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1. Introduction

In this work we study dimensional theoretical properties of some affine dynamical
systems.

By dimensional theoretical properties we mean Hausdorff dimension and box-
counting dimension of invariant sets and ergodic measures on theses sets. Especially
we are interested in two problems. First we ask whether the Hausdorff and box-
counting dimension of invariant sets coincide. Second we ask whether there exists
an ergodic measure of full Hausdorff dimension on these invariant sets. If this is not
the case we ask the question, whether at least the variational principle for Haus-
dorff dimension holds, which means that there is a sequence of ergodic measures
such that their Hausdorff dimension approximates the Hausdorff dimension of the
invariant set. It seems to be well accepted by experts that these questions are of
great importance in developing a dimension theory of dynamical systems (see the
book of Pesin about dimension theory of dynamical systems [PE2]).

Dimensional theoretical properties of conformal dynamical systems are fairly well
understood today. For example there are general theorems about conformal repellers
and hyperbolic sets for conformal diffeomorphisms (see chapter 7 of [PE2]). On the
other hand the existence of two different rates of expansion or contraction forces
problems that are not captured by a general theory this days. At this stage of de-
velopment of the dimension theory of dynamical systems it seems natural to study
non conformal examples. This is the first step to understand the mechanisms that
determine dimensional theoretical properties of non conformal dynamical systems.

Affine dynamical systems represent simple examples of non conformal systems. They
are easy to define, but studying their dimensional theoretical properties does never-
theless provide challenging mathematical problems and exemplify interesting phe-
nomena. We consider here a special class of self-affine repellers in dimension two,
depending on four parameters (see 2.1.). Furthermore we study a class of attractors
of piecewise affine maps in dimension three depending on four parameters as well.
The last object of our work are projections of these maps that are known as gener-
alized Baker’s transformations (see 2.2.).

The contents of our work is the following:

In chapter two we give an overview about some main results in the area of di-
mension theory of affine dynamical systems and define the systems we study in this
work. We will explain, what is known about the dimensional theoretical properties
of these systems and describe what our new results are. In chapter three we then
apply symbolic dynamics to our systems. We will introduce explicit shift codings
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and find representations of all ergodic measures for our systems using these codings.

From chapter four to chapter eight we study dimensional theoretical properties,
which our systems generally or generically have. In chapter four we will prove a
formula for the box-counting dimension of the repellers and the attractors (see the-
orem 4.1.). Then in chapter five we apply general dimensional theoretical results for
ergodic measures found by Ledrappier and Young [LY] and Barreira, Schmeling and
Pesin [BPS] to our systems. These results relate the dimension of ergodic measures
to metric entropy and Lyapunov exponents. Using this approach we will be able to
reduce questions about the dimension of ergodic measures in our context to ques-
tions about certain overlapping and especially overlapping self-similar measures on
the line. These overlapping self-similar measures are studied in chapter six. Our
main theorem extends a result of Peres and Solomyak [PS2] concerning the absolute
continuity resp. singularity of symmetric self-similar measures to asymmetric ones
(see theorem 6.1.3.).

In chapter seven we bring our results together. We prove that we generically (in
the sense of Lebesgue measure on a part of the parameter space) have the iden-
tity of box-counting and Hausdorff dimension for the repellers and the attractors.
(see theorem 7.1.1. and corollary 7.1.2.). This result suggest that one can expect
that the identity of box-counting dimension and Hausdorff dimension holds at least
generically in some natural classes of non conformal dynamical systems.
Furthermore we will see in chapter seven that there generically exists an ergodic
measure of full Hausdorff dimension for the repellers. On the other hand the vari-
ational principle for Hausdorff dimension is not generic for the attractors. It holds
only if we assume a certain symmetry (see theorem 7.1.1.). For generalized Baker’s
transformations we will find a part of the parameter space where there generically
is an ergodic measure of full dimension and a part where the variational principle
for Hausdorff dimension does not hold (see theorem 7.1.3.). Roughly speaking the
reason why the variational principle does not hold here is, that if there exists both a
stable and an unstable direction one can not generically maximize the dimension in
the stable and in the unstable direction at the same time. In an other setting this
phenomenon was observed before by Manning and McCluskey [MM].
In chapter eight we extend some results of the last section to invariant sets that
correspond to special Markov chains instead of full shifts (see theorem 8.1.1.).

In the last two chapters of our work we are interested in number theoretical excep-
tions to our generic results. The starting point of our considerations in section nine
are results of Erdös [ER1] and Alexander and Yorke [AY] that establish singularity
and a decrease of dimension for infinite convolved Bernoulli measures under special
conditions. Using a generalized notion of the Garsia entropy ([GA1/2]) we are able
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to understand the consequences of number theoretical peculiarities in broader class
of overlapping measures (see theorem 9.1.1.).
In chapter ten we then analyze number theoretical peculiarities in the context of
our dynamical systems. We restrict our attention to a symmetric situation where
we generically have the existence of a Bernoulli measure of full dimension and the
identity of Hausdorff and box-counting dimension for all of our systems.
In the first section of chapter ten we find parameter values such that the variational
principle for Hausdorff dimension does not hold for the attractors and for the Fat
Baker’s transformations (see theorem 10.1.1.). These are the first known examples of
dynamical systems for which the variational principle for Hausdorff dimension does
not hold because of number theoretical peculiarities of parameter values. For the
repellers we have been able to show that under certain number theoretical conditions
there is at least no Bernoulli measure of full Hausdorff dimension; the question if the
variational principle for Hausdorff dimension holds remains open in this situation.
In the second section of chapter ten we will show that the identity for Hausdorff
and box-counting dimension can drops because there are number theoretical pecu-
liarities. In the context of Weierstrass-like functions this phenomenon was observed
by Przytycki and Urbanski [PU]. Our theorem extends this result to a larger class
of sets, invariant under dynamical systems (see theorem 10.2.1).

