements of the model she was relatively confi-

dent about and could probe those parts she was not. In this way, her models 

and their limitations provided resources from which she could make infer-

ences as to how to direct her wet-lab experimental activity, as she tried to 

track down solutions in the form of new pathways and new functional met-

abolic elements that could fill out the structure of the models. The salience 
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of these elements would not have been apparent on the basis of a program 

of experimental investigation alone, but required the system-level perspec-

tive provided by the model to be identified. For instance, when building 

Model 1, she discovered the role of cysteine by virtue of the model: “I sort of 

reached that IKK . . . ​needed to be disulfide bonded in order to be active. I reached 

that through a conjecture because I was like ‘something is missing.. When I was 

drawing my pictures, I was like ‘okay, there is a big gap here. How is it that IKK 

has to be oxidized to be active?’ And I was like ‘There must be a redox sensitive 

cysteine.’” She noted at another time that, “our model can help us tease out 

that information . . . ​like when the model helped us tease out that thioredoxin 

dependent proteins are basically reacting more speedily with hydrogen peroxide 

than like glutathione dependent proteins. That’s something we couldn’t have got-

ten at without the mathematics.”

In other instances, when things turned out unexpectedly with her 

experiments, she could build a model to figure out the problem. When, for 

example, she discovered that her experiments provided results that were 

in opposition to her model-based (Model 1) expectations that NF-kB levels 

would be up-regulated in EU1 cells and down-regulated in the EU3 cells, she 

built a new Model 3 of the production of ROS by Dox. As we showed in the 

case analysis, that model informed which questions to ask and experiments 

to run, and which “arrow” in the pathway to pursue as the avenue to best 

resolve the discrepancy between her models and the data. She again needed 

to build a model (Model 4) when she discovered, contrary to her expecta-

tions, the non-monotonic behavior of IKK-β with respect to NAC levels. She 

talked repeatedly about how she used the models as explanatory tools, say-

ing, for instance, in this case, “We have to go to the model to explain what we 

are seeing because we can’t do it experimentally . . . ​and going to the model and 

kind of pairing it with the literature evidence, we were able to come up with an 

explanation that we believe sort of encompasses the changes we saw. . . . ​I couldn’t 

explain what I saw without the model. It just wasn’t possible for me to do that.”

The repeated coordinated interaction of experimentation and simula-

tion created a coupling between these processes and her mental models. 

Through this coupled system, C9 could construct the topology of these 

complex systems by going back and forth to gather data, measure param-

eters, and make new hypotheses. Her simulations produced novel behav-

ior that would tell her to “pay more attention to this [novel model behavior]” 

on the “experimental side.” Experimentation provided a source of ongoing 
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epistemic validation for the model and reinforced its role as a platform 

for hypotheses. It also informed the mental models through which she 

reasoned about how to improve her computational models, what specific 

experiments to undertake, and the dynamics of the phenomena. Further, as 

Wimsatt has perceptively and correctly noted, “processes of validation often 

shade into processes of discovery—since both involve a winnowing of the gen-

eralizable and the reliable from the specific and artifactual” (Wimsatt 2007, 

56; emphasis added). The discovery dimension of coupling is highly sig-

nificant in C9’s case. By running controlled experiments and simulations 

side by side, C9 was able to discover reliable pathway structures, novel bio-

chemical mechanisms, and parameter values with precision, as well as to 

build robust, validated models.

Through coupling experimentation and modeling, C9 was able to man-

age the complexity of the problem-solving tasks she faced, because the 

strategy provides an efficient and effective means by which to explore and 

constrain the large possibility space of her tasks. As we saw in chapter 5, 

ISB modelers, because of limited data or data of the wrong kind, face large 

possibility spaces that are difficult to search through because the systems 

are nonlinear, and so it is much more difficult to determine what pathway 

structure or parameter hypotheses might be in the neighborhood of a solu-

tion. They often have to test a large number of alternatives. The bimodal 

strategy, however, provides advantages for narrowing down the search 

through a parameter space. For example, C9 was able to diagnose and local-

ize uncertainties in her models and to discover relevant sources of informa-

tion to improve them by simulating and comparing parts of them against 

controlled experiments. Such localization afforded her an ability to posit 

and to test, experimentally, tractable hypotheses about uncertain mecha-

nisms in order to extract relevant information she lacked.11

In particular, C9 used perturbations of the model and experimental per-

turbations of the biological system to derive strengths and weaknesses of 

the models she had built from the available literature. She could isolate 

parts of the models, simulate those interactions, and check them against 

experiments that isolated these relations physically in order to establish 

the accuracy of those parts or to measure their parameter values. When, 

for instance, her experiments showed differences in NF-κB activation for 

EU1 and EU3 from what she had expected from her model and the litera-

ture, she was able to trace the problem to “a single arrow” in the pathway 
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through a combination of wet-lab experimentation and model simulation. 

She could also use her models to identify sources of biological information 

necessary to improve the model. In general, as the result of a coordinated 

probing of the model by means of perturbation and controlled simulations 

and of probing of the physical biological systems with targeted wet-lab 

experimentation, C9 was able to establish, robustly, the parts of the model 

that were accurate, as well as localize the problematic parts or parts that 

were relevant to further development of the model. Once localized, she 

could conduct experiments to run through various model-based hypothe-

ses about the interactions of those components, as she did when she formu-

lated a mechanism for the IKK-β s-glutathione system and the antioxidant 

NAC. Her further wet-lab perturbations to the biological system, such as by 

changing chemical inputs and using other chemicals to suppress specific 

reactions, could be checked against the dynamics predicted by the model 

and used to fix pertinent model constraints. This gave her, in particular, the 

ability to fine-tune the specific parameters of the reactions and interactions 

she was experimenting on without having to do the kind of large-scale 

algorithmic fitting we saw in lab G. For instance, rather than having to 

model each of the ten possible mechanisms for NAC and trying to infer a 

best fit, C9 used controlled experimentation of their mechanisms to narrow 

the model-building task down to three.

This case analysis provides an exemplar of how the bimodal strategy 

creates a coupled problem-solving system that serves to manage the com-

plexity of model-building in ISB. C9 relied on information embodied in 

her models, derived from experiments and culled from the literature, to 

triangulate the location of inaccuracies and missing elements. This bimodal 

strategy enabled her to build confidence in the parts of the models as she 

built them through wet-lab testing and perturbation, which allowed her to 

localize problems and locate and reduce uncertainties. She was able to nar-

row down avenues for solving model-building problems to a limited set of 

possibilities, for which she could make hypotheses and test them through 

controlled experimentation. The bimodal strategy, in particular, enabled 

her to avoid the challenge faced by unimodal modelers that, given limited 

experimental data, they have to sort through pathway structure alternatives 

and parameter values algorithmically, knowing these often will need to be 

refit. However, this strategy does have limitations, which include signifi-

cant ones with respect to what and how biological systems can be modeled. 
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These limitations underlie what the lab G director called a “philosophical 

divide” about how best to build models, as well as train modelers, in ISB.

6.4.2  Limitations of the Bimodal Strategy for ISB

Although some kind of interaction between experimentation and simula-

tion is required to model complex biological systems, the three-way cou-

pling (modeler–model–experiment) of the bimodal strategy is atypical in 

the current landscape of ISB practice. For the most part, interaction does 

not extend beyond that of an experimentalist supplying initial data and 

then data to verify or falsify the model’s predictions, as we saw with the 

G12 case. Such a “collaborative” strategy is often fraught with difficulties, 

as we have witnessed and heard described by lab G researchers. In some 

instances, it can even lead to the abandonment of a line of research. It is not 

easy for a modeler-experimentalist team to overcome a range of barriers cre-

ated by specialization and create an efficient and effective problem-solving 

system. The bimodal modeler does have an advantage in this respect. How-

ever, one should not take away from the C9 case that a bimodal strategy is 

necessarily the best, or most effective, epistemic route to building models 

ISB. There are trade-offs associated with each approach. Further, as we saw, 

the bimodal approach does not mitigate, completely, the epistemic inter-

dependence I noted to be inherent in ISB. First, modelers using the method 

still rely on the experimental literature to build and validate models, and, 

second, since they have not been trained as biologists, they still need to 

rely on the expertise of bioscience advisers or of collaborators who might 

be on their project, even though they conduct all the experiments them-

selves. They are, of course, better equipped to take advantage of the exper-

tise and to collaborate than dedicated modelers. All the experimentalists 

we interviewed in connection with research in lab C or Lab G were aware 

of the practices of both labs and uniformly expressed their opinion that the 

bimodal strategy was the better approach, since it was likely to enhance 

collaboration between the fields, and expressed the hope for this “new breed 

of students” to become dominant in ISB.

Importantly among the trade-offs, there are limits to the scale of the 

system a modeler can manage reliably by a bimodal strategy. The strategy 

worked well in C9’s case because she was dealing with relatively small-scale 

systems, with a manageable number of unknowns. This fact enabled her to 

contain her experimental work and direct her model-building to keep them 
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within reasonable constraints. Because she had sufficient data to develop 

detailed models of the biochemical interactions, the need to use mathemat-

ical averaging techniques and fitting algorithms was reduced, along with 

the potential for error these bring with them. So, she did not require the 

level of mathematical and computational sophistication we saw with lab G 

to build useful models of her system. Even so, she did not get as far on her 

problem as she had initially thought she would, and as would be needed to 

solve the clinical problem. She, herself, felt she could have benefited from 

more sophisticated modeling skills. By contrast, as we have seen, a dedi-

cated modeler can handle a significantly larger system either because there 

are sufficient data available or experimentalists with whom to collaborate 

or because they possess a high level of mathematical and computational 

skills that they can use to try to get around the lack of data. As we have 

seen, the rhetoric surrounding ISB promotes its promise to build models of 

large-scale systems, and so favors a unimodal approach.

Another way to get around the lack of experimental data for large-scale 

model-building, and to provide it in a timely manner approaching the effi-

ciency of bimodal strategy, might be to have a lab organization that com-

prises both dedicated modelers and dedicated experimentalists. This was the 

kind of lab in which the lab C director did her postdoctoral research. The lab 

G director felt this strategy would require supporting a huge lab financially, 

which is not usually practicable. He stated that the ideal ratio is, as he has 

“said it for twenty years, you need ten experimentalists for every one modeler.” This 

is because experimentation and modeling work on different, asynchronous, 

time scales. Wet-lab experiments needed for specific data to build the model 

or to check the outcome of a model simulation can take many months. We 

often saw lab G modelers waiting around for data from collaborators to con-

tinue their modeling work, while in the meantime they worked on algo-

rithm development. On the flip side, building a robust, stable model takes 

a long time, too, and, as experimentalists told us, they had often “moved on 

to working on something else” by the time the modeler gets back to them with 

hypotheses to test, and they are unwilling to redirect their time and money.

As to modelers doing their own experiments, the lab G director expressed 

worries about the risk of experimental bias or the unwitting manipulation 

or interpretation of results to fit the model: “If you produce the data to vali-

date your model, implicitly or explicitly . . . ​there is a lot of room for interpreta-

tion.” He felt the best way to avoid this risk was to have someone else do 
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the experimental validation research, particularly at some arm’s length (in 

different labs). On the other hand, his concerns contrast with what the lab 

C bimodal modelers told us. For instance, C7, who had considerable expe-

rience building models from data collected by others before he started to 

conduct experiments, claimed, “I feel like I have more confidence in the data if 

I’m doing it on my own part rather than having someone else do it.” Of course, 

confidence does not mitigate the possibility of bias. Another plus for bimo-

dality, though, is as C9 told us and as was confirmed by experimentalists, 

it is often difficult for a modeler to convey—or for an experimentalist to 

determine—what experiments will satisfy their needs.

Perhaps most importantly, for the question as to whether the bimodal 

approach will become more common, is that to become skilled in both 

experimentation and model-building takes significant time and can 

involve compromise in the level of skill developed, unless, perhaps, one 

opts for intensive sequential training, either by taking a longer route to the 

PhD or in postdoctoral research. The lab C director, however, felt she had 

“lost time” by training sequentially, but clearly, she was more accomplished 

modeler and experimentalist than the students in her lab would become in 

the customary five-year PhD research period. The lab G director thought 

the sequential approach to training was best if one wanted to adopt the 

strategy. Backing up the lab G director, the postdoc who was then train-

ing in his lab to be a modeler after getting an experimental PhD told us he 

would not organize his own lab to have graduate students use the bimodal 

strategy: “What I get from my personal experience is that I lose time going from 

one side to the other. . . . ​Both fields have their own problems, you know. . . . ​

A student needs to have his brain focused—and performing experiments is an 

art, just like modeling.” Modelers in ISB tend to come from applied math-

ematical or engineering backgrounds and have little if any knowledge of 

experimentation. But they also need to be trained in the “art” of systems 

biology model-building, which requires that they not only learn how to 

apply and further develop their mathematical and computational skills to 

model biological systems, but also develop new skills for how to search for 

the data in literature and databases (conduct “google biology”), as well as 

for how to develop a basic grasp of the nature of the system. It is no easy 

task to learn these skills, especially given that today one might be mod-

eling a yeast system and tomorrow a cancer-producing system. And, we 

would add from our investigations, modelers need to invest in developing 



278	 Chapter 6

collaboration skills much more than is currently done. Researchers who 

adopt the bimodal strategy need to develop all of these skills, but in addi-

tion they need to learn experimental design and benchtop skills.

As noted, with respect to bimodal training, the “philosophical divide” 

extends to whether to learn experimental and modeling practices concur-

rently or sequentially and, in the latter instance, whether to do so in the 

context of a PhD, or first do a modeling PhD and then learn experimenta-

tion as a postdoc or vice versa. Concurrent training risks the consequence, as 

the lab G director noted, of ending with “modeling lite and experimenting lite,” 

but sequential bimodal training puts the researcher in the position, as the 

lab C director noted, of basically “starting over” after several years of educa-

tion. As we saw, C9 did express some regret, in our final, post-PhD defense 

interview, that she had not been able to develop her modeling skills more, 

especially that she had not taken sufficient advantage of working with the 

lab G director. She felt that having those more sophisticated skills might, in 

particular, have helped her to work better with the complex nonlinearity of 

the system in the NAC case. But she also said she would not have given up 

the ability to couple experimentation with her model-building to rely on 

collaboration instead.

6.5  Summary: Getting a Grip with/on Bimodal Model-Building

The bimodal strategy can be understood as a particular response to features 

of the problem-solving contexts of systems biology: namely its complex 

problems, lack of theoretical starting points, lack of data, and other con-

straints. With the bimodal strategy, experimentation and simulation are 

closely coupled in the model-building process, not only to validate model-

building steps, but also to provide an effective means of limiting search 

spaces and triangulating on a good representation. The bimodal strategy 

has both advantages and limitations when compared to the unimodal strat-

egies we have studied. It does offer unique epistemic affordances.

In the central phases of her research, where C9 needed to use the bimodal 

strategy, she gave much more weight epistemically to wet-lab experimen-

tation than to simulation. The uncertainty over the structure and proper-

ties of her systems prevented her from building a model by starting from 

accepted assumptions and filling in numerical details of an established 

modeling framework. She was never in a position where she could rely 
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on a model to conduct only simulation experiments on her systems. The 

limitations of the models, on the other hand, proved to be resources that 

directed her experimental activity to track down solutions in the form of 

new pathways elements and new functional metabolic elements that could 

fill out the structure of the models. The interaction of experimentation and 

simulation provided continual epistemic validation for the model-building 

steps along the way and reinforcement of the model’s role as a platform 

from which to both build understanding of network dynamics and make 

hypotheses about the behavior of the biological target system.

As we have seen throughout this book, methodological innovations 

enable scientists to create or enhance their native cognitive powers by build-

ing distributed cognitive-cultural systems appropriate to their complex 

problem-solving tasks. Most often, philosophers and cognitive scientists, 

when they address cognition and complexity in science, have focused on 

heuristics that help narrow down search spaces for complex problems (e.g., 

Newell and Simon 1972; Wimsatt 2007). Cognition is interpreted in terms of 

its constraints, which heuristics help overcome. We have seen, for instance 

in the case of mesoscopic modeling, ISB model-building methods can, 

indeed, be developed with cognitive limitations in mind. The bimodal strat-

egy, however, is not just a means to employ heuristics to deal with cognitive 

limitations. The bimodal strategy enables the modeler to actively distribute 

her cognition and build her cognitive powers through coupling simulation 

and experiment. In the C9 case, running simulations provided a method 

by which she could calculate and visualize dominant network patterns, 

which, in turn, helped her develop and simulate mental models of the 

system dynamics. She was able to infer from the understanding obtained 

through these simulations how to direct experimentation, manipulate the 

biological materials, and interpret the results, thus turning experimenta-

tion into a sharper investigative tool that could help her efficiently and 

intelligently search through the space of network and parameter possibili-

ties. The whole problem-solving system served to augment her cognitive 

capacities to investigate the complex biological systems.

Direct experimental engagement with the biological systems also served 

to reduce the risk of error. In particular, she developed sophisticated strate-

gies to localize inaccuracies in her model, and thus localize quite precisely 

where wet-lab experimentation was required. She would do this by run-

ning sets of controlled simulation experiments (fixing particular sets of 
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parameters and varying others) against controlled biological experiments 

that replicated the model controls physically. In this way she could work 

through the model to pick out specific problematic relationships and inves-

tigate them further. This fine-tuned operation gave her a specific ability to 

handle the complexity of her problem-solving task, not available to uni-

modal modelers. Unimodal modelers are usually forced to explore com-

plex large parameter and structure spaces algorithmically or with Monte 

Carlo methods to discover approximately accurate structure and parameter 

values that fit the whole model to the data. C9 could cut down the space 

significantly with well-targeted experimentation on specific relationships. 

Once she localized errors to specific structural hypotheses or parameter val-

ues, she could conduct wet-lab experiments to run through sets of hypoth-

eses about the interactions among those components and measure their 

parameter values. When it came to parameter-fixing, C9 declared that she 

had always at most two to three parameters to fix. This compares with the 

upward of twenty that most lab G members report.

In sum, the bimodal strategy tightly integrates the two modes—modeling 

and experimentation—into a system to generate and validate information 

about complex biological systems. This coupled methodological system pro-

vides a novel means to manage the complexity and uncertainty of biologi-

cal systems, but its challenges and limitations make it not yet a widespread 

methodological choice in ISB. It is not evident whether bimodality will be 

the choice of a “new breed” going forward; however, one thing is clear from 

our investigations: modelers and experimentalists need to become more 

conversant with one another’s epistemic practices, norms, and values than 

is the current situation.



The moment you cease observing, pack your bags, and leave the field, you will 

get a remarkably clear insight about the one critical activity you should have 

observed—but didn’t.

The moment you turn off the tape recorder, say goodbye, and leave the inter-

view, it will become immediately clear to you what perfect question you should 

have asked to tie the whole thing together—but didn’t.

The moment you begin analysis it will become perfectly clear to you that you’re 

missing the most important pieces of information and without those pieces of 

information there is absolutely no hope of making sense of what you have.

Know, then, this: The complete analysis isn’t . . . 

Analysis brings moments of terror that nothing sensible will emerge and times 

of exhilaration from the certainty of having discovered the absolute truth. In 

between there are long periods of hard work, deep thinking, and weight-lifting 

volumes of material.

—From Halcom’s1 Iron Laws of Evaluation Research

(Patton 2002, 431)

The ethnographic research and analysis presented in this book makes no 

claims to being exhaustive. No less a master of ethnography then Clifford 

Geertz acknowledged, “I have never gotten anywhere near to the bottom of 

anything I have written about. . . . ​The more deeply one goes, the less com-

plete it is” (Geertz 1983, 58). After twenty years of wrestling with ethnographic 

data as I have tried to fathom what there is to be learned about the epistemic 

practices of the bioengineering sciences and the nature of interdisciplinary 

research, I concur with the sentiment, but also with his claim to have made 

progress at least by “a refinement of debate” (1983, 58). I do claim to have 

made progress—and furthered debate—on the question I posed at the outset: 

7  Interdisciplinarities in Action
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“How can we understand and account for the epistemic accomplishments of 

science given that scientists are limited beings and the natural world is vastly 

complex?” I framed one, significant, approach to answering that question 

this way: to seek to understand how cognition and culture are integrated in 

the modeling practices scientists create to investigate the world. That fram-

ing stemmed from years of investigating scientific epistemic practices as evi-

denced in historical and contemporary scientific research and from engaging 

with literatures that take science as their object of study, namely, philosophy, 

history, sociology, anthropology, and cognitive science. Once we began our 

preliminary investigations, the centrality of a specific kind of model-building 

in the research of each lab immediately became evident, and as we further 

investigated, its role as an integrative practice became evident as well. We 

focused our research, then, on how researchers create and use this kind of 

material culture through which they think and reason about complex bio-

logical systems that are otherwise inaccessible to them. Our research has 

taken an in-depth look at problem-solving practices in two different fields 

of bioengineering sciences, as well as two different subspecialties in each. 

The detailed case studies and analyses presented here provide important 

insights into the epistemic project of twenty-first-century biological engi-

neering, which aims to get a grip on complex biological systems by making 

use of material, conceptual, methodological, and technological resources of 

engineering to both formulate and work toward the solution of biological 

problems of significant human consequence. Strikingly, across all labs, our 

interviewees stated that “helping people” was the primary reason for their 

choice of bioengineering, which offered them an exciting opportunity to 

be pioneers in developing approaches to doing so. Keeping that reason in 

mind also motivated them to persist through times when nothing seemed 

to be working out in their research.

At the end of each chapter, I have provided a high-level summary of 

its major points, which, now that you have reached this point, it might 

be good to review. In section 7.1 I follow these up with a summary of 

summaries. There I briefly remind the reader of three highlights in par-

ticular: distributed cognition as an analytical framework for investigating 

cognitive-cultural integration, the integrative epistemic practice of distrib-

uted model-based reasoning, and how we have seen epistemic warrant for 

specific models, as well as the modeling practices in general, is developed 
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by the pioneering students and their visionary directors who have served as 

our protagonists throughout.

In section 7.2 I take a look at interdisciplinarities in action, more broadly 

considered. I like to conclude my books with a forward look to ongoing 

research and further implications—yet to be fully worked out—of the 

research I have discussed. In the case at hand, I look at the current epis-

temic situation of interdisciplinary practice, and then go on to point out 

what insights our own ethnographic investigations have thus far yielded, 

with a view to how such practice might be facilitated. Despite the fact that 

there have been major successes, clearly there is more research to be done 

to devise means to facilitate more effective ways to conduct twenty-first-

century interdisciplinary research than is widely acknowledged to be the 

current state of affairs across the sciences, humanities, and arts. Thus, there 

are important insights to be gleaned from the in situ study we conducted of 

different kinds of interdisciplinary practices.

A major implication of those insights is how to foster learning in inter-

disciplinary research communities. What philosophers of science need to 

realize is that education is part of the epistemic infrastructure of scientific 

research. This issue comes to the fore in emerging fields, which lack estab-

lished curricula or texts. Although scientists, administrators, and grant 

agencies recognize the need to build such infrastructure, scientists often 

cannot step back and see the learning requirements of their emerging prac-

tices on their own. This is where philosophers and cognitive scientists can 

help, and this is why we have been investing a great deal of time and energy 

to do so. I have given some indication of our educational research in BME 

in chapter 4. Here I focus in particular on five specific “interdisciplinary 

epistemic virtues” that we ended up distinguishing, and discuss some of 

the ways we have cultivated these through targeted educational experi-

ences in BME and ISB. The chapter ends with a look at the responses from 

some of the ISB researchers who took part in brief experiences we devised to 

improve their abilities to collaborate, which show that even small, targeted 

interventions based on studying a kind of interdisciplinarity-in-action can 

have significant payoffs. These researchers told us with a lively sense of joy-

ful amazement how these experiences had helped them gain new, realistic 

insights into what moved and occupied their counterparts from the other 

side of the disciplinary divide.
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7.1  Highlights

7.1.1  Distributed Cognition as an Analytical Framework  

for Cognitive-Cultural Integration

In chapter 1, I argued that the D-cog framework, with suitable extension, 

provides both a method—cognitive ethnography—and a conceptual and 

analytical framework to investigate cognitive-cultural integration in scien-

tific practice. In particular, it provides a means to analyze problem-solving 

in science as a system phenomenon in which scientists, as embodied agents, 

extend and enhance their natural cognitive capacities by building material, 

social, and cultural environments for problem-solving. A major scientific 

environment is the research lab, which I cast as a distributed cognitive-

cultural system with epistemic goals. The extensions needed to accommo-

date science are, first, to include in the analysis an account of pertinent 

cognitive contributions of the individual, embodied mind/brain and, sec-

ond, to include in the analysis an account of the epistemic aspect of scien-

tific practice. There are multiple dimensions to each, and I chose to focus, 

respectively, on the role of mental modeling in reasoning processes and 

on the issues of how bioengineering scientists build models and develop 

warrant for their models, as well as for their innovative modeling practices.

In each lab we determined the most important cognitive-cultural 

resources for problem-solving, which include concepts, methods, mate-

rials, and epistemic norms and values. These resources are put to use in 

building models, which serve a dual function as cognitive artifacts needed 

for problem-solving and as material culture of the specific kind of epis-

temic community. As we have seen in this analysis, models are the loci of 

cognitive-cultural integration in the research of these labs. In the various 

bioengineering sciences labs we investigated, the researchers overwhelm-

ingly came from engineering or applied mathematics backgrounds, and 

in their research they transferred and adapted engineering resources and 

epistemic norms and values to formulate and address problems that would 

enable them to get a grip on complex biological systems. We called the labs 

adaptive problem spaces in which researchers learn to adapt problems, con-

cepts, and methods to manage the complexity of the biological systems of 

interest. In such adaptive processes, researchers learn the affordances and 

limitations of these resources for addressing their problems.
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The multidimensional notion of interlocking models emerged from our 

coding process as an important cross-cutting thematic category, specific to 

cognitive-cultural integration. Interlocking models is a system-level inter-

pretative notion that, in the first instance, captures dimensions of model-

ing practices that cut across many of our coding categories. In particular, 

it provides a means to specify in what ways the simulation models in each 

lab serve as hubs in which various dimensions of the cognitive-cultural 

system are fitted together as the models are developed and used. As with 

transportation systems, where many service lines interlock at central sta-

tions, models serve to interlock many dimensions of practice. Among the 

ways in which models serve as hubs, considered in this book, are how they 

provide the locus for interlocking problem-solving, learning, lab history, 

and mentoring; for interlocking facets of interdisciplinarity, including con-

cepts, methods, materials, and epistemic norms and values; for interlocking 

configurations of devices in experimental situations (model-systems); and 

for interlocking researcher mental models and artifact models in simulative 

model-based reasoning (dynamic representational coupling).

In each chapter I present a detailed analysis of the epistemic practices 

of the research lab and specific cases of problem-solving. These analyses 

are based on many iterations of our research group’s rigorous coding, the-

matic analyses, detailed case analyses, and triangulation of information 

from a range of data we collected to arrive at our interpretations. Following 

these thick descriptions, I go on to analyze the theoretical implications of 

our findings about the practices with attention to specific philosophical 

notions and theories and show how the concrete details are indispensable 

for developing the abstract accounts (“productive interplay”). Each chapter 

provides a different, though in some instances overlapping, focus on the 

concrete and the abstract based on data from a specific lab, but in many 

cases, it would have been possible to address similar issues or themes with 

a different lab. Section 7.2 will look at some important commonalities with 

respect to interdisciplinary research. In general, the overall analysis pre-

sented in this book provides, I believe, a demonstration of the fruitfulness 

of the cognitive ethnographic approach for the descriptive and normative 

projects of philosophy of science and for the advancement of the interdis-

ciplinary project to establish a cognitive science of science.
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7.1.2  Distributed Model-Based Reasoning

A major epistemic practice of biological engineering fields is to build mod-

els as the means to understand or control complex dynamic biological 

systems. These are systems for which there are no general theories of the 

biological phenomena under investigation, and so models are built from 

the ground up with the aid of engineering concepts and methods. Model-

ing the dynamics of such systems, whether in vitro or in silico, comprises 

cycles of design, construction, evaluation, experimentation, and redesign, 

that is, cycles of building to discover. In building models, researchers have to 

manage the complexity of not only the biological phenomena, but also of 

a variety of conditions pertaining to the kind of interdisciplinary practice, 

for instance, the lack of time-series data or effective collaboration for ISB 

or the need to fuse biological and engineered materials while maintaining 

biological functionality for BME. As we have seen, the course of interdisci-

plinary model-building is never smooth. Impasses, obstacles, and failures 

are ubiquitous. Cell cultures die in the midst of an experiment, in vitro 

model-systems fail to behave as anticipated, in silico models prove difficult 

to fit, borrowed concepts or methods fail to provide insights or even prove 

to be obstacles, and so forth. What we witnessed was the remarkable resil-

ience and creativity with which the researchers addressed these challenges, 

largely through looking at them as opportunities to learn—an attitude that 

is inculcated into student researchers from their very first days in their lab. 

What is also remarkable is that, although it often took a few years for a 

student’s research project to solidify, once determined, no one needed to 

abandon their model in the face of setbacks. Rather they found productive 

ways to modify it or their interpretation of its behavior.

Model-building not only addresses the research problem, but is also 

what drives the creation and evolution of the distributed cognitive-

cultural systems of each lab. To understand how, in each case, requires 

numerous dimensions of the dynamics of processes through which mod-

els are built to be examined. Importantly, in collecting field observations 

and interviews around these processes, we were able to log the various 

methods, steps, and iterations of building; probe the decisions and judg-

ments behind developing and altering that specific model; examine how 

and what kind of inferences experimental simulations with them enable; 

track the formation and changes in problems and goals; and note interac-

tions among researchers relevant to the process. Our data provided a wealth 
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of insights about the nature of the epistemic practices that would never 

have made it into the historical records—not even those of the likes of a 

Michael Faraday, who kept extensive, elaborate, and annotated records of 

his research practices.

In both fields, their research problems and goals require researchers to 

build models as epistemic tools through which to probe and learn about 

the behaviors of selected system components (endothelial cells of the car-

diovascular system) or of the system as a whole (lignin production system 

in plants). In both instances, the models provide dynamic simulations of 

biological phenomena under experimental conditions that can be manipu-

lated and controlled by the researcher. In the BME case, these hybrid in 

vitro simulation models comprise biological and engineered materials that 

enable researchers to isolate and experimentally control entities and pro-

cesses of interest. In the ISB case, the models synthesize as much of the 

available data as possible to provide computational (in silico) simulations 

of system-level behaviors, such as intracellular signaling and metabolic 

processes, that enable researchers to perform experimental manipulations 

under real-world and myriad counterfactual conditions the researcher 

might consider relevant to the problem.

A central epistemic aim in both cases is to build a model that will pro-

vide the basis for inference about the target system, that is, to build an 

analogical source. Noting that these models are to function as analogical 

sources brings to the fore an overlooked aspect of analogical reasoning that 

is central to its use in creative scientific problem-solving. Often there is no 

ready-to-hand analogy to retrieve and map to the target problem. Instead, 

the analogical source needs to be created specifically  to be mapped to the 

target. Such built analogies—at least of the sort I have examined thus far 

in bioengineering and, earlier, in physics (Nersessian 1992a,b, 2008)—are 

hybrid constructions that merge selected features and constraints from both 

source(s) (often multiple) and target domains. Building is a bootstrapping 

process in which a model is developed toward becoming a viable analogical 

source (think of the computational dish model) or refined in the direction 

of providing a better one (think of the construct–flow-loop model-system). 

In some instances, such as with the BME in vitro models, analogies need 

to be built in a nested manner; for example, the flow loop provides an 

analogy with blood flow shear forces; the construct, with the blood vessel 

wall; the animal cells and tissues, with human cells and tissues; and the 
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flow-loop–construct model-system, with shear forces in the arteries. Once 

developed, models provide structural, functional, or behavioral analogue 

systems through which researchers can reason, about both the model and, 

potentially, the real-world system. In these pioneering labs, most of the 

reasoning we observed focuses on the model, especially its current capabili-

ties and limitations and how to make it a better analogical source, which of 

course requires the researcher to think not only about the biological target 

but also about a range of resources available for building, including the 

constraints of the materials and methods. Only near the end of a building 

project—when the model is deemed satisfactory to the purposes at hand—is 

it possible to transfer inferences as hypotheses about the target system or 

claim to have provided scientific understanding about that system.