At the end of this work the reader will find two appendices, a list of notations
and the list of references. In appendix A we introduce the notions of dimension we
use in this work and collect some general facts in dimension theory. In appendix
B we state the facts about Pisot-Vijayarghavan number, we need in our analysis
of number theoretical peculiarities. The list of notations contains general notations
and a table with a summary of notations we use to describe the dynamical systems
that we study.
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2. Affine dynamical systems

2.1. Self-affine repellers

Self-affine repellers are simple examples of non conformal dynamical systems. We
introduce them now. Let T1, . . . , Tp : D −→ D be affine contractions of a domain D
in IRm. Assume that the sets Ti(D) are disjoint . From Hutchinson [HU] we know
there is an unique compact self-affine subset Λ of D satisfying:

Λ =
p
⋃

i=1

Ti(Λ).

Define a map T on
⋃p

i=1 Ti(D) by

T (x) = T−1i (x) if x ∈ Ti(D).

Clearly T is a smooth expanding map. Λ is invariant and a repeller for T , which
means that there is an open neighborhood V of Λ such that Λ = {x ∈ V |f n(x) ∈
V ∀n ≥ 0} (see chapter 20 of [PE2]). We call Λ a self-affine repeller.

There is one generic result about the dimension of large classes of self-affine sets.

Theorem 2.1.1.

Let L1, . . . , Lp be linear contractions of IRm with ||Li|| < 1/2 and let b1, . . . , bm ∈
IRm. If Λ is the compact self-affine set satisfying

Λ =
m⋃

i=1

Li(Λ) + bi

then the identity dimB Λ = dimH Λ holds for almost all (b1, . . . , bm) ∈ IRmp in the
sense Lebesgue measure and the common value is independent of (b1, . . . , bm).

Falconer [FA2] proved this theorem in the case ||Li|| < 1/3 and Solomyak [SO2]
extended the proof to the case ||Li|| < 1/2. Moreover Solomyak showed that the
statement does not longer hold if we replace 1/2 by 1/2 + δ.

Of course 2.1.1. leaves many questions open. First of all the question about the
existence of an ergodic measure of full Hausdorff dimension remains open. Moreover
one would like to have some information about classes of self-affine repellers with
larger expansion rates and there may be natural subclasses that fall in the excep-
tional set of 2.2.1. .

7



Let us discuss a very natural family of self-affine repellers that is completely un-
derstood today and proved to fall in the exceptional class of 2.1.1. .
Given integers l ≥ m ≥ 2 choose a set A of pairs of integers (i, j) with 0 ≤ i < l and
0 ≤ j < m. Denote the cardinality of A by a. Now let Tk for k = 1 . . . a be affine
maps given in the following way: if k enumerates the element (i, j) ∈ A then let

Tk([0, 1]
2) = [i/l, (i+ 1)/l]× [j/m, (j + 1)/m].

Figure 1: The images of the affine maps inducing a self-affine carpet with l = 8
m = 4 and A = {(4, 0), (2, 1), (6, 1), (7, 1), (0, 2), (1, 2), (2, 2), (5, 2), (1, 3), (3, 3)}

Let ΛA be the self-affine set generated by these affine contractions. A set of this type
is known as general Sierpinski carpet. We remark that ΛA viewed as a subset of
the Torus is invariant under the toral endomorphism given by:

T̂ : (x, y) −→ (lx,my) mod 1.

Dimensional theoretical questions are answered by the following theorem of Mc-
Mullen:
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Theorem 2.1.2. [MC]

Let tj be the number of those i for which (i, j) ∈ A and let r be the number of those
j for which there is some i such that (i, j) ∈ A. We have:

dimH ΛA = logm(
m−1∑

j=0

t
logl m
j ) and dimB ΛA = logm r + logl(a/r).

Moreover there exists a Bernoulli measure of full Hausdorff dimension on ΛA.

We remark that it is easy to see that a Bernoulli measure on the carpet is in fact
an ergodic measure with respect to the map T̂ on the torus or the expanding map
T associated with the affine contractions.

Note that the theorem we implies that the Hausdorff and box-counting dimension
of a general Sierpinski carpet coincide if and only if the carpet is self-similar (l=m)
or the number of rectangles is constant or zero in every raw (tj = 0 or tj = const.
for all j).

There are some generalizations of 2.1.2. . Kenyon and Peres [KP] extended the
result to analogous subsets of higher dimensional cubes, which they called self-affine
Sierpinski sponges. Using this result they where also able to show the existence of
an ergodic measure of full Hausdorff dimension on all compact invariant sets for
endomorphisms of the d-Torus with integer eigenvalues. Gatzouras and Lalley [GL]
extended the result on self-affine carpets in another direction. They considered affine
contractions which map the unit square to rectangles with height greater than width
such that these rectangles are lined up in rows. They calculated the Hausdorff and
box-counting dimension of the limit set and found ergodic measures of full dimen-
sion.

Now we define the class of self-affine repellers we will study in our work.

Let P 4
all = {(β1, β2, τ1, τ2) ∈ (0, 1)4|β1 + β2 ≥ 1 and τ1 + τ2 < 1} be the set of

all parameters we consider. Given ϑ ∈ P 4
all we define two affine contractions T1,ϑ

and T−1,ϑ of the square [−1, 1]2 by

T1,ϑ(x, z) = (β1x+ (1− β1), τ1z + (1− τ1))

T−1,ϑ(x, z) = (β2x− (1− β2), τ2z − (1− τ2)).