Our analyses show that model-based reasoning is, itself, a system phe-

nomenon. Put in another way, in building models, researchers distribute 

cognitive processes across material artifacts, a process we cast as building 

distributed model-based reasoning systems. Typically, distributing cogni-

tion to artifacts has been cast as off-loading certain cognitive functions or 

processes to the artifact, such as memory. However, our metaphors of inter-

locking and coupling suggest a different relation between mental and mate-

rial resources—that of incorporation into a D-cog system. We have argued, in 

particular, that the repeated back-and-forth information exchange between 

mental and real-world models during the building processes gradually 

incorporates them into an inferential system that enhances or expands the 

capacity of the researcher for simulative model-based reasoning. Two of 

the instances considered in this book are how the simulation capabilities 

of in vitro and in silico models enhance the reasoners’ ability to imagine 

and probe counterfactual scenarios (thought experimenting) and how the 

dynamic visualization capabilities of the in silico models can drastically 

alter the problem-space. Of course, some processes are off-loaded within the 

system in that certain cognitive functions are performed by the researchers 

and others by the artifact, so the metaphors are not incompatible, but our 

emphasis on incorporation captures the system nature better. Finally, in 

the case of in silico models, we also considered the affordances and limita-

tions of a D-cog system that incorporates wet-lab experimentation into the 

model-building process, with the bimodal strategy.
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7.1.3  Building Epistemic Warrant

Science is an epistemic practice. As such, its methods and claims need jus-

tification, including a specification of their scope and limitations. As we 

saw, the bioengineering labs are by and large methodological pioneers in 

the application of engineering, mathematical, and computational concepts 

and methods to the investigation of complex biological systems. What this 

means is that they need to provide evidence and arguments for the credibil-

ity of both their models and their modeling practices. Our examinations of 

issues around credibility with each kind of modeling practice again demon-

strate the value of an ethnographic approach for traditional philosophical 

concerns. In most cases, we were able to collect data on the assessments 

and decisions researchers were making about the makeup and performance 

of their models while they were in the process of building them and assess-

ing their credibility. We were also able to probe them further about these 

in interviews. With respect to potential epistemic claims, researchers in all 

the labs evaluate models in relation to their function as analogical sources, 

which our analyses show requires an assessment as to whether the model 

exemplifies the relevant features of the biological system with respect to the 

problem and that nothing germane has been left out, or, if something has, a 

determination has been made as to ways the inferences from the model are 

limited. That a model exemplifies the relevant features of the target system 

provides assurance that the model has the potential to produce candidate 

inferences to transfer to the target system as hypotheses. Thus, analogy and 

exemplification are bound together in model-based reasoning. Although I 

have not demonstrated this here, I contend this relationship is important 

not only for the cases I examine, but with respect to modeling more widely.

With respect to the BME case, in designing an in vitro model, researchers 

aim to exemplify relevant biological entities and processes, subject to the 

constraints both of biology and of the engineering methods and materials 

used to construct it. They begin research by focusing on what they expect 

to be salient features of the phenomena, while bracketing potentially irrel-

evant features or those deemed too complex or not feasible to address at 

the outset. For instance, the tissue engineering lab deemed the endothelial 

cells that line the artery to be the relevant entities to study with respect to 

the problem of determining the effects of mechanical forces on the cardio-

vascular system on the basis that they are in closest contact as the blood 

flows through the lumen. The lab built the flow loop to exemplify laminar 
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shear stress forces to a first-order approximation at normal blood flow rates, 

but also included the capacity to produce abnormal rates and turbulent 

forces that could be used should higher-order effects be determined to be 

relevant as their investigations moved along. The latter point underscores 

that part of a research project with in vitro models is to determine more 

specifically what are the relevant features. As we saw in the chapter 2 analy-

sis of the design and evolution of the in vitro model-systems in both labs, 

the researchers are able to articulate the ways in which their model sys-

tems do or do not exemplify specific features of the in vitro phenomena 

that are considered relevant at that time, as well as to provide assessments 

of why specific features had been selected and in what way their simula-

tion outcomes are delimited by those choices. But we also saw that even 

when the researchers deemed features relevant to their problems, building 

a model with those features might have to await developments in engi-

neering methods and materials. Envisioning such further developments is 

also part of their research agenda. For instance, although the model-system 

made up of the flow loop and endothelial cells on slides could provide 

valuable information about morphology and proliferation, the researchers 

recognized it does not exemplify the functional behavior of the cells in 

the blood vessel wall because, at the very least, in vivo they interact with 

smooth muscle cells embedded in the wall tissue. But to build a blood vessel 

wall model—the construct—to exemplify that interaction and other fea-

tures of the blood vessel wall required developments in tissue engineering 

capabilities. However, the negative analogy between the cells and the blood 

vessel wall opened a research opportunity to develop a better model-system 

that would exemplify more relevant features. Thus, in vitro models are built 

toward exemplifying relevant features, which themselves are further speci-

fied in the course of the research. A better, potentially more productive, 

analogy improves or enhances the relevant features the model exempli-

fies. Because experiments cannot be performed directly on human targets, 

the inferences drawn from the models are evaluated with respect to what-

ever data on the target systems are available. For instance, the response 

of the endothelial cells in the constructs to mechanical stimulation can 

be compared with genetic markers of the cells in the in vivo system, and 

so provide confirmation of stimulation effects. Additionally, the construct-

baboon model-system marks progress in the direction of specifying the 
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requirements for an arterial tissue graft for humans by experimental eval-

uation of the behavior of the construct seeded with EPCs in an animal 

model-system.

With respect to the ISB case, researchers aim to build robust and stable in 

silico models that exemplify the behaviors of complex biological systems. 

Here, too, model-building is an iterative and incremental process in which, 

at each phase, researchers assess how well the model data exemplify (rep-

licate) the available data in the experimental literature, usually by means 

of comparing output graphs. As the model gains complexity, it develops 

the capacity to enact known and potential system behaviors. Once a stable 

and robust model, or convergent ensemble of models, is produced, it has 

the potential to provide an analogical source from which the researcher can 

derive experimentally verifiable hypotheses. For instance, we saw that in 

modeling the lignin system, G10 was able to make inferences about how to 

modify lignin production to create a better biofuel by knocking out specific 

genes and even to infer a missing element in the established lignin pathway. 

His experimental collaborators were able not only to verify these modifica-

tion hypotheses, but also to determine, in a highly significant collaborative 

discovery, that missing element. Such discoveries establish that an in silico 

model not only exemplifies known features but also has the capacity to pre-

dict, and so exemplify, heretofore unknown features. In vivo experimental 

verifications of hypotheses that derive from a model confer credibility on it 

as an analogical source, as well as on the methods that produced it.

As to the methods, the researchers in all labs transfer and adapt engi-

neering, mathematical, or computational methods largely developed in 

the context of building or modeling human-made systems to investigate 

biological systems. Unlike with established methods in a discipline, bio-

engineering researchers in emerging fields need to build credibility for this 

transfer and adaptation. As the methods gain credibility and develop an 

interdisciplinary history in biosystems modeling, they become projectible 

for future research. As we have seen, the main criteria are pragmatic, cen-

tered on success. Do the models built with them provide significant (or at 

least useful), verifiable information that enables the researchers to make 

progress on the research agenda to understand or control the behavior 

of the biological systems? Verification, to the extent and means possible, 

reflects back on the credibility of both the model and the methods.
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In lab A, for instance, the in vitro flow-loop–cells-on-slides model-system 

provided useful information about the changes in cell morphology for a 

population because of controlled experimentation with shear forces, which 

can be compared against various in vivo changes detected in normal and 

diseased arteries. The success of this method in providing support for the 

hypothesis that pathological forces cause disease provides epistemic warrant 

for the continued use of the method of flow-loop studies. Limitations on 

the kind of information the method can provide can open new avenues of 

research. For example, limitations of flow-loop simulations with only cells 

led to the development of the construct, with which diverse cells and tis-

sues could be subjected to flow-loop studies. Experimental outcomes on the 

functional behaviors of the cells—for example, that A7’s preconditioned 

EPCs produce thrombomodulin in the construct-baboon model-system 

simulation—can be compared to in vivo cell behaviors. Verification of the 

outcome, in this case, establishes that the in vitro simulation methods both 

provide new understanding of the ways in which EPCs can become mature 

endothelial cells (by stimulation with mechanical forces) and make progress 

in controlling the EPCs behaviors toward the vascular graft application goal.

The success criterion also is central with respect to the methods used to 

build computational simulation models of biological systems. Some methods 

used in modeling biosystems are, of course, long-established computational 

methods, tested in a range of fields, such as Monte Carlo sampling. But many 

are being imported for the first time to use with biological systems; these are 

usually drawn from systems and control engineering, but can also be related 

to the specific engineering background of the researcher, for instance, the lab 

G researcher using wave-smoothing techniques from telecommunications 

engineering. We also saw that the lab G researchers continually innovate in 

algorithm development to build and fit models, such as the two-step pro-

cedure developed by G10 to build models of lignin production. All these 

methods gain credibility as they produce stable and robust models that are 

informative about the behavior of biological systems, which means that they 

replicate known data, as well as predict new, experimentally verifiable behav-

iors. These behaviors range from useful new information, such as what genes 

to target in the lignin system to produce a better biofuel, to highly novel and 

significant discoveries, for which G10’s prediction of a missing element in 

the long-established lignin pathway provides an exemplar. Methodological 

innovation, as with model-building, is a bootstrapping process.
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7.2  The Epistemic Situation of Interdisciplinary Practice

Interdisciplinarity is widely cast as a hallmark of frontier twenty-first-

century research in the sciences and engineering. Interdisciplinary research 

is customarily characterized as “integrative” and “innovative,” yet difficult 

to achieve. The obstacles lie in the complexity of the problems posed, the 

need to develop novel investigative practices, and the fact that interdis-

ciplinary collaboration is fraught with difficulties that increase with the 

distances between the collaborating disciplines. Although a broad range of 

empirical methods is used to investigate these dimensions, studies of the 

dynamic processes of interdisciplinarity practices—that is, how interdisci-

plinarity is enacted in situations of scientific research and the challenges 

posed for researchers—are scant.2 Further, although detailed taxonomies of 

different kinds of interdisciplinarity have been elaborated in the abstract 

since at least 1972 (see, e.g., Klein 2010), richly nuanced accounts of inter-

disciplinary practices, too, are needed when it comes to thinking about 

how to promote learning or how to facilitate a specific kind of research. 

Ethnography has long been a method used by anthropologists to study and 

interpret cultural practices situated in naturalistic settings. Most importantly 

for understanding challenges of interdisciplinary practice, ethnographic 

research enables one to examine both the insider (“emic”) perspective of the 

participants and to develop the ethnographer outsider (“etic”) interpretation 

of practices of interest. As the research presented in this book demonstrates, 

cognitive ethnography is particularly well-suited to examining the con-

ceptual, reasoning, and learning dimensions of interdisciplinary problem-

solving, where differing and often incompatible epistemic practices, values, 

and norms are in play. The method is perhaps uniquely suited to investi-

gating the processes of integration in epistemic practices because it enables 

collecting fine-grained data as researchers attempt to solve interdisciplinary 

problems within a complex context of cognitive, social, material, and cultural 

resources and constraints. Cognitive ethnography provides nuanced findings 

about specific interdisciplinary practices—how they come to be as well as 

how they are used—that not only enhance our understanding of interdis-

ciplinarity but also can help faculty and policy makers figure out how best 

to facilitate research, especially as they develop programs to educate the 

twenty-first-century scientist. Although valuable in themselves, findings 

from cognitive ethnography can also be used to enrich or validate findings 
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from more theoretical or global methods of studying interdisciplinarity, such 

as bibliometric analyses of patterns of interaction and influence (see, e.g., 

Roessner et al. 2013).

It is widely agreed that the chief characteristic of interdisciplinary 

research is integration.3 Integration is held to be what promotes creativity 

and innovation. What is needed, though, is both a more nuanced under-

standing of what “integration” means in the problem-solving practices of 

quite different interdisciplinary epistemic communities and of the specific 

challenges encountered in trying to achieve it. Cognitive ethnography has 

enabled us to examine in fine detail how the researchers determined how 

to reconceive a complex biological system with the engineering and com-

putational resources at hand so as to be able to solve—or at least make 

progress on—the target problem. In both fields, problem-solving requires 

adapting concepts, methods, or materials from engineering to manage the 

complexity of the biological problem. We, thus, characterized these labs as 

adaptive problem spaces, in which different forms of adaptation emerge spe-

cific to the nature of the problems and goals and the requisite resources for 

problem-solving in the field or subdiscipline (Nersessian 2006; Nersessian 

and Newstetter 2013). In general, adaptation of the complex interdisciplin-

ary systems within these spaces is a process of continually reconfiguring 

the components from which these are built, as the system gains experience 

(see, e.g., chapter 4). Research in these adaptive problem spaces requires 

that the individuals themselves achieve a measure of interdisciplinary inte-

gration—in how they think and how they act. The nature of the integration 

depends on the requirements of the kind of interdisciplinary problem-

solving, which, as we will see, differs for BME and ISB.

As one can imagine, long-term investigations provide a wealth of data 

to mine, and our findings are rich and varied. We do not claim to have 

captured all the nuances of the range of interdisciplinary practices in either 

BME or ISB, but we have been able to formulate some significant insights. An 

important goal of ethnographic research of multiple sites is to assess trans-

ferability: to ascertain what abstracted insights might be in common across 

sites and possibly extended to the broader field, and which ones are unique 

to a site. Many of our findings of the challenges of integrating engineering 

and biology in BME transferred robustly across the two labs. The ISB labs 

differed in various aspects of the in silico model-building process. However, 

our major insights about the methods for and challenges of integrating 
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biology, engineering, and computation in ISB problem-solving practices do 

transfer. We have presented our findings to audiences of researchers outside 

of our studies in each field and have done sufficient broad sampling of each 

of the fields to feel confident that our research provides significant insights 

relevant to the practices and challenges of interdisciplinary research and 

training across the fields.

I begin with a discussion of what I have been calling “interdisciplin-

ary epistemic virtues” that facilitate interdisciplinary problem-solving. We 

derived these virtues from our assessments of the challenges and require-

ments for successful problem-solving faced by the researchers in the differ-

ent kinds of interdisciplinarity I have discussed in the preceding chapters. 

We first determined and described the challenges and requirements as they 

arose in our coding process, and then considered them in light of analyses 

of pertinent notions in the literature on interdisciplinarity, where possible. 

I put this section first, even though the analysis of epistemic virtues came 

near the end of our investigation, so that I can use the notions in the sub-

sequent discussion of interdisciplinarity in each field.4 Sections 7.2.2 and 

7.2.3 provide a brief overview, focused on the kind of interdisciplinarity, 

of actual epistemic practices and challenges in BME problem-solving and 

in ISB, respectively. Section 7.2.4 focuses on some of the challenges of col-

laboration in ISB, strategies we proposed to help mitigate them, and the 

enthusiastic insights of the students we tried them out on.

7.2.1  Five Interdisciplinary Virtues Distinguished

As part of the educational contribution of our research, we have sought to 

distill from our findings some overarching learning requirements for effec-

tive interdisciplinary research. We focused, in particular, on determining 

characteristics that could usefully be cultivated in the course of graduate 

education. To that end, we first determined the characteristics from our 

intensive coding of the in situ studies of interdisciplinary practices on the 

basis of what we found either to be present and effective in the practices of 

the labs, or to be lacking, and so posing an impediment. We then, where 

possible, related our codes to concepts in the theoretical literature on inter-

disciplinarity, while further elaborating both these preexisting concepts 

and the new notions uncovered in the course of our own research. Overall, 

we determined five highly significant characteristics that lead to effective 

interdisciplinary problem-solving:
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1.	 Cognitive flexibility

2.	 Methodological versatility

3.	 Resilience in the face of impasse

4.	 Interactional expertise

5.	 Epistemic awareness

The case studies in this book provide numerous examples of these char-

acteristics in problem-solving or, in some cases, the consequences of their 

absence. It is important to understand at the outset that although these 

characteristics are attributed, customarily, to individuals, on my analysis, 

they can be features of distributed problem-solving systems as well.

By cognitive flexibility I mean the ability to see or understand a problem 

from different perspectives, which facilitates the kind of adaptation needed 

to transform a complex problem into one that can be solved. It also pro-

motes collaboration. Strictly speaking, developmental psychologists mean 

by cognitive flexibility an executive function that develops as the prefron-

tal cortex matures, not therefore through learning. However, in educational 

fields, the term is being used broadly in relation to learning, and that is how 

we use it as well (see, e.g., Spiro et al. 1994; Spiro et al. 1992). We have seen 

instances of cognitive flexibility in each lab. For instance, in the tissue engi-

neering lab we saw researchers framing the interactions between cells and 

blood flow from the perspectives of mechanics and of biological properties 

and functions. In the combined computational/wet lab we saw researchers 

looking at interactions between cells and a therapeutic cancer drug using 

the perspectives of systems engineering and of ROS biology to build out 

and model pathways. We also saw how introduction of the in silico dish 

model into the D-cog system of lab D provided a different perspective on 

bursting phenomena in the in vitro dish.5

Methodological versatility is having multiple methods in the tool kit with 

which researchers can tackle a problem. Instances of such versatility we 

have seen include the ability to draw from computational model-building 

methods in several engineering fields (labs C and G); or to have facility 

with mechanical engineering design methods and wet-lab methods for cul-

turing cells and engineering tissues (lab A); or to use both computational 

simulation and wet-lab experimental methods (lab C). We have also seen 

the advantage of having multiple methods in collaborative D-cog systems, 
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such as the capacity to use neural engineering signal processing methods, 

software development, and computational modeling (lab D).

In pioneering interdisciplinary science research, failure, obstacles, and 

impasses are ever-present, as we have had ample opportunity to observe, so 

resilience is needed to find a way through them and even to see failure as an 

opportunity for learning. As we saw, cell cultures die, parameter fittings do 

not work out, collaborators do not respond, and so forth. In the lab D case, 

in particular, we saw their repeated failure to stop the dish from bursting for 

over a year, and then, after quieting it, they were unable to sustain a stimu-

lus pattern from which it could learn (“drift” problem). Each researcher 

demonstrated resilience in trying different approaches to get around the 

problem. In particular, one member introduced a method novel to the lab 

(computational modeling of an in vitro model), which not only provided 

insights to move the research forward, but also created a more cohesive and 

resilient collaborative research system able to overcome significant obsta-

cles, and, ultimately, jointly solve the problem.

Further, interdisciplinary researchers need to develop interactional skills 

for collaboration. Interactional expertise is a notion introduced first by Harry 

Collins and Robert Evans (Collins and Evans 2002) to characterize the 

nature of the expertise required of sociologists doing fieldwork. It marks a 

distinction between the development of conceptual understanding of the 

practices of collaborators, which enables each to engage linguistically with 

the practices, and the ability to perform the practice (contributory exper-

tise). Collins, Evans, and Michael Gorman (2007) extended the notion to 

interdisciplinary collaboration more widely and stressed that, beyond lan-

guage, interactional expertise is “tacit knowledge-laden and context spe-

cific” (661).6 Again, our research shows that all researchers coming from 

either the engineering side or the biosciences/medicine side of biological 

engineering start with little understanding of the other side, and, where 

collaboration is required, research is slowed down, if not impeded. But we 

also saw in the BME case that such expertise can be cultivated when it is 

attended to explicitly in the systematic development of a curriculum. But, 

as I show in the ISB case (section 7.2.3), it can also be cultivated through 

limited informal, targeted interventions. Both kinds of approaches seek to 

promote individual learning, but aim, also, to create more cohesive and 

effective problem-solving systems.



298	 Chapter 7

We introduced the notion of epistemic awareness to call out epistemic 

norms and values in problem-solving (Nersessian 2017; Osbeck and Ner-

sessian 2017). The notion comprises a metacognitive awareness that one’s 

epistemic identity and epistemic norms and values play an important role 

in research, and that what constitutes good scientific research can be differ-

ent from one discipline to another. Epistemic awareness, then, is the ability 

to reflect on the epistemic dimensions of one’s own discipline and research 

practices as well as on those of the collaborators in the problem-solving 

system. We introduced this notion, in particular, because we witnessed in 

all the labs, including the ones requiring hybridization, that researchers 

coming from engineering and computational sciences had little awareness 

of the epistemic norms and values of biological research. The bioscience 

collaborators of the computational labs we interviewed also demonstrated 

a lack of awareness of those at work in modeling. Finding remedies for these 

problems remains a major challenge in the developing fields of biological 

engineering, but the first step is for researchers to become conscious of the 

need for such awareness. Again, our research has shown such awareness can 

be cultivated with explicit attention.

From an epistemological perspective, these five characteristics can be 

cast as epistemic virtues for the conduct of good interdisciplinary research, 

that is, as interdisciplinary virtues. According to Linda Zagzebski, an epistemic 

virtue is “a deep and enduring acquired excellence” motivated by and reli-

ably successful at achieving intellectual ends (Zagzebski 1996, 137). Aris-

totle first introduced the notion that there are intellectual as well as moral 

virtues, and Zagzebski asserts along with him that virtues are acquired by 

practicing them. Interdisciplinary epistemic virtues, too, have sociocultural 

dimensions that can enhance the possibility of achieving intellectual ends. 

For instance, cultivating them can promote the development of effective 

collaborative communities of researchers.

The set we determined is doubtless incomplete, but we found these 

specific ones to be both central for creative and effective interdisciplinary 

problem-solving and open to being acquired in principle in both BME and 

ISB, when appropriate means are devised to cultivate them. We also found 

that when characteristics (3) and (4) are lacking, this significantly increases 

the complexity of problem-solving in ISB. In particular, both are interre-

lated with cognitive flexibility in interdisciplinary research. Generally, the 

skills associated with these characteristics are not easily acquired on one’s 
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own. Further, the challenges of cultivating these characteristics differ with 

respect to the context, in particular, the current state and aims of the field. 

As I discuss in the following sections, as part of our educational research, we 

investigated ways to cultivate such characteristics by means of experiences 

targeted to the research requirements for BME and ISB, respectively. A brief 

discussion of our efforts provides an opportunity to highlight, in a different 

way, the differences between these fields in the kind of interdisciplinarity 

practiced—and desired.

7.2.2  BME Problem-Solving: Hybridization

The overarching problems BME poses are directed toward how to use engi-

neering design methods and principles to understand basic biological phe-

nomena in order to control disease processes or create interventions for 

specific medical disorders. The problems investigated in the tissue engineer-

ing lab aimed at understanding the biological influences of the mechanical 

forces of blood flow in arteries, with an eye to determining the requirements 

to construct living implants that can perform normal functions of arteries. 

In the neural engineering lab, the problems focused on understanding the 

network behavior of neurons, in particular by teaching a cultured neuronal 

network to learn from feedback from its “body.” A potential application 

would be to develop brain-controlled prosthetic devices that neurons can 

learn to use. In the years of our investigation, both labs were focused on 

the basic research, especially on how to develop in vitro simulation mod-

els as epistemic tools to investigate complex biological processes. In chap-

ters 2 through 4, we examined in depth the epistemic practices of in vitro 

research in each lab. Here I focus on salient interdisciplinary features labs 

of these kinds have in common.

BME researchers develop programs of in vitro research that build physi-

cal simulation models to investigate selected aspects of complex biological 

systems because the problems the field poses require a level of control that 

either is impossible to achieve in animal research or would be unethical 

to conduct. These simulation devices are hybrid artifacts in which cells or 

cellular systems interface with nonliving materials in model-based simu-

lations that are run under various experimental conditions. In each BME 

lab, more than one device was central to the research program. Because 

the devices are created to address the specific research problems of a lab, 

they are usually built in-house through several iterations. The devices 
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participate in experimental research in various configurations of hybrid 

model-systems. The daily challenges of building devices and model-systems 

require the researchers to determine the relevant, selective interlocking of 

biological and engineering concepts, methods, and materials for the prob-

lem at hand. The ongoing processes of building simulation models create 

emergent hybrid problem-solving systems—with artifactual and mental 

components—within the adaptive problem spaces of BME. We, thus, coded 

the chief characteristic of interdisciplinary integration as we saw it enacted 

in the BME labs as hybridization to capture the processes of combining dis-

tinct elements into an inseparable whole.

One way in which problem-solving with in vitro simulation model-

systems in BME requires cognitive flexibility is that researchers need to be 

able to transform a complex biological problem, such as neuronal network 

learning or pathologies in the cardiovascular system, into one that can 

potentially be addressed with conceptual and methodological resources 

from engineering. To build in vitro model-systems, work with them, and 

interpret and evaluate experimental outcomes requires the availability of a 

range of methods within the lab, not only from engineering, but also from 

biology—for instance, cell culturing or gene profiling—as well as the abil-

ity to use biological instrumentation, such as the confocal or two-photon 

microscope. The iterative and incremental processes of building a model 

to exemplify the relevant features of the biological system entails trial and 

error. The death or contamination of a cell culture can result in months 

of work being wasted. Impasses or failures of various sorts are a frequent 

occurrence in a context where “no one has done this before” is an oft-repeated 

sentiment, so researchers need to develop resilience to step back and evalu-

ate the situation to figure out whether to persist in a direction or how to 

start in a new one. Although the research projects we saw in the labs were 

not collaborative, researchers still needed to develop interactive skills to 

take advantage of the expertise of others in the group and to participate in 

problem-solving sessions with researchers with different kinds of engineer-

ing backgrounds in the lab. Further, even hybrid biomedical engineers need 

to develop the skills to interact productively with people trained in medical 

and biosciences fields as they venture into careers in academia, industry, 

or policy. We called individuals with the ability to interact productively 

within interdisciplinary contexts boundary agents.
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The BME labs we investigated were located in an adaptive problem space 

in which interdisciplinarity is explicit, reflective, and intentional. Their 

kind of in vitro research program was initiated by engineers who either 

could not recruit bioscience collaborators or who found such collaborations 

inherently difficult because bioscientists lack the requisite quantitative 

and engineering knowledge to facilitate collaboration. These researchers 

aimed to create a model of interdisciplinary research different from the 

standard, “team science” model of two or more researchers from differ-

ent disciplines in collaboration. Thus, their learning aim is to create inter-

disciplinary integration not only with respect to concepts, methods, and 

objects of research, but also at the level of the individual researchers.7 The 

educational program in which the BME researchers are embedded aims to 

design a kind of researcher who might, themselves, be considered emergent 

hybrid systems—bio-medical-engineering researchers who are not only self-

sufficient in problem-solving with hybrid in vitro models, but are also able 

to collaborate fluidly with disciplinary colleagues in any of the three fields. 

The direction of emergence would depend on the subfield, such as tissue 

engineering or neural engineering. In developing the problem-driven learn-

ing environments I discussed in chapter 4, we aimed to begin to cultivate 

all of the interdisciplinary virtues we had identified students would need to 

be effective biomedical engineers and equip them to develop these further 

in the context of their subfields as they advanced in their research projects 

and chosen fields of employment. We aimed to equip them to become both 

an integrative biomedical engineer and a potential boundary agent.

7.2.3  ISB Problem-Solving: Synthesis

ISB is a young field, though it shares objectives with an older systems biol-

ogy philosophy. The overarching goal of the field is to develop analyses of 

complex nonlinear biological phenomena at the system level. The tradi-

tional biological approach of well-controlled experimentation focused on 

characterizing select components or processes is seen as necessary, but not 

sufficient, to investigate how higher-level functionality emerges from myriad 

interactions at lower levels. The confluence of new kinds of data production 

and collection (high-throughput) technologies, computational resources 

(e.g., high-performance computing and novel parameterization algorithms), 

and the development of curated biological databases and Internet search 



302	 Chapter 7

engines for seeking biological literature has made it possible to bring quan-

titative and computational methods to bear on the problem of developing 

an integrative analysis of the behavior of complex biological systems at all 

levels, from intracellular interactions to ecosystem processes.

Finding solutions to the problems posed by the field creates an essen-

tial epistemic interdependence (MacLeod and Nersessian 2016; Andersen and 

Wagenknecht 2013) among the participating fields, which is likely to remain, 

given the complexity and sophistication of the research required from each 

field. These fields comprise various engineering fields, computational sci-

ences (including applied mathematics), and biological sciences. ISB at pres-

ent does not have a unified vision of what a researcher needs to learn/know 

to be an effective problem-solver. In a general sense, the adaptive problem 

space of ISB is integrative in that, to formulate and solve problems, research-

ers draw from engineering and mathematical concepts, engineering modeling 

methods, computational algorithms and methods from applied mathematics 

and computer science, engineering technologies, and knowledge, concepts, 

and data, and, in some instances, experimental methods (bimodal strategy), 

from molecular biology. What is striking is that the various possible configura-

tions for research in this adaptive problem space are numerous and continue 

to emerge. Our labs provide a subset of possibilities. Still, we have gained 

important insights about interdisciplinary engineering-oriented research in 

this field.

Building computational simulation models of complex biological sys-

tems is the main epistemic practice in ISB. A major issue we witnessed in 

both our labs is that without effective collaborations, lack of biological 

knowledge and insufficient or inadequate data increase the complexity 

of the modeling work. Every problem requires modelers to adapt or tailor 

methodological strategies to transform it into one they have the potential 

to solve. Modelers are required, themselves, to search through the available 

biological literature and databases to build out the metabolic and signaling 

pathway diagrams of the system under investigation sufficiently to inform 

the modeling process. Usually, modelers start from a small piece of a path-

way provided by a collaborator or found in the literature and then fill it out 

by making “guesses” about “what is reasonable” to add/alter in conjunction 

with running simulations, with and without pieces, as they build the model. 

They need to predict what effects a modification of the biological pathway 

representation will have and locate where a modification is needed to solve 
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the problem. They try to check their guesses with their collaborators, but 

often find them unresponsive. Further, what resources are to be used to 

build the model are largely at the discretion of the modeler. Systems biol-

ogy lacks the established domain theories that, in physics-based sciences, 

provide representational resources and methods to build reliable in silico 

simulation models. As we illustrated in the G10 and C9 case studies, every 

model is a strategic adaptation to a set of constraints, ranging from those of 

the complexity of the biological problem to the fact that simulation experi-

ments and real-world experiments take place on vastly different time scales 

and, further, to the human cognitive constraints and to the challenges 

of collaboration. Most of these constraints cannot be eliminated, but our 

interviews with modelers and experimentalists did lead us to insights into 

limited learning interventions that might prove useful for enhancing col-

laboration, as I discuss in section 7.2.4.

Interdisciplinary “integration,” then, in the ISB context largely means 

infusing experimental data gathered from a range of disparate sources into 

the in silico simulation models as they are built with systems engineering 

concepts and methods that combine these elements into a dynamic synthesis. 

Ideally, the output of a stable and robust model or small ensemble provides 

understanding into the system-level phenomena, or at least insight with 

respect to control of selected features, as well as novel hypotheses to guide 

biological experimentation. “Integration” at the conceptual level also means 

a kind of dynamic synthesis, as one researcher noted: “The tasks of this new 

frontier require thinking beyond linear chains of causes and effects—thinking in 

terms of integrated functional entities; thinking in systems, networks, and models.”

We have sometimes characterized this kind of interdisciplinary field 

loosely as a “transdiscipline,” but definitions of “transdisciplinary” in tax-

onomies are vague and often contradictory and do not quite capture the 

nuances of ISB practices. The kind of interdisciplinary integration we wit-

nessed at the level of participating fields has features of what Peter Galison 

(1997) calls “intercalation,” where fields keep separate identities and prac-

tices, though it is possible for practices within one field or the other to be 

transformed in significant ways in their interactions. But the need to work 

partly in the field of the other is not captured well by his analysis, and the 

kinds of adaptive processes we found did not fit well into his, now custom-

ary, characterization of interdisciplinary spaces as “trading zones.” “Sym-

biosis” is perhaps a better characterization than “trade” of the relationship 
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among engineers, computational scientists, and bioscientists in the adap-

tive problem spaces of ISB research.

As we have seen, problem-solving in ISB requires the cognitive flexibility 

to manage the complexity of a wide range of constraints that influence 

the model-building process for a specific problem. In addition, the same 

modeler needs to be able to function in a highly adaptive manner to work 

on a wide range of biological systems. The lab G director maintains that 

modelers have the ability to tackle a range of biological problems because 

they have the “flexibility to recognize shared features of control/regulation across 

disparate domains,” which comes from experience with engineering sys-

tems. But that engineering understanding of control/regulation needs to 

be adapted to biological systems in order to transform intractable problems 

into potentially solvable ones. Problem adaptation is an iterative and incre-

mental process in which researchers search through and adapt strategies for 

representing the problem and avenues for solving it given the governing 

constraints. The researchers we investigated do not generally follow specific 

methodological norms but pursue whatever strategy looks like it will enable 

them to get a handle on the specific problem they have, usually tailored to 

the kind or quality of data for the system. The situation puts a premium on 

having on hand a range of methods and strategies, as well as innovation 

and creativity in methodological approaches. Modelers need to be able to 

use a range of heuristics and to experiment with multiple methods drawn 

from their backgrounds or the experience of the lab director. In pursuing 

diverse methodological options, individual modelers can contribute under-

standing about the value of different methods to the wider field. Because 

of the wide range of options to build and to fit models and their attitude 

of “seeing what works,” modelers need to anticipate failure and impasses 

and to look at these as resources for developing insight into the problem or 

direction of solution.