Let Λϑ be unique compact self-affine subset of [−1, 1]2 satisfying

Λϑ = T1,ϑ(Λϑ) ∪ T−1,ϑ(Λϑ)
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and let Tϑ be the smooth expanding transformation on T1,ϑ([−1, 1]2)∪T2,ϑ([−1, 1]2)
defined by

Tϑ(x) = (Ti,ϑ)
−1(x) if x ∈ Ti,ϑ([−1, 1]2) for i = 1, 2.

The set Λϑ is an invariant repeller for the transformation Tϑ.

T−1,ϑ([−1, 1]2)

T1,ϑ([−1, 1]2)

2τ2

2τ1

2β2

2β1¾

?

6

¾

-

-
?

6

Figure 2: The transformations T1,ϑ and T−1,ϑ on [−1, 1]2

We will now describe what is known about dimensional theoretical properties of the
systems (Λϑ, Tϑ).

The symmetric situation ϑ = (β, β, τ, τ) ∈ P 4
all has been studied by Pollicott and

Weiss [PW]. We need one definition to state the result. We say that β ∈ (0, 1) is a
Garsia-Erdös number if

∃ C > 0 ∀x ∈ IR : card{(s0, . . . , sn−1)|
n−1∑

k=0

skβ
k ∈ [x, x+ βn)} ≤ C(2β)n ∀n ≥ 0.

Examples of Garsia-Erdös numbers are the numbers 1
n√2

for n ≥ 0. Furthermore

we know from appendix 3 of [PW] that for some ρ almost all β ∈ (1 − ρ, 1) are
Garsia-Erdös numbers.
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Theorem 2.1.3. [PW]

If ϑ = (β, β, τ, τ) ∈ P 4
all then we have

dimB Λϑ = 1 +
log(2β)

log(1/τ)
.

If β is in addition a Garsia-Erdös number then we have

dimB Λϑ = dimH Λϑ

and the equal-weighted Bernoulli measure on Λϑ has full Hausdorff dimension.

Now let us say what our new results about the dimensional theoretical properties of
the systems (Λϑ, Tϑ) are and where in our work the corresponding theorems can be
found:

New results

First of all in theorem 4.1.1. we will find a formula for dimB Λϑ for all ϑ ∈ P 4
all.

In fact the box-counting dimension is given by the unique positive solution of the
equation

β1τ
x−1
1 + β2τ

x−1
2 = 1.

Furthermore we show or almost all ϑ ∈ P 4
trans := {(β1, β2, τ1, τ2) ∈ P 4

all|β2 ≤
β1 ≤ 0.649} in the sense of four dimensional Lebesgue measure the identity
dimB Λϑ = dimH Λϑ and and the existence of an ergodic measure of full Haus-
dorff dimension for the system (Λϑ, Tϑ); see corollary 7.2. . The restriction of this
generic result depends on the technique we use and is due to a certain transversality
condition; see chapter six. In fact our main generic result in theorem 7.1. is little
bit stronger than corollary 7.2. and takes special cases into consideration. We will
see that the statements in the second part of Pollicott and Weiss theorem holds
for almost all β ∈ (0.5, 1) in the sense of one dimensional Lebesgue measure. Our
technique is different from the arguments of Pollicott and Weiss and the condition
we have for the identity of Hausdorff and box-counting dimension is not the number
theoretical Garsia-Erdös condition (see the remarks after 7.2.).

Let us now for a moment consider the case ϑ = (β, β, τ, τ) with τ = 0.5. In this
situation the set Λϑ coincides (up to a countable number of points) with the graph
of Weierstrass-like function studied by Przytycki and Urbanski [PU]. Przytycki and
Urbanski were able to show that the Hausdorff dimension of these graphs is less
than their box-counting dimension if β is the reciprocal of a Pisot-Vijayarghavan
number (short PV number). The reader will find the definition and examples of PV
numbers in appendix B.

11



In our work number theoretical peculiarities are also one point of main effort. We
will show that if ϑ = (β, β, τ, τ) ∈ P 4

all and β is the reciprocal of a PV number then
we have no Bernoulli measure of full Hausdorff dimension for the system (Λϑ, Tϑ)
(see 10.1.1.(3)) and the inequality dimH Λϑ < dimB Λϑ holds (see 10.2.1.). The ar-
guments we need to get this result in our situation with τ < 0.5 are very different
from the arguments of [PU].

2.2. Attractors of piecewise affine maps

Attractors of piecewise affine maps provide simple examples of generalized hyper-
bolic attractors. Especially the Belykh attractors raised great interest in the
literature (see [PE1]). We want to introduce them here. Consider piecewise affine
transformations on the square [−1, 1] given by

fk,ρ1,ρ2
β1,β2

(x, y) = { (β1x+ (1− β1), ρ1y + (1− ρ) if y ≥ kx
(β2x− (1− β2), ρ2y − (1− ρ) if y < kx

where β1, β2 ∈ (0, 1) k ∈ (−1, 1) and ρ1, ρ2 ∈ (1, 2/(|k|+ 1).
It is easy to see that there is a global attractor called Belykh attractor for all of
these maps.

The definition we used here is due to Pesin [PE1]. Belykh [BE] himself only con-
sidered the case β1 = β2 and ρ1 = ρ2. Dimensional theoretical properties of the
systems in this special case were studied by Schmeling [SCH].