In ISB, methodological choices extend from specific low-level decisions 

by individual researchers about how to represent a reaction mathematically 

to much higher-level decisions by lab directors, such as how to organize 

their labs, whether to collaborate externally or integrate internally the vari-

ous requirements for model-building, and even to the manner in which they 

choose to conceptualize the goals and aims of systems biology. As we saw 

with lab C, for instance, a possible adaptation is to develop hybrid modeler-

experimentalists, that is, bimodal modelers. However, in the present situation, 
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wherein specialized modelers (mainly engineers, applied mathematicians, 

and physicists) and specialized experimentalists (mainly molecular biologists 

and biochemists) are the dominant participants, the standard methodologi-

cal choice is collaboration among specialists. As we have seen in chapter 5 

and as I discuss further in section 7.2.4, with little knowledge of one another’s 

fields, collaboration is fraught with difficulties. In the present state of the 

field, our research indicates the onus is on the modeler to be the boundary 

agent, who is required to step into the biological arena to build her models. 

Because the domain is continually shifting, however, our modelers all main-

tain that deep knowledge of a specific biological field would not be helpful. 

Thus, collaboration with experimentalists with deep knowledge of the biol-

ogy of the problem at hand is critical to the objective of system-level analysis. 

From the situations we investigated, and from reports from the wider field 

about its current state, it is clear that most researchers on either the modeler 

or experimentalist sides of the “collaboration” lack the interactional expertise 

and epistemic awareness needed for collaboration to be effective, and feel 

frustrated by this.

In the next section I look at specific challenges that arose with respect to 

collaboration for researchers in lab G (the “unimodal modeling” approach), 

and strategies we used to start to mitigate them. I focus on this first, because 

collaboration, and not the bimodal strategy, is the dominant approach to 

model-building in the present state of ISB. This situation creates an interde-

pendence that was expressed perceptively by a senior bioscientist who was 

just in the process of establishing a collaboration with lab G: “Team science is 

the only way it’s gonna work these days. Its gonna get hard to write a single inves-

tigator R01 [NIH grant] these days and expect to get it funded because everyone is 

now realizing the interconnectedness of everything. And for me to sit here and think 

that I can have all the expertise in my tiny little brain to do everything with all these 

approaches that I don’t understand at all is ridiculous. So, we really are trying hard 

to put together a research team. . . . ​So, you know, we gather data, we talk with [lab 

G director] about how these data need to be put together, and what kind of infer-

ences can he help us generate out of them. . . . ​You really need to have an interaction 

with people. . . . ​You’re gonna be much more on one side or the other. So, you need 

the other half of your brain [bioscientist] to be in another person [modeler]”

The push for the “team science” collaborative approach is the major 

direction in interdisciplinary science more broadly, especially as promoted 

by funding agencies (e.g., NRC 2015). However, productive “interaction with 
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people” in the other field is difficult to achieve. It proved to be the case even 

with this researcher who expressed the need so clearly. Thus, it is possible 

that the kinds of strategies we developed can be applied more widely in 

team science. Collaboration needs to be attended to explicitly, which leads 

to the second reason I focus on it, which is that the vivid responses of the 

student researchers to the experiences we devised show how even just a 

little attention to building interactional expertise contributes to cultivating 

the other epistemic virtues.

7.2.4  Challenges and Strategies for Collaboration in ISB

Across interdisciplinary fields generally, the dilemma is couched as whether 

to educate researchers as specialists or polymaths to meet their problem-

solving demands. Our investigations have led us to see the response to 

the “specialists or polymaths dilemma” as lying in compromises that are 

adapted to the specific situation of a research approach. Cognitive ethnog-

raphy provides a unique means to investigate the details of these compro-

mises and adaptations as they are made during the problem-solving process 

or diagnosed in response to problem-solving difficulties. In ISB problem-

solving, modelers and experimental collaborators both have the objective 

to produce a computational simulation model that should be biologically 

informative, especially with respect to providing experimental guidance. 

Our focus has been on modelers, but our analyses also have been directed 

toward their interdependence with experimentalists. Although the require-

ments for effective model-building in these contexts lie more toward the 

specialist end of the spectrum for both, we found that effective collabora-

tion requires more than cursory acquaintance with the collaborating field. 

Yet what we witnessed in the labs we investigated (and have been told by 

numerous other researchers is the current state of the field more globally) is 

that modelers have little understanding of the possibilities and constraints 

of experimental practices, and experimentalists have little understanding 

of the nature and requirements of model-building—and, I would add, nei-

ther has an understanding of the epistemic norms and values of the other.

Our strategy was to determine from the nature and challenges of the 

model-building practices we witnessed, and they discussed in interviews, 

what are some learning requirements, at a metalevel, for effective research. 

In analyzing the challenges of collaboration, we found it useful to form 

an understanding not only of needs, but also of what each side of the 
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collaboration viewed as the deficiencies of the other with respect to col-

laboration.8 Here I present a sampling of how some of the researchers, from 

each side, expressed their needs and perceptions of collaborators that were 

important for our choices about how to facilitate collaboration.

Our studies have identified several principal reasons for collaborative 

difficulties that result in significant challenges for the modeler. The mod-

eler’s primary need is for sufficient, high-quality data appropriate for the 

problem at hand. The collaboration usually starts with the experimentalist, 

who has become aware that modeling might help them get useful infor-

mation out of the data they collected. As one modeler cast the interac-

tion, the experimentalist approaches the modeler with “You’re a modeler 

and I do ‘systems biology.’ So, model these data for me.” The quotes around 

the term systems biology indicate the modeler recognizes there is a possible 

difference in understanding of just what that means or entails. But, from 

the modeler’s perspective, “the biologists produce the data they want. But those 

data are not actually what we want when we do parameter estimation—so there 

might be some gap between these two, between us. But even so, they don’t produce 

enough data—they don’t measure the concentration for example. And they have 

few kinetic data.” Models usually have specific parameter requirements, such 

as kinetic concentration and rate data for ODE models. However, modelers 

are usually not aware that to measure these kinds of data can be difficult, 

expensive, and time-consuming. As the experimental collaborator with the 

modeler just quoted told us, “The data they want from us is something that 

is not simple to generate. So, if they want kinetic rate for an enzyme, we have to 

purify that enzyme. Then we have to create all the conditions to measure it in vitro. 

That’s not a simple undertaking. That’s probably six months of work. . . . ​The 

second problem is, yeah, if we are going to . . . ​spend six months generating what 

they want, then we would like—we would need—to have something that’s going 

to come out of it.” As she viewed the situation, modelers, in general, are “not 

taking it to the step where it’s useful for the biologist.” Further complicating the 

situation, the modeler in this instance did not realize that, for her collabo-

rator, as a vascular biologist, to produce the kind of data she needed was not 

something she ordinarily did since it was not of value for her own research 

project. And, further, sometimes, as another experimentalist noted, “they 

ask things that are not biologically possible.”

The difference in the time scales of modeling and experimentation also 

creates an issue. On the one hand, as we saw with G10, the modeler can 
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wait around months for data. But, on the other hand, it often takes several 

years to build a productive model, and by the time the modeler comes with 

hypotheses for which they want the collaborator to conduct experiments, 

their experimental research program has moved on. As another experimen-

talist told us, such new experiments, “would be time consuming, and [cost] 

money and effort. Sometimes we already passed that point.”

On the other hand, modelers often expressed the view that experimen-

talists mainly do not understand the capabilities of models and the power 

of mathematical techniques to derive network structure and derive valuable 

predictions even from limited data through approximation. Further, they 

claim experimentalists fail to see the value and inferential power of the lit-

erature synthesis the model builds from years of data that experimentalists 

are no longer interested in looking at. Modelers contend that experimental-

ists often see them as just reproducing “old” data—or producing models that 

are “tautologies” that can offer no insight. Indeed, as an experimentalist told 

us, the modelers she was interacting with are “trying to model something pub-

lished fifteen years ago—well what are you going to do with that?” and modelers 

are modeling “for the sake of the model,” not of the experimentalist. Further, 

modelers often note how experimentalists are skeptical about models: “They 

think of it [model] as something that’s—just hooked up to—to, you know, match 

figures, . . . ​So, for them, it’s like you’re using your data and then plugging in some 

numbers to fit the output of your model to that, and then they would not pos-

sess a lot of faith in those models or what they predict.” One reason for lack of 

trust on the side of the experimentalists is that they view modelers as not 

understanding the complexities of biological research and its impact on the 

data they are using: “We know how complicated the system is . . . ​one change in 

experimental condition can totally change the result.” The modelers did often 

present a naive view of experimental research, for instance, “biology is mem-

ory” or “it’s not that difficult—like a recipe, when you cook.” Experimentalists 

also cast modelers as not valuing accuracy: “They are not really interested in 

actual numbers . . . ​it’s more like getting a sense than accurate.” At the same 

time modelers cast experimentalists as not understanding the importance 

of system dynamics and the reasons for why they model trends rather than 

exact numbers: “All they care is up/down—they don’t care dynamics,” as well 

as not understanding the model and its capabilities in general: “They treat 

it as a black box. . . . ​They will not get deep into the model’s detail because that’s 

maybe too complicated for them.” When there is significant misunderstanding 
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and productive interactions are lacking, each side ends up with a caricature 

of the other. In general, the lack of understanding and the frustration on 

both sides can lead to each positioning the other in unflattering and unpro-

ductive ways, which in turn impedes collaboration and building trust (see, 

also, Andersen, 2010, 2016; Andersen and Wagenknecht 2013). Further, we 

found that often each side positions the other as a service provider rather 

than a collaborator. The experimentalist requests the modeler to “model my 

data,” and in turn the modeler, as we frequently heard, “order[s] my experi-

ments” from them.

It is clear that experimentalists do not understand much about how 

models are built and are not comfortable with what they do know of mod-

eler practices, such as using data gleaned from a variety of experimental 

conditions, modeling trends in the data rather than exact data points, and 

making other abstractions. This lack of understanding often results in a lack 

of interest, not responding to queries in a timely manner even when they 

have requested the model-building, or, even, as we saw, being unwilling to 

part with unpublished data that the modeler needs in order to proceed with 

their request. On the other hand, modelers usually have no understanding of 

the experimental practices that have led to the data. We found that none 

of the modelers in lab G had even taken a biology class with a lab (except, 

of course, the bimodal postdoc)—and few in lab C. Their general attitude 

was that they could easily pick up any part of the biological knowledge they 

would need because it was “horizontally organized,” unlike mathematics and 

engineering, which are “vertical” in structure and require progressive learn-

ing. Whether this might be the case with biological subject matter or not, 

it is not the case for sophisticated experimental practices, which require 

coordinating multiple kinds of biological, skilled-based, and technological 

knowledge that takes years of experience to acquire.

As I noted earlier, there is not an agreed-upon approach for how research-

ers in ISB should be educated, as there was in the BME program. There are 

institutions, for instance, that are working to develop full modeling cur-

ricula for biologists, on top of their biological education, in response to the 

widely recognized collaboration problem. The educational context of the 

modeling labs we investigated required the ISB graduate students to earn 

their degrees in an engineering major, bioinformatics, or BME (only C9 in 

our study) since there is no ISB degree. This meant they needed to cover 

a range of required courses in those fields. Neither students nor faculty 
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seemed interested in extending the time to graduation. We decided that the 

most effective thing we could do in the learning dimension of our research 

on graduate education would be to propose or develop minimalist learning 

interventions that would facilitate smoother collaboration. Our strategy 

was to determine from the nature and challenges of the problem-solving 

practices we witnessed, and they discussed in interviews, what the impor-

tant learning requirements for collaborative research in ISB are, as currently 

practiced. Then, because each side stressed the limited time available to 

spend on work that was not strictly modeling or experimenting, we needed 

to determine how such learning might be achieved using a “small interven-

tions, big payoff” approach. In general, the issues for ISB epistemic prac-

tices around the theme of managing complexity that I identified in chapter 

5, create significant demands for all participants in the cognitive-cultural 

systems of ISB research. Our analyses identified three of the interrelated 

characteristics discussed in section 7.2.1—cognitive flexibility, interac-

tional expertise, and epistemic awareness—as most important to focus on 

for effective collaboration in this context..

At least in the current state of ISB (and quite possibly a necessary feature 

of this kind of research), the full “hybrid” curriculum is not desired as mod-

elers and experimentalists need deep training in one discipline, sufficient 

to be solely a computational scientist (engineer, applied mathematician) 

or an experimentalist (bioscientist, medical researcher). But to realize the 

full potential of ISB requires some degree of penetration of each kind of 

researcher into the field of the other. At a minimum this means that model-

ers need to learn to adapt what they know to complex biological problems 

across a range of areas, as well as learn to know what biological informa-

tion they need and how to seek and evaluate it, and that experimentalists 

need to learn enough about the nature and potential of modeling biological 

systems to produce the kind of data needed, and both sides need to know, 

as one experimentalist put it, “the right kinds of questions” to ask about how 

each can contribute to the model-building process in order to further a 

collaboration. Within our project we experimented with two learning inter-

ventions that aimed to develop, especially, the three interrelated character-

istics early in the student’s research career in order to mitigate some of the 

struggle of collaboration.

Because the model is central in ISB problem-solving, the engineers/mod-

elers are taking the lead in moving the field forward. As we saw, modelers 
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do more than just feed biological data into a model and provide predictive 

outcomes to experimentalists. They have to understand how to search the 

literature to find relevant data and build out the biological pathway, both 

of which require discernment and judgment about biological phenomena, 

about what it is feasible to do in experimentation, and about the reliability 

and relevance of the data, as well as the ability to discuss problems with 

experimentalists as they build the models. On the other side, sophisticated 

biological experimentation requires equally specialized training, but to 

be able to collaborate effectively with modelers, experimentalists need to 

understand the basics about how a model is built so as to, at the very least, 

devise experiments to produce the kind of data modelers need to construct 

and to test, experimentally, informative models.

We undertook two interventions with the newer researchers in our labs 

that proved quite successful, which I will discuss briefly. On the modeling 

side, as we saw, modelers develop cognitive flexibility in dealing with bio-

logical systems not through taking numerous biology classes, but through 

efforts to recast phenomena from disparate biological domains in terms of 

features of engineering systems, especially control and regulation. What 

biology classes they do take are usually theoretical or bioinformatics classes, 

without labs, so they have little understanding of how biological data are 

produced, which creates a major impediment to collaboration. We were 

told that our initial proposal—a full semester rotation in a biology research 

lab, which we still think a good strategy—would take too much time away 

from modeling work. We proposed, instead, an intensive “experimental 

summer camp” experience for beginning modelers, in which they spend a 

month in an experimental lab engaged in a real piece of research to learn 

hands-on what it takes to design and execute experiments, as well as some-

thing of the way experimentalists think about biological phenomena. The 

lab G director chose two modelers to spend the month at a laboratory work-

ing on yeasts with which he had a long collaboration. The modelers were 

not absolute novices to biology since they had been conducting the lit-

erature searches and building the pathways for about a year, as I discussed 

in chapter 5. However, they had no idea of the complex environment of 

a biosciences lab or sense of the nature and costs (time and money) of the 

experimental practices through which data are collected and analyzed. One 

was a telecommunications engineer (G16), the other a mechanical engineer 

(G5). G16 had no relation to the lab, but G5 had been collaborating with 
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them for over a year. Both students came back excited about their experi-

ences, each with a collaborative experimental paper under way from the 

research they had undertaken. It is instructive to quote highlights from our 

follow-up interviews from each about what they felt they had learned. Both 

were surprisingly reflective and articulate about this.

G16 contrasted her before and after understanding of the experimental 

procedures she had previously viewed as “like recipes”: “You are looking from 

far away. You just see this person is just going into the lab and pipetting, and that’s 

not interesting and why would you do that? But then when you get it, you see there 

are a lot of reasonings going on and they are involved in their own sort of culture.” 

She also expressed that her hands-on experiences, for instance, “the stuff I 

saw—I actually pipetted a little bit,” made her “feel more self-confident in talk-

ing to biologists.” In addition, she learned important things about her own 

practices. For instance, she had not understood why the lab director kept 

telling her to model trends in the data, not data points. She now under-

stood why: “Right now I would say there’s a lot of human error in there. . . . ​It’s 

both about the reliability of the data and the types of errors.” Further, she was 

able to leverage her brief experiences to develop a more complex metalevel 

awareness of what she would need to know to collaborate better. As she 

told us in an extended reflection in which she appeared to talk to a poten-

tial experimental collaborator, “We need to be able to communicate—we need 

to have an idea of what kind of experiments are done. . . . ​Their area of research 

is very limited. They just know some sorts of experiments they have in their labs 

with the equipment they have. And then you sometimes need to include someone 

else in the project, to do some other part for us to build a dynamic network of 

this pathway, this specific organism, we need this kind of data. If we don’t have 

it, we can’t. And then, ‘I’m a modeler, you’re a biologist, you don’t do that type 

of experiment. Who do you think could do that?’ And then ‘how much do you 

think it will cost?’ I can ask a question from you, but I need to have an idea that 

such a thing exists to be able to think about or suggest it at all.” Perhaps most 

importantly, she had come to realize, “So sometimes, like in a month, you just 

change inside. It’s not about the exact things you learn—it’s just knowing how to 

learn stuff.”