In our work we are interested in another special case. We set k = 0 and ρ1 = ρ2 = 2
and obtain transformations

fβ1,β2(x, y) := f 0,1,1
β1,β2

(x, y) = { (β1x+ (1− β1), 2y − 1) if y ≥ 0
(β2x− (1− β2), 2y + 1) if y < 0

.

of the square [−1, 1]2 for all β1, β2 ∈ (0, 1). We call these maps generalized Baker’s
transformations. If β = β1 = β2 we write fβ instead of fβ,β. Alexander and Yorke
[AY] called fβ a Skinny Baker’s transformation if β < 0.5 and a Fat Baker’s
transformation if β > 0.5. f0.5 is known as the Baker’s transformation.

The attractor for fβ1,β2 is given by

Qβ1,β2 := closure(
∞⋂

k=0

fn
β1,β2

([−1, 1]2)).

In the case β1 + β2 < 1 dimensional theoretical properties of the dynamical system
(Qβ1,β2 , fβ1,β2) are well known:
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Theorem 2.2.1.

Let β1 + β2 < 1 and d be the unique positive number satisfying βd
1 + βd

2 = 1 then
dimB Qβ1,β2 = dimH Qβ1,β2 = d+1 and there is an ergodic measure of full Hausdorff
dimension for the system (Qβ1,β2 , fβ1,β2).

This result seems to be folklore in the dimension theory of dynamical systems. In
fact the attractor in the non-overlapping situation is a product of a standard Cantor
set in the line with the interval [−1, 1]. The ergodic measure of full dimension is
a product of a Cantor measure (a Bernoulli measure on the standard Cantor set)
with the normalized Lebesgue measure on [−1, 1]. We refer to chapter 23 of [PE2]
for theses facts.

We consider in this work the overlapping situation, which means (β1, β2) ∈ P 2
olapp :=

{(β1, β2)|β1 + β2 ≥ 1}.

-
fβ1,β2

2β1
2β2

-¾
-¾

Figure 3: The action of fβ1,β2 on the square [−1, 1]2 where β1 + β2 > 1

If (β1, β2) ∈ P 2
olapp the attractor of the map fβ1,β2 is obviously the hole square

[−1, 1]2 with Hausdorff and box-counting dimension equal to two. The interesting
problem is whether there exist an ergodic measure of full Hausdorff dimension resp.
whether the variational principle for Hausdorff dimension holds for ([−1, 1]2, fβ1,β2)
if β1 + β2 ≥ 1.
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New results

From the work of Alexander and Yorke [AY] and a result of Solomyak (see 6.1.1.)
it is easy to deduce that for almost all β ∈ (0.5, 1) there is an ergodic measure
of full dimension for the Fat Baker’s transformation ([−1, 1]2, fβ). This measure is
given by the product of an infinite convolved Bernoulli measure with the normalized
Lebesgue measure on [−1, 1] (see 7.3.). Our main result about the Fat Baker’s trans-
formation is that the variational principle for Hausdorff dimension does not hold for
([−1, 1]2, fβ) if β is the reciprocal of a PV number (see 10.1.1. (1)). This result is of
great interest. Its is the first known example showing that the variational principle
for Hausdorff dimension can fail to hold because of number theoretical peculiarities.
Beside this we have new results in the asymmetric situation. On the one hand
we will show that if β1β2 < 0.25 then the variational principle does not hold for
the systems ([−1, 1], fβ1,β2). On the other hand we will see that for almost all
(β1, β2) ∈ P 2

trans := {(β1, β2) ∈ P 2
olapp|β2 ≤ β1 ≤ 0.649} with β1β2 > 0.25 there exists

an ergodic measure of full Hausdorff dimension for the system ([−1, 1], fβ1,β2).

The last class of dynamical systems we study in this work is given by piecewise
affine maps in dimension three:

f̂ϑ : [−1, 1]3 7−→ [−1, 1]3

f̂ϑ(x, y, z) = { (β1x+ (1− β1), 2y − 1, τ1z + (1− τ1)) if y ≥ 0
(β2x− (1− β2), 2y + 1, τ2z − (1− τ2)) if y < 0

where ϑ = (β1, β2, τ1, τ2) ∈ P 4
all.

-

f̂ϑ

f̂ϑ(A)

f̂ϑ(B)

A

B

Figure 4: The action of f̂ϑ on [−1, 1]3.
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We see that the projection of f̂ϑ onto the (x, y)-plane is fβ1,β2 for ϑ = (β1, β2, τ1, τ2) ∈
P 4

all. Obviously the maps fβ1,β2 are non invertible if β1 + β2 ≥ 1 but their lifts f̂ϑ
are invertible.

Furthermore we notice that the attractor Λ̂ϑ of f̂ϑ is a product of the self-affine
set Λϑ in the (x, z)-plane with the interval [−1, 1] on the y-axis:

Λ̂ϑ = closure(
∞⋂

k=0

fn
ϑ ([−1, 1]3)) = {(x, y, z)|(x, z) ∈ Λϑ, y ∈ [−1, 1]}.

New results

By the product structure of the sets Λ̂ϑ and proposition A5 we have dimH/B Λ̂ϑ =
dimH/B Λϑ+1. Thus all our results about Hausdorff dimension and box-counting di-

mension of the self-affine sets Λϑ have an analogon for Λ̂ϑ (see 4.1.,7.1.,7.2., 10.2.1.).

Very interesting is the question whether the variational principle for Hausdorff di-
mension holds. We will show in 7.1. that in the generic situation (for almost all
ϑ ∈ P 4

trans) it can only hold for (Λ̂ϑ, f̂ϑ) if we have logτ1 log(2β1) = logτ2(2β2). Thus
the variational principle for Hausdorff dimension is not generic on the parameter
set P 4

trans if we consider (Λ̂ϑ, f̂ϑ) but it is generic if we consider (Λϑ, Tϑ). This phe-
nomenon is related to fact that the map f̂ϑ is hyperbolic; it has both a stable and
an unstable direction (see also the first remark after 7.2.).
For the symmetric systems (Λ̂β,β,τ,τ , f̂β,β,τ,τ ) the situation is different. There exists
an ergodic measure of full dimension for almost all β ∈ (0.5, 1) (see 7.1.). But again
there are number theoretical peculiarities. If β ∈ (0, 5) is the reciprocal of a PV
number and τ is small then variational principle does not hold for (Λ̂β,β,τ,τ , f̂β,β,τ,τ )
(see 10.1.1.(2))
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3. Applying symbolic dynamics

3.1. Shift Codings

Let Σ = {−1, 1}ZZ and Σ+ = {−1, 1}IN0 . With the product metric defined by

d(s, t) =
∞∑

k=−∞ resp. 0

|sk − tk|2−|k| for s = (sk) and t = (tk)

Σ (resp. Σ+) becomes a perfect, totally disconnected and compact metric space; see
proposition 7.6. of [DGS]. A cylinder set in Σ (resp. Σ+) is given by

[t0, t1 . . . , tu]v := {(sk)|sv+k = tk for k = 0, . . . , u}.
The forward shift map σ on Σ (resp. Σ+) is given by σ((sk)) = (sk+1). The back-
ward shift σ−1 is defined on Σ and given by σ((sk)) = (sk−1).

We will use (Σ, σ) resp. (Σ, σ−1) and (Σ+, σ) to describe the dynamics of the systems
defined in the previous chapter symbolically by coding the points of the invariant
set. We begin with the class of self-affine repellers defined in 2.1. .

Given s ∈ Σ+ we denote by ]k(s) the cardinality of {si|si = −1 i = 0 . . . k}.
For γ1, γ2 ∈ (0, 1) we define a map π∗γ1,γ2 : Σ

+ −→ [ −γ2
1−γ2

γ1
1−γ1

] by

π∗γ1,γ2(s) =
∞∑

k=0

skγ
]k(s)
2 γ

k−]k(s)+1
1 .

We scale this map so that it is into [−1, 1]. Let Lγ1,γ2 be the affine transformation
on the line that maps −γ2

1−γ2
to −1 and γ1

1−γ1
to 1 and let πγ1,γ2 = Lγ1,γ2 ◦ π∗γ1,γ2 . For

ϑ = (β1, β2, τ1, τ2) ∈ P 4
all we set πϑ = (πβ1,β2 , πτ1,τ2).

Proposition 3.1.1.

The systems (Σ+, σ) and (Λϑ, Tϑ) are homeomorph conjugated via πϑ.

Proof

It is obvious that π̂γ1,γ2 is continuous since

d(s, t) ≤ 1

2n
⇒ sk = tk for k = 0, . . . , n⇒ |π̂γ1,γ2(s)− π̂γ1,γ2(t)| ≤

γn+1
1

1− γ1
+

γn+1
2

1− γ2
.

hence πϑ is continuous. Just looking at the definition of π̂γ1,γ2 we see that

π∗γ1,γ2((sk+1)) = {
γ−11 π∗γ1,γ2((sk))− 1 if s0 = 1
γ−12 π∗γ1,γ2((sk)) + 1 if s0 = −1 .
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Hence we have

πγ1,γ2(σ(s)) = Lγ1,γ2(π
∗
γ1,γ2

((sk+1))) = {
Lγ1,γ2(γ

−1
1 π∗γ1,γ2((sk))− 1) if s0 = 1

Lγ1,γ2(γ
−1
2 π∗γ1,γ2((sk)) + 1) if s0 = −1

= { γ−11 πγ1,γ2(s) + (1− γ−11 ) if s0 = 1
γ−12 πγ1,γ2(s)− (1− γ−12 ) if s0 = −1 (∗).

Since πϑ(s) ∈ T1,ϑ([−1, 1]2) if s0 = 1 and πϑ(s) ∈ T−1,ϑ([−1, 1]2) if s0 = −1 this
implies

πϑ(σ(s)) = {
T−11,ϑ(πϑ(s)) if s0 = 1
T−1−1,ϑ(πϑ(s)) if s0 = −1 = Tϑ(πϑ(s)).

This means that σ and Tϑ are conjugated via πϑ. Furthermore we see by induction
that

πϑ(s) = Ts0,ϑ ◦ . . . ◦ Tsn−1,ϑ(πϑ(σ
n(s))) ∈ Ts0,ϑ ◦ . . . ◦ Tsn−1,ϑ([−1, 1]2)

and thus
πϑ(s) = lim

n−→∞Ts0,ϑ ◦ . . . ◦ Tsn−1,ϑ([−1, 1]2).

So πϑ is onto Λϑ and invertible since T1,ϑ([−1, 1]2) ∩ T−1,ϑ([−1, 1]2) = ∅. The conti-
nuity of the inverse map follows from compactness.

2

Now we examine the systems ([−1, 1]2, fβ1,β2) for (β1, β2) ∈ P 2
olapp. Define ς from

Σ− := {−1, 1}ZZ−
onto [-1,1] by

ς(s) =
∞∑

k=1

s−k2
−k where s = (sk)k∈ZZ− ∈ Σ−.