G5 had already been collaborating with that experimental lab but found 

himself quite surprised by what he encountered when actually working 

in the lab. A major revelation for him was to understand that it is “pretty 

hard to get time series data. Why they so focused on one pathway, one gene, one 
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mutant—it’s hard to imagine how hard it is to pull out.” He recounted: “And it’s 

like—oh yeah and I think that the techniques we have now are still very limited. So, 

I spent two years to realize that the gene has strong thermal tolerance phenotype, 

but it’s like I know the gene is in the very bottom of the cells and when we knock 

it down the cell can’t grow well under heat stress. I spent almost three weeks [of 

the four at the lab]—and what happened between the phenotype and the thermal 

tolerance behavior and the gene, I have totally no idea. And thousands or more 

than thousands of pathways or relationships between them—I spent three weeks 

to realize these things. That there are many, many things that are still unknown. 

And each step takes time.” He, too, discovered why the lab director had told 

him to model trends: “They generate data so I can use it right. After this month, 

I need to reconsider the data I have because there are a lot of steps that might cause 

the inaccuracy of the data. I need to focus on the trend on the data rather than 

the exact value. The exact value is not that reliable, I think.” He also learned he 

needed to approach the experimental literature differently, using his new 

skills: “[Before]I just find a paper and read it and usually believe the results—used 

to skip over the methods section—now I look at experimental design as part of 

evaluation.” Further, he felt he had a significant change in perspective on 

his own project—and possibly on what systems biology is about: “So, before 

I, before this trip I totally focused on the mathematical problem—so how to make 

the model, how to process the data, all mathematical things. But now I can start 

to think about the links between my model and real world—it’s not a quantitative 

behavior. It’s like a property of the cell.” When we asked whether he thought 

the experience would make him a better modeler, he said there had not been 

enough time since returning to say, but, importantly, he now felt confident 

he could alter the way the collaboration had been going. Before, there was 

“zero interaction—I only got the dataset they published in 2004 and that’s it.” 

Now, he envisioned, “Yes, it really changes things because, now if I have any 

problem about the data, I can just ask. Before I feel like I work alone.”

In sum, the modelers described the following gains: increased self-

confidence, comfort with experiments, and some understanding of experi-

mental procedure; enhanced ability to anticipate the needs and questions of 

experimentalists, to understand experimentalist reasoning processes, and to 

evaluate experimental literature; and new appreciation for the difficulties/

constraints of experimentation and the possibilities of errors in the data. The 

latter helped them to relax their engineering values, which favor precision, 

and to understand why their adviser kept telling them to model trends, not 
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every data point. The outcomes suggest it would be even more valuable to 

build the full semester experimental rotation into the curriculum.

On the experimentalist side, learning about model-building cannot be 

achieved by visiting a modeling lab. Hands-on experience requires a more 

structured approach. Fortunately, the department was interested in devel-

oping a new introductory graduate course in biosystems modeling. As 

envisioned, students from the biological sciences would develop concep-

tual understanding of modeling and basic modeling skills while working 

on systems biology problems with engineering or applied math students, 

who would be learning to adapt their engineering knowledge and skills to 

model biological systems. Wendy Newstetter worked with both lab direc-

tors through several iterations of the course. It took a while for a significant 

number of biology students to take the course, and during our study the 

only one was from lab C. It was C11, the biologist lab manager and research 

technologist, who was just transitioning to a PhD student. At this point she 

anticipated conducting only experimental research for her project. Given 

that all the other members of her lab were only modelers or bimodal, she 

said she took the course in order to get a better sense of what modeling was 

about. She cast this move as “going over to the dark side,” since her role as the 

sole biologist within the lab had positioned her as the staunch defender of 

biological practices when they were treated dismissively by the modelers. 

In an early interview as she was taking the course, she volunteered that she 

was beginning to rethink her PhD project in terms of adding a modeling 

component: “I’m trying to stop myself from going to [lab director] and suggest-

ing it actually (laughing). Every time I come out of the class and I’m like ‘oh, this 

is fun, I learned something.’ I want to go to her and go ‘I want to do modeling,’ 

but then I think I might regret it later, so I’m giving it some thought (chuckles).” 

In the end (after our study concluded), she did develop a modeling dimen-

sion, becoming a bimodal researcher from the opposite direction from C9.

We interviewed her weekly as she was taking the course. It was interesting 

to see how, throughout the course, she experienced it through the lens of 

her earlier, unsuccessful research collaboration with a modeler in lab C. Even 

early in the course, she stated, “You know I wish I had taken this class two years 

ago. I wish he and I had taken it together. Because we would have looked at each 

other and gone ‘oh, I get it, I know what you’re doing now.’ And it would have been 

helpful for me to understand what kind of data he needed, to understand what kind 
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of questions he should have been asking of me. . . . [I] didn’t have insight into know 

exactly what kind of data would be useful to him. . . . ​And I think it is hard for him 

to explain it to me because he didn’t know what I had to like go through to get the 

data. . . . ​It’s funny because he’s starting to do experiments now too, so I think he 

figured out the same thing from his end. It’s easier if you have more knowledge on 

the other side.” The text I put in boldface is interesting from the perspective of 

interactional expertise because she now felt she understood what a modeler 

needs to elicit from an experimentalist with respect to the data requirements 

for a model. She continued to think about the requirements for collaboration 

throughout the course. Toward that end, she stressed the importance of hav-

ing done coding herself now: “I wasn’t sure how he like converted what I gave 

him into something that could be put into code. . . . ​Now I’m going ‘Oh, that’s what 

he wanted. That’s what he needed. Oh, OK, I wish I had known that. . . . ​I would 

have had better data for him’.”

She had coded only a little in MATLAB before, and had also taken math 

as an undergraduate, including calculus, and so had some experience with 

differential equations, but “didn’t realize what they were used for” until she 

built ODE models. In her biological training, with a MS in ecology, she 

had thought of math not “in terms of computers and math” but in terms of 

what she called “counting” for instance, “like how many birds do I have, how 

many bunnies, how many wolves. . . . ​We think of it as boring stuff you have 

to get through to get to the interesting, exciting bunnies and wolves.” Now, she 

described a new awareness of the affordances of models and a new under-

standing of math for biological analysis—as a flexible “tool” for “actual real-

world application.” She also reflected on the different epistemic norms and 

values of biology and modeling, and how it was a struggle to negotiate 

between them in her thinking: “Biologists tend to think in a lot of details and 

it just seems there’s no way you can build a model with all these details in it . . . ​

it’s hard for me. I have to like try and cut out a lot of things in my head when I 

think about how I would go about modeling something . . . ​because what I’ve been 

trying to do before is get all the details and not make any assumptions. It’s like 

my whole training was like ‘don’t make any assumptions about what this will be.’ 

And if you’re modeling you have to start by making an assumption, ’cause other-

wise you don’t know where you’re going to start. It’s like ‘I’m gonna assume this 

system is going to behave similar to this’.” She also noted that coming from 

biology to modeling might be the reason she was thinking of her models in 
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terms of their biological subjects, for instance, the model she was building 

of cystic fibrosis for the class: “I think of the model as a patient. . . . ​I don’t 

think of it as trying to get the model to work as much as, ‘but this would kill the 

patient, so I can’t do that.’ I think of [former collaborator’s] things in the same 

way. I think of his model as a little bit of a cell.” So, now, with her intimate 

experience of model-building (cognitive partnership), she was anthropo-

morphizing not only the cells, but also the models. In an interview after 

the course, she reported having a split-brain experience with respect to her 

attitudes: “I’m a changed woman. Now most of my brain is going ‘what? Why 

are you getting rid of a data point?’ and the other part’s going ‘look a smooth 

curve!’” Finally, she felt it had been “beneficial” to have “people from different 

points of view take the same class, because we get the other side and hopefully get 

some intuition about both. I had no intuition about what a mathematical func-

tion could be used for. And then there are some people who have no idea about 

what might possibly be going on in a biological system. You need both if you’re 

going to model. You need to know both.” In sum, it was clear that by the end of 

the course she had developed sufficient familiarity with concepts, methods, 

and techniques for building systems biology models, even though the mod-

els were simple in comparison to what we saw in actual practice, to have a 

much more successful collaboration than prior to taking the course—and 

felt confident she could do so.

Admittedly, our samples are small, but at the very least they provide 

a “proof of concept” for the “small interventions, big payoffs” approach 

through which to help each side penetrate, however slightly, into the 

domain of the other. Although only a start, our findings suggest that 

specific, time-limited learning experiences are productive for cultivating 

characteristics needed for more effective collaborations, better reasoning, 

greater awareness of the affordances of the other’s methods, and enhanced 

ability to reflect on both one’s own perspective and that of the other. These 

researchers now had the capabilities to be effective boundary agents with-

out needing the deep hybridization of the bimodal approach or that BME 

aspired to. In sum, even small, targeted learning interventions can have big 

payoffs to benefit collaboration, and thus effective problem-solving poten-

tial, in the ISB research space. It’s conceivable that this approach would 

work in other interdisciplinary spaces as well.
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7.3  Summary: “I Get It Now—I Know What You’re Doing”

The goals of our project were multifaceted, but a major one was to investi-

gate emerging interdisciplinary epistemic practices around problem-solving 

in frontier research laboratories in the bioengineering sciences, with an eye 

toward facilitating such research with situation-appropriate learning expe-

riences. Cognitive ethnography provided the means to fathom both the 

nature of interdisciplinary problem-solving practices and how these are 

enacted in situ, in our cases, with respect to innovative model-building envi-

ronments. Importantly, it provided the means to fathom ways in which the 

cognitive, social, material, and cultural dimensions of epistemic practices 

are integrated in model-building. We had no hypothesis about the nature 

of the interdisciplinarity we would encounter when we entered the BME 

labs. What we learned from our initial interviews, observations, and discus-

sions with faculty constructing the fledgling BME program was both that in 

these labs engineers were tasked with conducting basic biological research 

through building living in vitro simulation models, composed partly of cells 

and cellular materials and partly of engineered materials, and that the fac-

ulty wanted to build an educational program that would require students 

to “integrate” all three dimensions of BME from the outset. In the chapters 

on the BME labs, we saw how hybridization is achieved for researchers and 

devices through processes of interlocking engineering and biological con-

cepts, methods, and materials in order to build in vitro model-systems and 

conduct experiments that simulate selected biological processes.  We partic-

ipated in developing learning environments—classroom and instructional 

lab—for a novel curriculum that aimed to foster this kind of hybridization 

in BME problem-solving.

The preliminary research for preparing the grant proposal for our inves-

tigation of the ISB labs led to our hypothesis that “integration” in these labs 

would need a different characterization from the sort we had encountered 

in BME. Building systems-level computational models requires modelers 

to have both a sophisticated understanding of systems engineering con-

cepts and the ability to adapt high-level computational and mathematical 

methods that have been developed for other purposes, as well biological 

collaborators who can conduct sophisticated, highly skilled wet-lab bio-

logical research to produce the requisite data. We found that the nature 

of the systems-level problems formulated in the emerging ISB field not 
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only requires collaboration, but also that, at least to some extent, partici-

pants engage with the practices of the other fields, with little training to 

do either in the present state. The problem-solving situation in ISB cre-

ates an essential epistemic interdependence among the collaborating fields. 

The chapters on the ISB labs showed how it falls on the modeler to man-

age the complexity of the problem-solving process, which includes that 

the modeler determine how to adapt engineering concepts and methods 

to biological problems and how to find the biological data necessary to 

build, simulate, and test their models. Successful collaboration requires, at 

the very least, that experimentalists understand the data needs for building 

and testing systems models and that modelers understand the conditions 

and constraints under which data are collected. We developed minimalist 

strategies that would cultivate at least the chief interdisciplinary virtues we 

had determined to be required for effective collaboration in ISB.

Overall, the cognitive ethnographic research discussed in this book estab-

lishes that a method that was pioneered to examine cognitive practices in 

areas where problem-solving tasks and goals are largely well-defined can 

be extended fruitfully to investigate the open-ended problem-solving envi-

ronments of emerging interdisciplinary sciences and engineering. Indeed, 

cognitive ethnography turns out to provide the primary means to develop 

nuanced, fine-structured analyses of the epistemic practices of varieties of 

interdisciplinarity as they are created and enacted in real-world, real-time 

situations. It provides a unique granularity for fathoming the nature and 

challenges of these exploratory, incremental, and nonlinear problem-solving 

practices, their development, and the epistemic principles guiding them. It 

can yield insight into how methods, norms, and standards come to be jus-

tified, and, thus, into why and to what extent it is reasonable to consider 

the fruits of such research to be trustworthy. And, as we have demonstrated, 

insights gleaned from intensive case studies can be used to develop strategies 

for facilitating specific varieties of interdisciplinary learning, integration, and 

collaboration. The research that has led to conclusions such as these started 

in a conversation with three visionary engineers who approached me with 

a wish for support to develop an educational program. Years after that con-

versation, this research has, in many respects, made me a “changed woman” 

as well.



Chapter 1

1.  I use both “I” and “we” throughout the book. “I” indicates what I see as my 

individual contribution to the project, which consists primarily in its framing and 

in drawing on, and extending, analyses I have developed in previous research. “We” 

signals the inherently collaborative nature of the project, including data collec-

tion and analysis. As I said in the acknowledgments, it is impossible to disentangle 

specific contributions in our analyses. However, when another group member con-

tributed significantly to a specific analysis and interpretation, I will note that they 

should be credited as co-analyst.

2.  I discuss our rationale for investigating bioengineering sciences practices later, 

but here I note that I am including them under the rubric of “scientific practice” 

because I am concerned, mainly, with their epistemic practices. These hybrid fields 

aim at creating both biological knowledge and engineering applications, and so 

differ from conventional engineering fields in having epistemic goals (see also Boon 

2011). One of our objectives has been to lay out the epistemic structure of biological 

engineering.

3.  Woody (2014) locates the “practice turn” in philosophy in a concern with experi-

mentation in the mid-1980s (e.g., Hacking 1983; Franklin 1989); however, there was 

also a simultaneous emerging concern with theoretical and conceptual practices 

(e.g., Gavroglu and Goudaroulis 1989; Gooding 1990; Nersessian 1984). The Science 

and Philosophy book series (Nijhoff/Kluwer) I created and began editing in 1984 

was dedicated to the study of theoretical, conceptual, and experimental dimensions 

of practice.

4.  Some sociocultural studies in the late 1990s also moved toward accounts that can 

be read as taking note of cognition, such as Peter Galison’s (1997) concern with the 

“image” and “logic” traditions in the material culture of particle physicists, Karin 

Knorr Cetina’s (Cetina 1999) analysis of scientific practices as part of “epistemic cul-

tures,” and Hans-Jörg Rheinberger’s (1997) analysis of experimentation in molecular 

biology as producing “epistemic things.”

Notes
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5.  Classic references for these perspectives are cognition as embodied (Barsalou 

1999; Johnson 1987; Lakoff 1987); artifact-using (Clark 1998; Hutchins 1995a; 

Norman 1988); and situated (Greeno 1989a; Lave 1988; Suchman 1987).

6.  Classic references for these perspectives are distributed cognition (Hutchins 

1995a; Hollan et al. 2000; Kirsh 1995, 2001; Kirsh and Maglio 1994; Norman 1991); 

distributed intelligence (Pea 1993); activity theory (Cole and Engestrom 1993); 

situated action (Lave 1988; Greeno 1989a,b); and extended mind theory (Clark and 

Chalmers 1998; Clark 1998).

7.  It is important to underscore that Hutchins’s position is that distributed cogni-

tion is an analytical framework and not an ontological claim as advanced by Andy 

Clark with his “extended mind thesis” (Hutchins 2011).

8.  For some time learning scientists have been examining science practices from 

a D-cog perspective; see especially Hall et al. (2002) and Hall et al. (2010). More 

recently, a handful of studies in the science studies fields and cognitive science have 

examined problem-solving in scientific research from a D-cog perspective (see, e.g., 

Alac and Hutchins 2004; Becvar et al. 2008; Charbonneau 2013; Giere 2002; Good-

win 1995), but they have not explicitly addressed the ways the framework itself 

needs extension.