This function is well known. It maps the signed dyadic expansion of a point in
[−1, 1] to this point. ς is continuous and one to one restricted to (Σ−\{(sk)|∃k0∀k ≤
k0 : sk = 1}) ∪ {(1)}. Let Σ̄ = (Σ\{(sk)|∃k0∀k ≤ k0 : sk = 1}) ∪ {(1)}.
For (β1, β2) ∈ P 2

olapp we now define π̄β1,β2 : Σ 7−→ [−1, 1]2 by π̄β1,β2((sk)) =
(πβ1,β2((sk)k∈IN0), ς((sk)k∈ZZ−))

Proposition 3.1.2.

π̄β1,β2 is continuous, surjective and conjugates the backward shift σ−1 and fβ1,β2 on
Σ̄.
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Proof

It is obvious that the map is continuous and surjective since the components are
continuous and onto [−1, 1].
Let s = (sk) ∈ Σ̄. We have (sk+1)k∈Z− 6= (. . . , 1, 1,−1) and hence

ς((sk+1)k∈ZZ−) =
∞∑

k=1

s−k+12
−k ≥ 0⇔ s0 = 1.

Thus
fβ1,β2 ◦ π̄β1,β2((sk+1)) =

{ (β1πβ1,β2((sk+1)k∈IN0) + (1− β1), 2ς((sk+1)k∈ZZ−)− 1) if s0 = +1
(β2πβ1,β2((sk+1)k∈IN0)− (1− β2), 2ς((sk+1)k∈ZZ−) + 1) if s0 = −1 .

In view of (*) in the proof of 3.1.1. and the definition of ς we now see that fβ1,β2 ◦
π̄β1,β2((sk+1)) = π̄β1,β2((sk)). σ as a map of Σ is invertible and we get fβ1,β2 ◦
π̄β1,β2(s) = π̄β1,β2(σ

−1(s)).

2

Now we have a look at the lifts (Λ̂ϑ, f̂ϑ). For ϑ = (β1, β2, τ1, τ2) ∈ P 4
all we define

π̂ϑ : Σ −→ Λ̂ϑ by π̂β1,β2((sk)) = (πβ1,β2((sk)k∈IN0), ς((sk)k∈ZZ−), πτ1,τ2((sk)k∈IN0)))

Proposition 3.1.3.

π̂ϑ is continuous and surjective. Moreover it is bijective from Σ̄ onto Λ̂ϑ and conju-
gates the backward shift map σ−1 and f̂ϑ on Σ̄.

Proof

It is obvious that π̂ϑ is continuous. Treating the third component in the same way
as the first we see that π̂ϑ conjugates σ−1 and f̂ϑ on Σ̄ using the arguments of the
proof of 3.1.2. . That the map is onto Λ̂ϑ and one to one restricted to Σ̄ follows
from proposition 3.1.1. and the properties of the map ς.

2

Given a shift coding it is easy deduce interesting properties of a dynamical system.
We say that a topological dynamical system (A, T ) has strange dynamics, if it
has the following properties:

(1) There are periodic orbits of all periods for T in A
(2) The set of periodic points of T is dense in A
(3) There are orbits of T which are dense in A.

Property (3) is known as topological transitivity of the system (A, T ). From the
propositions of these section we get the following corollary:
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Corollary 3.1.4

The dynamical systems ([−1, 1]2, fβ1,β2), (Λ̂ϑ, f̂ϑ) and (Λϑ, Tϑ) have strange dynam-
ics.

Proof

It is easy to see that the systems (Σ+, σ), and (Σ̄, σ−1) have strange dynamics. Since
all our coding maps are surjective and continuous it follows that all our systems have
properties (2) and (3). Since πϑ and the restriction of π̂ϑ to Σ̄ are bijective (1) holds
for the systems (Λ̂ϑ, f̂ϑ) and (Λϑ, Tϑ). We observe that the points of a periodic orbit
in Σ̄ have different images under π̄β1,β2 since the component given by ς is different.
Thus (1) holds for ([−1, 1]2, fβ1,β2) as well.

2

3.2. Representation of ergodic measures

Given a compact metric space X we denote by M(X) the set of all Borel proba-
bility measures on X. With the weak∗ topology M(X) becomes a compact, con-
vex and metricable space. If T is a Borel measurable transformation on X we
call a measure µ T -invariant if µ ◦ T−1 = µ. The set of all invariant measures
forms a compact, convex and nonempty subset of M(X). A invariant measure µ
is called ergodic if T−1B = B ⇒ µ(B) ∈ {0, 1} holds for all Borel sets B in X.
M(X,T ) := {µ ∈ M(X)|µ T -ergodic} is compact, convex and nonempty. It con-
sists of the extreme points of the set of invariant measures. By bp for p ∈ (0, 1) we
denote the Bernoulli measure on Σ resp. Σ+, which is the product of the discrete
measure giving 1 the probability p and −1 the probability (1 − p). We write b for
the equal-weighted Bernoulli measure b0.5. The Bernoulli measures are ergodic with
respect to forward and backward shifts. For these basic facts in ergodic theory we
refer to the book of Denker, Grillenberger and Sigmund [DGS].
We will need one more definition. Given bp on {−1, 1}ZZ−

we define the correspond-
ing Bernoulli measure `p on [−1, 1] by `p = bp ◦ ς−1. ` := `0.5 is the normalized
Lebesgue measure on [-1,1].

We will now introduce the measures we study in the context of our dynamical
systems.
Let µ ∈M(Σ+, σ) and γ1, γ2 ∈ (0, 1). We define two Borel probability measures on
the real line by

µ∗γ1,γ2 = µ ◦ (π∗γ1,γ2)−1 and µγ1,γ2 = µ ◦ (πγ1,γ2)
−1.
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The measure µγ1,γ2 is just µ∗γ1,γ2 scaled on the interval [−1, 1] by the transformation
Lγ1,γ2 :

µγ1,γ2 = µ∗γ1,γ2 ◦ L−1γ1,γ2
.

If γ1 + γ2 ≥ 1 we say that µγ1,γ2 is overlapping, if not, we say that this measure is
non-overlapping. For γ ∈ (0, 1) we write µγ instead of µγ,γ and call this measure
symmetric.
bpγ1,γ2 for a Bernoulli measure bp is a self-similar measure in the sense of the
following proposition:

Proposition 3.2.1.

For all p ∈ (0, 1) and all γ1, γ2 ∈ (0, 1). the relation bpγ1,γ2 = pbpγ1,γ2 ◦ S1 + (1 −
p)bpγ1,γ2 ◦ S2 holds with S1(x) = γ−11 x+ (1− γ−11 ) and S2(x) = γ−12 x− (1− γ−12 ).

Proof

bpγ1,γ2(B) = bp(π−1γ1,γ2
(B))

= bp({s|s1 = 1 ∧ πγ1,γ2(s) ∈ B}) + bp({s|s1 = −1 ∧ πγ1,γ2(s) ∈ B})
= bp({s|s1 = 1∧S−11 ◦ πγ1,γ2 ◦ σ(s) ∈ B})+ bp({s|s1 = −1∧S−12 ◦ πγ1,γ2 ◦ σ(s) ∈ B})
= bp({s|s1 = 1 ∧ σ(s) ∈ π−1γ1,γ2

(S1(B))}) + bp({s|s1 = −1 ∧ σ(s) ∈ π−1γ1,γ2
(S2(B))})

= p bpγ1,γ2 ◦ S1(B) + (1 − p) bpγ1,γ2 ◦ S2(B) holds for all Borel subsets B of the real
line.

2

The symmetric self-similar measures bpγ are usually called infinite convolved
Bernoulli measures because of the following fact:

Proposition 3.2.2.

The measures bpγ are given by the infinite convolution of the discrete measures bp,nγ ,
which give (1− γ)γn the probability p and −(1− γ)γn the probability (1− p).

Proof

bpγ is obviously the distribution of the random variable Y p
γ =

∑∞
n=0X

p,n(1 − γ)γn

where Xp,n are independent random variables taking the values 1 and −1 with prob-
ability p resp. 1−p. It is well known that the distribution of the sum of independent
random variables is the convolution of the distributions of these random variables.
But the distribution of Xp,n(1− γ)γn is given by the measure bp,nγ .

2
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We remark that we do not have a convolution structure for the asymmetric measures
bpβ1,β2 . We can not write the measure as a distribution of the sum of independent
random variables in this case, because the term that is added randomly at the n’th
step depends on the terms that were added before.

In chapter six and nine we will continue with the discussion of the measures de-
fined here.

Now we go to characterize the ergodic measures for the dynamical system (Λϑ, Tϑ).

Proposition 3.2.3.

The map µ −→ µϑ := µ ◦ π−1ϑ is a affine homeomorphism from M(Σ+, σ) onto
M(Λϑ, Tϑ). If ϑ = (β1, β2, τ1, τ2) then the projection of µϑ onto the x-axis is µβ1,β2

and the projection onto the z-axis is µτ1,τ2 .

Proof

The first statement follows from proposition 3.1.1 using proposition 3.11. of [DGS]
and the remark on page 24 of [DGS]. The second statement is a direct consequence
of the product structure of the map πϑ and the definition of the involved measures.

2

We now describe all ergodic measures for the dynamical system ([−1, 1]2, fβ1,β2). We
will need pr+, the projection from Σ onto Σ+.

Proposition 3.2.4.

µ 7−→ µ̄β1,β2 := µ ◦ π̄−1β1,β2
is a continuous affine map from M(Σ, σ) onto

M([−1, 1]2, fβ1,β2). The projection of µ̄β1,β2 onto the x-axis is the measure (pr+µ)β1,β2
and b̄pβ1,β2 is the product of bpβ1,β2 with `p.

Proof

Since π̄β1,β2 is surjective and continuous we get from proposition 3.1. of [DGS] that
µ 7−→ µ̄β1,β2 := µ ◦ π̄−1β1,β2

is a continuous affine map from M(Σ) onto M([−1, 1]2). If
µ is shift invariant we obviously have µ(Σ̄) = 1. Because we know from proposition
3.1.2. that πβ1,β2 conjugates the backward shift and fβ1,β2 on Σ̄ we get that µ̄β1,β2 is
fβ1,β2 ergodic if µ is shift ergodic.
It remains to show that the map is onto M([−1, 1]2, fβ1,β2) restricted to M(Σ, σ).
So let us choose an arbitrary measure ξ in M([−1, 1]2, fβ1,β2).
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We first want to show that ξ(πβ1,β2(Σ\Σ̄)) = 0. Let D be set of all numbers of the
form k/2n with n ∈ IN and |k| ≤ n− 1. A direct calculation shows that:

πβ1,β2(Σ\Σ̄) = (D×[−1, 1])∪({1}×[−1, 1)) = (
∞⋃

k=0

f−k
β1,β2

({0}×[1,−1]))∪({1}×[−1, 1)).

Recall that the measure ξ is in particular shift invariant. Hence the measure of the
first set in union is zero because it is given by a disjunct infinite union of sets with
the same measure. The measure of the second set is zero since {1} × [−1, 1) ⊆
f−k
β1,β2

({1} × [1− 2βk
1 , 1)) ∀ k ≥ 0.