9.  Hutchins has stated in several talks I have heard that “embodied brains” are par-

ticipants, without specifying what the brains contribute. Although I will not address 

this issue beyond what I say about the capacity for mental modeling/simulation 

here, such specification is an important open problem for the distributed cognition 

framework, since the necessity for there to be a human in the system to make it 

a cognitive system provides an important contrast with actor-network theory with 

which it is sometimes conflated (see also Giere 2002). Learning sciences research 

by Rogers Hall (Hall et al. 2002; Hall et al. 2010) and Charles Goodwin (1995), in 

particular, also seeks to elucidate the mental resources at work in problem-solving 

within the D-cog framework.

10.  The literature on science listed in note 8 does attend to this dimension.

11.  Kirsh and Malgio (1994), Kirsh (1995, 2001) Hall et al. (2010), and Chan-

drasekharan and Stewart (2007) provide important exceptions.

12.  Classic references for this research are discourse and situation modeling 

(Johnson-Laird 1983; Perrig and Kintsch 1985; Zwaan 1999); mental animation 

(Hegarty 1992; Schwartz 1995; Schwartz and Black 1996); mental spatial simulation 

(Finke 1989; Kosslyn 1994; Shepard and Cooper 1982); and perceptual simulation 

in embodied mental representation (Barsalou 1999; Brass et al. 2002; Bryant and 

Tversky 1999; Glenberg 1997).

13.  Cetina suggests that the collective knowledge in the Large Hadron Collider proj-

ect could be considered as “a sort of distributed cognition” (1999, 173–174) with 
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no further explication. As Ronald Giere (2002) has pointed out, she seems to mean 

“collective cognition” in the sense of Durkheim, and not in the sense of cognitive 

science that we have been discussing. Her notion comprises people, but not the arti-

facts, which perhaps explains why she does not cast the microbiology lab as a D-cog 

system, which on my account it is.

14.  Sociological and anthropological ethnographies of research labs took off in the 

late 1980s (see, e.g., Latour and Woolgar 1979; Knorr-Cetina 1983; Lynch 1985; 

Traweek 1988) and continue to the present day (see, e.g., Roosth 2017). Cognitive 

science investigations began in the 1990s. Kevin Dunbar (1995) pioneered what 

he called the in vivo/in vitro method of investigating scientific cognition (under-

stood in the traditional sense of individual cognition) in research labs as a source 

of hypotheses to then be brought into the experimental psychology lab for rigorous 

investigation. Cognitively oriented anthropologists and learning scientists investi-

gated lab practices more in line with our investigations relating cognition and cul-

ture (see, e.g., Goodwin 1995; Hall et al. 2002; Ochs and Jacoby 1997). Only quite 

recently have philosophers begun to investigate epistemic practices in research labs 

through observations, as embedded participants in the research, or with interviews 

(see, e.g., Andersen and Wagenknecht 2013; Bechtel and Abrahamsen 2013; Bursten 

2015; Carusi et al. 2012; Green 2013, 2017; Hangel and Schickore 2017; Leonelli 

2016; Loettgers 2007; Sheredos et al. 2013; Wagenknecht et al. 2015). We began our 

ethnographic investigations in 2000.

15.  Kevin Dunbar, as noted earlier, has showed the fruitfulness of ethnographic/

observational methods for even the traditional cognitive science perspective. He col-

lected data on cognitive practices of scientists in research labs and then tested his 

hypotheses about cognitive processes (e.g., the role of analogy in problem-solving) 

in controlled experiments in the psychology laboratory on nonscientist subjects 

(see, e.g., Dunbar 1997; Dunbar and Blanchette 2001). Dunbar’s research, primarily 

on research labs in industry, showed a considerable amount of concern with issues 

of priority, as well as conflict among researchers and among researchers and labs 

they viewed as competitors, as one also often finds in the STS analyses of research 

labs. Our research has been criticized as painting the atmosphere in the labs as “too 

nice” or “too harmonious.” However, over fifteen years of nearly daily interaction 

with them, our ethnographers noted little conflict and drama among researchers in 

these labs, or in their attitudes toward other labs conducting similar research. There 

were, of course, the normal frustrations and annoyances of human interaction, but 

these did not appear to spill over into the research arena. In general, they showed 

respect, good will, and a cooperative spirit when engaging in research and discus-

sion. One possible “explanation” for the difference that comes to mind is that these 

labs are populated by engineering scientists, and engineers tend to be pragmatic—a 

conclusion I have arrived at not only from this study but also from having spent 

most of my career in engineering environments (MIT, Case Western Reserve, and 

Georgia Tech).
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16.  The quote is from Hutchins’s response to the highly favorable review of his 

1995 book by Latour (in Keller et al. 1996). In it, Hutchins counters the claim made 

by Latour that with D-cog, cognition has been eliminated or reduced to sociocul-

tural factors. I concur that Latour fundamentally misunderstands or misrepresents 

the central point of D-cog: cognitive processes comprise human cognitive capacities, 

material resources, and sociocultural practices, and so, in no sense has cognition 

been eliminated. Empirical research in environmental perspectives across the board 

establishes the inherently cultural nature of human cognition.

17.  Although some ethnographers might object to such abstraction, including those 

in STS, Hutchins’s position is in line with that of Geertz, who argued that ethno-

graphic analysis has a “double task”: “to uncover the conceptual structures that 

inform our subjects’ acts . . . ​and to construct a system of analysis in whose terms 

what is generic to those structures, what belongs to them because they are what they 

are, will stand out” (Geertz 1983, 57).

18.  The continual development of all dimensions of these research labs over many 

years is the reason why I have sometimes called the method “cognitive-historical 

ethnography.”

19.  Additional kinds of analyses, for example, with respect to social positioning 

and identity, gender, emotion and affect, epistemic identity, and learning can be 

found in the publications of the researchers in our group across a range of fields—

for instance in the book, Science as Psychology: Sense Making and Identity in Scientific 

Practice, cowritten by Lisa Osbeck, Kareen Malone, Wendy Newstetter, and myself 

(Osbeck et al. 2011). The book addresses psychologists and philosophers and was 

awarded the William James Book Award by the American Psychological Association.

20.  We had additional questions related to the learning practices and challenges 

in the different kinds of interdisciplinary fields as part of our NSF-funded research.

21.  This research was conducted under an IRB protocol in which the participants 

are to remain anonymous. I have designated the labs by a letter and the researchers 

in each lab have been given a code, for example, lab A, researcher A10.

22.  I discuss the BME labs in the past tense because both are now closed.

23.  We are using the term “device” in the way the researchers in the BME labs 

referred to their in vitro simulation technologies. This notion differs from the 

notion of “inscription devices” that Latour and Woolgar (1979, 51) introduced. 

Their notion refers to technologies for creating figures or diagrams of phenomena. 

The BME devices are sites of in vitro simulation and experimentation. Further pro-

cessing with instruments is needed to transform the information they provide into 

visual representations or quantitative measures.

24.  Recently, the extent and variety of the current fields adapting ethnography and 

qualitative methods to their interests, goals, and epistemic norms and values led the 
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Journal of Qualitative Research to set up a task force to develop guidelines sufficient to 

evaluate methodological integrity in data collection and analysis across fields when 

reviewing journal submissions and grant proposals. Levitt et al. (2017) provides a 

useful conceptual analysis of the task force recommendations as they can be used to 

guide both the design and review of qualitative research.

25.  Each of the researchers on this project already had an interdisciplinary back-

ground when they joined. As “instruments” of data collection and analysis, our group 

brought a wide range of perspectives to the project: philosophy of science and history 

of science (physics, biology, psychology), cognitive science (AI, cognitive psychol-

ogy, philosophy), linguistic anthropology, physics, mathematics, learning sciences, 

human-centered computing, theoretical psychology, gender studies, psychoanalysis, 

architecture, and industrial design. We have analyzed data through many of these 

lenses and have published several contributions in fields represented by the interests 

of group members beyond philosophy of science and cognitive science.

Chapter 2

1.  In the BME labs, the researchers used the word “device” to refer to their in vitro 

simulation models. This led us to believe that devices were a specific kind of model. 

Only later, in the context of a different usage of the word in an ISB lab, did we find 

out that, in bioengineering, “device,” in general, means any engineered artifact that 

interfaces with biological entities, as discussed in chapter 6.

2.  See Vermeulen et al. (2009) for their refinement of Goodman’s definition.

3.  To be clear, I am not saying researchers in other contexts have to know the 

historical processes through which a device or model-system has been developed 

and has attained its credibility in order to use it. By the time of our research, for 

instance, the flow-loop device that lab A had developed was in use in many other 

labs and, recall, the dish model-system was developed in a lab other than lab D, and 

a few other labs were also using it. These researchers do have to know what features 

it exemplifies (or can be made to) and why this selection of features is warranted 

(e.g., simulates first-order forces) and to evaluate the relevance of these for their own 

research goals.

4.  I use italics throughout to indicate I am quoting a researcher from transcript 

material. I use the convention of ellipses ( . . . ) to indicate text that has been omit-

ted, without changing the meaning, and em dashes (—) to indicate a pause in 

speaking.

5.  That the researchers all use “over” instead of “through” the lumen (which is tubu-

lar in in vivo) is an interesting slip they made all the time. I suspect they made the 

mistake because they were thinking in terms of the in vitro simulation, in which, as 

we will see, the tubular constructs are cut open and laid flat in the flow chamber.
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6.  Although cumbersome, it is possible to cast this process using Hutchins’s char-

acterization of information flow in a D-cog system: the forces generated by the 

flow loop represent shear stresses (to a first-order approximation) as it manipulates 

the endothelial cells, which, generates conditioned cells that researchers manipulate 

with instruments that generate quantitative and qualitative information in various 

representational formats that propagates through the D-cog system as it performs a 

problem-solving task. We did not find Hutchins’s characterization of a D-cog system 

generating, propagating, and manipulating representations a useful way to analyze 

the dimensions of the D-cog systems of the research laboratory we were interested 

to understand, but it was useful for constructing our diagrams of various model-

systems, such as figure 2.6, which I have pared down for use here.

7.  No doubt, by now the reader has noticed that researchers frequently speak of their 

models with anthropomorphic language. We found this to be the case across all of 

the labs, and not only with living entities and systems but also with computers and 

other technologies that performed as cognitive-cultural artifacts. And, contrary to 

what might be expected, novice researchers rarely used such language, but advanced 

researchers frequently did. We took this fact to indicate that such anthropomorphiz-

ing is not careless use of language or a sign of naivete, but rather signals a growing 

understanding of the artifact as a partner in problem-solving. Such utterances led 

us to develop the theme of “cognitive partnership,” which can be formed with 

other researchers and with artifacts of particular salience to the research, that is, the 

cognitive-cultural artifacts. In the case of such artifacts, researchers often attributed 

agency to them. Such attribution by a researcher is different from the artifacts actu-

ally having agency (though of course they interact), as proposed by actor-network 

theory. We have developed the theme of cognitive partnering extensively in previous 

research, and I will not focus on it in this book (see Osbeck and Nersessian 2006; 

Osbeck and Nersessian 2013; Osbeck et al. 2011). There we also demonstrate the 

researchers’ affective engagement with the entities and objects of their research we 

witnessed, namely cells and models, does not taint science, but rather helps to make 

it possible.

8.  Anecdotally, I was seated next to a neuroscientist during a presentation by the lab 

D director to a cognitive science audience. Afterward I asked him what he thought 

of the research program. He responded along the lines that although the dish was a 

tremendously simplified model, if they could induce learning in the network with-

out all the other parts of a brain neuroscientists believe are necessary for learning, 

they would have demonstrated something very important for the field.

9.  MEAs currently in use in the field have around 26K electrodes and allow research-

ers to do more finely grained recording of the activity of individual neurons.

10.  When MEArt was exhibited as mechanical art installation, the researchers called 

it “The Semi-living Artist,” and described it as follows in the exhibits: “A geographi-

cally detached bio-cybernetic research and development project exploring aspects 

of creativity and artistry in the age of new biological technologies from both artistic 
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and scientific perspectives. The installation is distributed between two locations in 

the world. Its brain consists of cultured nerve cells that grow in a neuro-engineering 

lab in the US. Its body is a robotic drawing arm in Australia (or wherever exhibited) 

that is capable of producing drawings. They communicate via satellite. The brain 

and the body communicate in real time with each other for the duration of an exhi-

bition” (https://www​.symbiotica​.uwa​.edu​.au​/).

11.  Hesse called these features “properties,” but I use “features” to capture that 

properties, relations, and relational structures, as well as behaviors can be mapped.

12.  Douglas Hofstadter provides an exception. Although his creative representation-

building AI programs are quite simple, he does argue that these processes are a sig-

nificant dimension of analogy in both mundane and scientific analogies (see, e.g., 

Hofstadter 1995). In my 2008 book, chapters 5 and 6 provide a discussion of the issue 

of representation-building in analogy with respect to the cognitive science literature.

13.  As will be seen in chapters 3, 5, and 6, much of this account can be extended to 

building computational models of complex biological systems.

14.  In my 2008 book I advocated that although the word “abstraction” is commonly 

used for separate processes alongside “idealization” and other abstractive notions, 

this is confusing. It is better to reserve “abstraction” for a comprehensive notion 

comprising various processes, including idealization, approximation, simplification, 

limiting case, and generic modeling. All of these processes can play a role in model-

building as a means to manage the complexity of modeling biological systems.

15.  This concentration was equally important to our educational research goals, 

since building devices for the purpose of model-based simulations is their primary 

epistemic practice.

Chapter 3

1.  I introduced the view of conceptual change in science as a problem-solving 

process early in my research on the field concept (Nersessian 1984). Only later, in 

the course of my research into cognitive science, did I discover that the Russian 

psychologist Lev Vygotsky (1962) held a similar view about mundane concepts. In 

characterizing concept formation during learning (acquisition of culturally extant 

concepts), Vygotsky argued that a concept emerges and takes shape in the course 

of a complex operation aimed at the solution of some problem. He also advanced 

the notion that concept formation is an ongoing dynamic and sociocultural process 

in each use or acquisition of a concept. We both hold that concepts are neither 

completely fixed units of representation nor solely mental representations, but arise, 

develop, and live in the interactions among people as they create and use them.

2.  Christopher Patton was trained as an ethnographer on this lab and had primary 

responsibility for data collection over the course of the years discussed here. He was 

the one who alerted us that something important seemed to be taking place with 

https://www.symbiotica.uwa.edu.au/
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the building of the computational model, which enabled us to capture additional 

relevant data as the case and our analysis of it unfolded. He and I did the first analy-

sis of the case together. I later did a reanalysis, based on additional interview data, 

with Sanjay Chandrasekharan, and what I present here is an elaboration, which 

incorporates more data, on the work of the three of us.

3.  See, especially, Chandrasekharan (2009), Chandrasekharan and Nersessian (2015), 

Chandrasekharan et al. (2012), Nersessian (1991b, 1992a,b, 2002, 2008).

Chapter 4

1.  Gerson (2013) rightly cautions against unreflective appropriation of biological 

metaphors to analyze culture. However, Wimsatt (2013a) argues for the appropriate-

ness of using the analogy of generative entrenchment in a biological ecosystem for 

cultural evolution because in those processes, too, there are “multiple evolving and 

interdependent lineages acting on different time and size scale” (564), which fits 

with my characterization of the research lab as an evolving, distributed cognitive-

cultural system with epistemic goals.

2.  We have published case studies of the building processes of the mechanical tester 

(Nersessian et al. 2005) and the compression bioreactor (Harmon and Nersessian 

2008).

3.  This discovery led us to apply to NSF for a small supplemental grant and also 

to the Spencer Foundation to investigate issues pertaining to gender and to race in 

BME epistemic cultures. Our research scientist, Kareen Malone, took the lead on that 

research, holding focus groups with BME students and faculty, as well as conduct-

ing targeted interviews with lab members on the topics. Some of our findings are 

discussed in Osbeck et al. (2011, chapter 6) and Malone et al. (2005).

4.  Chapter 7, “The Learning Person,” in Science as Psychology (Osbeck et al. 2011) 

provides an extended case study of her development as a BME researcher within lab A.

5.  As a field, biomedical engineering had been in existence since at least the early 

1960s, but there were a few established departments circa 2000, most notably at the 

Johns Hopkins University (est. 1962). Since this is not a historical account of the 

field, I present the situation as the founders of this new department expressed it to 

us. The notion that they aspired to become an interdisciplinary discipline, an “inter-

discipline,” came from us, but they embraced it immediately and started using it in 

their proposals and publicity. Indeed, in both studies, part of what we did was to 

provide them ways to conceptualize their educational and research aims and prac-

tices. One of the senior faculty called these ways “Nancy-speak” and “Wendy-speak.”

6.  Although I do not articulate it here, there are significant insights to be gained 

regarding the explicit formation of interdisciplinary research fields—characteristic 

of much late twentieth and early twenty-first-century science and engineering—by 
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examining them through the lens of research on “social movements” (Leonelli 

2019). In the case at hand, the call of these researchers for a new breed of biomedical 

engineer suited for the twenty-first century came well in advance of an articulated 

means to carry out the objective. It was a collective normative vision, the broad 

outlines of which were announced to the administrations of the schools involved, 

the wider intellectual community, funding agencies, and prospective donors. Impor-

tantly, it made a bid to reshape the epistemic practices of a field, which the leaders 

felt needed to move beyond collaboration to hybridization in order to meet speci-

fied goals for twenty-first-century BME.

7.  Interestingly, they did not get that NSF ERC, but decided to proceed with what 

they dubbed “a cognitively informed” educational program anyway. The gamble paid 

off in that in approximately five years they went from nonexistent to the number-

two-ranked BME department in the US News and World Report rankings, eventually 

taking over the number one spot, over such rivals as the long-established department 

at Johns Hopkins, as well as departments at MIT and Stanford. Twelve years after the 

program started, the program received a State Regents’ Award for the best university 

educational program in the state. The program also received the 2019 Bernard M. 

Gordon Prize for Innovation in Engineering and Technology Education from the US 

National Academies of Engineering. These prestigious awards provide validation for 

the “translational approach” pioneered in our research, as well as for the educational 

program itself, which has conducted longitudinal evaluations of its outcomes.

8.  The BME-dedicated building was under construction as we began to plan the 

implementation of the PDL approach. Because of the envisioned introductory PDL 

course, they decided to construct five specially designed classrooms with a seating 

structure and floor-to-ceiling whiteboards surrounding the room to facilitate inter-

action among the participants. Since we were doing research on the courses, two 

rooms were equipped with a separate observational window and recording compart-

ment for us. They recognized that the plan for students to work in groups of eight 

with a facilitator was costly from the outset, but the educational experiment is seen 

as so successful by the administration that it has continued to support the model 

despite the significant growth in the student population. In recent years more than 

160 undergraduate students are enrolled in a semester, with facilitators needed for 

twenty teams, plus for the graduate courses.

9.  The department has continued to hire its own cognitive and learning scientists to 

provide support for ongoing curriculum development.

Chapter 5

1.  The analysis developed in this chapter draws significantly on research conducted 

together (individually) with Miles MacLeod and with Sanjay Chandrasekharan, who 

were postdoctoral researchers on the project.
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2.  Some of these strategies are in widespread use in all kinds of modeling. However, 

the modelers we studied transferred and adapted them from their use in the engi-

neering fields in which they were trained or had developed familiarity with.

3.  See Stuart and Nersessian (2019) for a discussion of a novel attempt by modelers, 

in a different systems biology lab that Michael Stuart and I investigated, to mitigate 

the collaboration problem by developing computational visualizations of what is 

going on inside the black box that would be comprehensible to experimentalists, as 

well as other modelers not involved in the building process.

4.  There are significant parallels between what these modelers are doing in math-

ematizing causal relational structures in biological networks and what Maxwell did 

in constructing a mathematical representation of the causal relational structure 

between electricity and magnetism that produces the dynamical behavior of the 

electromagnetic field, without specifying the underlying causal mechanisms. This 

strategy proved especially productive in the Maxwell case, as it was later understood 

that the field is a nonmechanical dynamical structure. For a detailed analysis, see 

Nersessian (2008, chapter 2).

5.  BST was developed, initially, by Michael Savageau (1969a, 1969b, 1970), who is 

a pioneer in the application and adaptation of systems engineering concepts and 

methods to biological systems.

6.  Most members of lab G are not native English speakers, and so many of the 

quotes I use are ungrammatical.

7.  Quite recently, Lenhard (2020) has discussed some of these roles in physics-based 

simulation. The account he develops relies on publications and anecdotal evidence, 

and some post hoc interviews, and not in situ examination of modeler practices.

8.  Here I elaborate on a case study analysis originally developed and written with 

Sanjay Chandrasekhran, who should be considered its coauthor.

9.  See Wendy S. Parker (2013) for a discussion of ensemble models in climate sci-

ence, which comprise different models rather than the same model fitted with dif-

ferent parameters.

10.  There are other fields in which model-building often does not have a theoreti-

cal starting point. For example, Parker (2013) has pointed this out with respect to 

modeling in behavioral and social sciences, and Peck (2008) has also shown this 

for modeling in ecology. Our characterization of “modeling from the ground up” 

should be distinguished from  Keller’s (2003) notion of “modeling from above.” As 

Keller describes it, the latter is a strategy that aims to simulate the phenomenon 

itself, not by trying to map its underlying causal structure or dynamics, but rather 

by generating the phenomenon from a simple yet artificial system of interactions 

and relations. What we call modeling from the ground up is what she would call 

“modeling from below” in that it relies on information about the causal structure 
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and dynamics of a system’s compositional elements. Both however can begin from 

nontheoretical starting points.

11.  Concurrent with our research, some philosophers of biology have begun to exam-

ine how modeling works differently in systems biology than in physics. This research 

largely focuses on issues of mechanistic explanation and template development (see, 

e.g., Bechtel 2011; Brigandt 2013; Levy and Bechtel 2013; Serban and Green 2019). It 

is clear that systems biology provides a rich domain with which to expand philosophi-

cal understanding of computational modeling and simulation. The kind of meso-

scopic model-building practices we have studied, especially in lab G, for instance, tend 

to provide understanding that, while making use of mechanistic information, does 

not provide mechanistic explanation (MacLeod and Nersessian, 2015).

12.  I, by contrast, have been arguing (since Nersessian 1984) that such consider-

ations need to inform philosophical accounts of scientific practices, generally.

13.  Scientific thought experimenting is one form of possible-worlds thinking. We 

have posited that, with the advent of computational simulation,  in many scientific 

fields what are customarily called thought experiments can largely be supplanted, 

or reduced to a minimal role, by in silico simulation models (Chandrasekharen et 

al. 2012).

14.  See MacLeod and Nersessian (2019) for a detailed analysis of the mesoscopic 

strategy.

15.  Similar observations, however, have been made with respect to agent-based 

modeling in ecology. This is not surprising, given the comparable complexity of 

the problems and lack of domain theory that characterize both fields. As with Peck’s 

point that “there are no formal methodological procedures for building these types 

of models suggesting that constructing an ecological simulation can legitimately be 

described as an art” (2008, 393), our modelers, too, describe their modeling practices 

as, in part, “art.” Likewise the ISB modeling we have observed is an individual proj-

ect in which each modeler chooses the methods and strategies he or she thinks best 

resolve the problem without any formal procedure governing the process, though 

often, for novices, in discussion with someone with greater expertise. A major 

benefit of an ethnographic approach is that it exposes the often hidden, creative 

choices that are “rarely disclosed in formal descriptions of model-building” (Peck 

2008, 395). These parallels with ecology suggest that there is a deeper commonal-

ity among the methodologies employed across these kinds of simulation-building 

contexts. Empirical investigations such as ours help to broaden understanding of 

the range of scientific practices involved in the methodologies of computational 

modeling and simulation.

16.  Although I am not attending to it here, our investigations show that the affective 

experiences of researchers in relation to one another and to the entities and artifacts 

that are part of their research are important dimensions of the cognitive-cultural 
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system that create and sustain epistemic practices. Thinking about this issue led 

us to note the affective dimension of our own language of “coupling” and cogni-

tive “partnering” (Osbeck and Nersessian 2006). We have used “coupling” guided 

consciously by previous work in cognitive science, but perhaps unconsciously by 

cultural conceptions of partnering and coupling as the “joining of two persons into 

one.” The “two as one” notion does come close to expressing the kind of relation-

ship of cognitive and cultural domains that enables these to be understood as a 

single system, each intimately implicated in the other.

Chapter 6

1.  It appears to have been a risk worth taking. I have followed the work of the lab and 

career of the director at a distance for over five years since we ended our investigation, 

out of curiosity to see how things were turning out. The lab has produced some sig-

nificant discoveries, has numerous high-level publications, is well-funded, has many 

more students and postdocs, and now the lab director, who had just received tenure 

when we left, has been promoted to full professor with an endowed chair.

2.  Although the phenomenon of cell signaling was discovered in 1855 by Claude 

Bernard when he found that certain “secretions” released into the bloodstream had 

effects on distant cells, the process was not conceptualized as “cell signaling” until 

the 1970s. According to Nair et al. (2019) “the word ‘signal transduction’ appeared 

in biological literature in the 1970s, further elucidation of which was provided by 

Martin Rodbell in 1980 who postulated that ‘individual cells were cybernetic sys-

tems made up of three distinct molecular components: discriminators, transducers 

and amplifiers’” (2). Although biologists use a variety of terms today (reception, 

transduction, response), this early terminology shows the role of cybernetic and 

control engineering in the formation of the biological concept.

3.  Modelers in both labs complained about the fact that molecular biologists often 

see computational model representations as too abstract, while they interpret 

Michaelis-Menten kinetics as providing direct representations of mechanistic reality. 

In fact, as modelers point out, Michaelis-Menten is itself an abstraction based on 

various simplifications and assumptions applied to a mass-action representation. It 

is a mathematical model of the rate at which enzymes catalyze a particular reaction. 

As C7 expressed the complaint, “For example, there’s a very famous equation that’s just 

called the Michaelis-Menten equation. It’s supposed to represent [enzyme] kinetics. But that 

is an approximation. Most biologists, you know, do not realize that. And they have it in 

their subconscious that, well, that this is a precise representation of the exact kinetics, and 

if I were to use a more basic representation of which Michaelis-Menten is an approxima-

tion, they would not trust that.”

4.  Our research goals required that we understand the research conducted by 

the labs we investigated in sufficient detail so as to be able to discuss the science, 
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modeling, and technology in our interviews. Lab C’s intensive and complex bio-

logical research, complete with what I deemed its “alphabet soup” terminology, pro-

vided our group the most significant challenge of all the labs. I had had sufficient 

background in physics, computer science, and neuroscience to be able to guide our 

group in learning what was necessary to probe the participants in the other labs on 

their research. My lack of knowledge of biology enabled me to understand firsthand 

some of the challenge lab C and lab G researchers faced as they encountered the 

alphabet soup. We were fortunate to have in our group, at that time, a graduate 

student, Vrishali Subramanian, with a background in biosciences, who wanted to 

be trained to do ethnography to use in her research on environmental policy. She 

helped us understand the biological content of the specific research, as well as make 

sense of what we were reading in the recommended immunology textbook, during 

the first two years of our investigations.

5.  After hearing a talk by us that mentioned how they used such language to talk 

about the cells and some technologies with which the cells interfaced (e.g., Bio-

Plex), they discussed how they were unaware that they did so. One researcher called 

it “creepy,” and said this was treating the cells “like [she did] the Muppets,” but she also 

stated that she found herself “unable to stop doing it.”

6.  In an interview following the meeting, C11 explained that she thought she had 

been able to come up with the solution to the problem that was stumping C10 

because biologists think differently from engineers. As she phrased it, “She’s like ‘I 

calculated, I did the calculations correctly!’ Whereas I thought ‘yes, but the cells going 

through this pathway, in this path [zigzag], that would make the cells unhappy’ because I 

think like a biology [sic].”

7.  Here I present a case study analysis originally developed and written with Miles 

MacLeod, who should be considered its coauthor.

8.  C9’s paper-writing strategy was that she would begin to develop a paper as she 

was in the process of conducting experiments or building a model.

9.  There has been some recognition of the system-like nature of modeling, simu-

lation, and experimentation in computational biology. In particular, Carusi et al. 

(2012) argue that these should be viewed as forming an “MSE” system, since each 

interacts with the other in the discovery process. Although they are correct about 

the system-like nature, theirs is a generic methodological account that could be used 

to describe either a unimodal or bimodal strategy. They do not provide detailed 

examination of such interactions in case studies and do not discuss the novel 

bimodal strategy we examine here.

10.  Although there is no cognitive science literature on embodied engagement by 

scientists in conducting wet-lab experimentation, there is a substantial literature on 

how embodiment in mundane experience informs conceptual understanding that I 

think relevant (see, e.g., Barsalou 1999; Glenberg 2010; Johnson 1987; Lakoff 1987; 
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Prinz 2002). See also the research of David Kirsh (2010) on dance movements as a 

form of thinking and the study by the anthropologist Natasha Meyers (2015) on the 

bodily enactments by protein crystallographers of the molecules for which they are 

constructing three-dimensional models, from a cultural theory perspective.

11.  Note our use of “localization” here differs from the use of the term by Bechtel 

and Richardson (2010), Wimsatt (2007), and others. Our emphasis is on localization 

of errors or inaccuracies in a network rather than localization of function, although 

the former often serves to help reveal the latter, as it did for C9.

Chapter 7

1.  A fictional character created by Patton who interjects stories and insights to 

lighten the task of wading through more than six hundred pages on qualitative 

methods. The name is pronounced “How come.”

2.  There are some notable exceptions in philosophy and cognitive science, most of 

them recent. These include Andersen (2010), Andersen and Wagenknecht (2013), 

Brigandt (2013), Christensen and Schunn (2007), Dunbar (1995, 1999), Goodwin 

(1995), Grüne-Yanoff (2011), Hall et al. (2002), Hall et al. (2010), O’Malley et al. 

(2007), O’Malley and Soyer (2012). Additionally, philosophers have begun to attend 

specifically to what interdisciplinary “integration” means in cases of contemporary 

and historical science; see, for instance, Andersen (2016), Green and Andersen 

(2019), Griesemer (2013), Leonelli (2013), Love and Lugar (2013), O’Malley and 

Soyer (2012), O’Rourke et al. (2016), Plutynski (2013).

3.  A broad characterization of interdisciplinary research, as proposed by the US 

National Research Council, is considered standard: “A mode of research by teams or 

individuals that integrates information, data, techniques, tools, perspectives, con-

cepts, and/or theories from two or more disciplines or bodies of specialized knowl-

edge to advance fundamental understanding or to solve problems whose solutions 

are beyond the scope of a single discipline or field of research practice” (NAS, NAE, 

and IM 2005, 26).

4.  An invitation by the Council of Graduate Schools to give a presentation at their 

annual meeting (2012) about what characteristics foster creativity in interdisciplin-

ary research and how these might be cultivated in graduate education provided the 

initial context for my thinking about what I now call “interdisciplinary epistemic 

virtues.”

5.  Kevin Dunbar’s (1995) findings about the relations between creative analogy use 

and innovative outcomes in biology research labs provides a nice example of cogni-

tive flexibility as a feature of a problem-solving system. He found that in labs where 

researchers had homogeneous backgrounds, they made fewer analogies in collabora-

tive problem-solving sessions than those where researchers had more heterogeneous 
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backgrounds. As he tracked the research, the heterogeneous labs produced more 

innovative outcomes.

6.  How to distinguish the notions of interactional and contributory expertise has 

been the subject of an extensive debate in the literature that I need not consider for 

my purposes here (see, e.g., Andersen 2016; Collins and Evans 2015; Collins et al. 

2007; Collins et al. 2016; Goddiksen 2014).

7.  When we began our research, the faculty talked about interdisciplinary integra-

tion but later adopted our language of “interdiscipline” for their aspirations for the 

field. As they phrased it in a proposal submitted for an award, “Many educational 

programs in BME might be described as ‘engineering with a little biology thrown 

in.’ We maintain that practitioners for the twenty-first century need to be trained 

in a truly integrative fashion. BME is best understood as an “interdiscipline”—that 

is, a field that is inherently interdisciplinary. BME is situated at the intersection of 

three disciplines: biology, engineering, and medicine. All three are essential to the 

practice of a biomedical engineer.”

8.  Although I do not elaborate here, in our in-depth analyses of affordances and 

challenges in interdisciplinary practice in both BME and ISB, we found it useful to 

draw from positioning theory as developed in social psychology to analyze the ways 

in which participants talk about themselves and one another. “Positioning theory 

is a contribution to the cognitive psychology of social action. It is concerned with 

revealing the explicit and implicit patterns of reasoning that are realized in the ways 

that people act toward others” (Harré et al. 2009, 5). Our analyses have extended the 

theory to consider positioning in relation to epistemic identity and the epistemic 

effects of positioning strategies in scientific communities (see, e.g., Osbeck and Ner-

sessian 2010,  2012, 2017; Osbeck et al. 2011).
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