Now take µpre ∈M(Σ) such that µpre◦π−1β1,β2
= ξ. µpre is not necessary shift invariant

so we define a measure µ as a weak∗ accumulation point of the sequence

µn :=
1

n+ 1

n∑

i=0

µpre ◦ σ−n.

From the considerations above we have µpre(Σ̄) = 1 and hence:

µn ◦ π−1β1,β2
=

1

n+ 1

n∑

i=0

µpre ◦ σ−n ◦ π−1β1,β2

=
1

n+ 1

n∑

i=0

µpre ◦ π−1β1,β2
◦ f−i

β1,β2
=

1

n+ 1

n∑

i=0

ξ ◦ f−i
β1,β2

= ξ.

Thus µ̄β1,β2 is just the measure ξ and µ is shift invariant by definition. We have thus
shown that the set M(ξ) := {µ|µ σ-invariant and µβ1,β2 = ξ} of Borel measures on
Σ is not empty. Since the map µ 7−→ µ̄β1,β2 is continuous and affine on the set of
σ-invariant measures we know thatM(ξ) is compact and convex. It is a consequence
of Krein-Milman theorem that there exists an extremal point µ of M(ξ).
We claim that µ is an extremal point of the set of all σ-invariant Borel measures on
Σ and hence ergodic.
If this is not the case then we have µ = tµ1 + (1 − t)µ2 where t ∈ (0, 1) and µ1, µ2

are two distinct σ-invariant measures. This implies ξ = t(µ1)β1,β2 + (1− t)(µ2)β1,β2 .
Since ξ is ergodic we have (µ1)β1,β2 = (µ2)β1,β2 = ξ and hence µ1, µ2 ∈ M(ξ). This
is a contradiction to µ being extremal in M(ξ).

Now we calculate the projection: prX µ̄β1,β2(B) = µ̄β1,β2(B× [−1, 1]) = µ(π̄−1β1,β2
(B×

I)) = µ({−1, 1}ZZ−
0 × π−1β1,β2

(B)) = µ(pr−1+ (π−1β1,β2
(B))) = pr+µ(π

−1
β1,β2

(B)) =
(pr+µ)β1,β2(B)

Since the measure bp on Σ is the product of bp on {−1, 1}ZZ−
0 and bp on Σ+ and

ς maps bp on {−1, 1}ZZ−
0 to `p we see that b̄β1,β2 = bβ1,β2 × `p.

2

Let us now give an analysis of ergodic measures for the lifts (Λ̂ϑ, f̂ϑ).
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Proposition 3.2.5.

The map µ 7−→ µ̂ϑ := µ ◦ π̂−1ϑ is a affine homeomorphism from M(Σ, σ) onto

M(Λ̂ϑ, f̂ϑ). The projection of µ̂ϑ on the (x, z)-plane is (pr+µ)ϑ. Moreover b̂pϑ is
a product of bpϑ with `p. If ϑ = (β1, β2, τ1, τ2) then the projection of µ̂ϑ on the
(x, y)-plane is µ̄β1,β2 .

Proof

By the same reasoning we used in the proof of 3.2.3. we can show that the map is
continuous, affine and surjective. We will use the fact that π̂ϑ restricted to Σ̄ is a
bijection to show that the map is invertible.
Given a measure ξ ∈ M(Λ̂ϑ, f̂ϑ) we define a measure Fξ ∈ M(Σ) by Fξ(B) =
ξ(π̂ϑ(B)) for all Borel sets in Σ. Let µ be in M(Σ, σ) and B be a Borel set in Σ. We
have Fµϑ(B) = µ(π−1ϑ (πϑ(B))) = µ(Σ̄ ∩ π−1ϑ (πϑ(B))) = µ(Σ̄ ∩B) = µ(B). Hence F
is the inverse map to µ −→ µ̂ϑ. The continuity of F follows by the compactness of
M(Σ, σ).
The first statement about the projections follows in the same way as our projection
result in 3.2.4. . The second statement is is obvious since prXY π̂ϑ = π̄β1,β2 .

2

From the proposition of this sections and the propositions of the last section we get a
corollary about the metric entropy of the measure theoretical dynamical systems we
study. For the definition of the metric entropy hµ(T ) of a dynamical system (X,T )
with an invariant measure µ and a treatment of the properties of this quantity
we recommend [WA], [DGS] or [KH]. To get the corollary we cab use for instance
proposition 11.14. of [WA].

Corollary 3.2.6.

hµϑ(Tϑ) = hµ(σ) holds for all µ ∈ M(Σ+, σ) and hµϑ(f̂ϑ) = hµ(σ) holds for all
µ ∈M(Σ, σ).

We also get the inequality hµ̄β1,β2
(fβ1,β2) ≤ hµ(σ) as a corollary of 3.1.2. and 3.2.3. .

In fact even the identity hµ̄β1,β2
(fβ1,β2) = hµ(σ) holds. This is easy to see for Bernoulli

measures by projecting the systems onto the y-axis using the product structure of
b̄pβ1,β2 but more difficult if we consider other measures. We will sketch a proof of this
identity using conditional measures and dimensions in 5.3.6. .
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4. Calculation of box-counting dimension

Before we discuss the dimension of measures and the Hausdorff dimension of sets in
the context of our dynamical systems we calculate here the box-counting dimension
of the repellers Λϑ and the attractors Λ̂ϑ defined in chapter two. We refer to appendix
A for the definition of the various kinds of dimension and basic facts in dimension
theory.

Theorem 4.1.

If ϑ = (β1, β2, τ1, τ2) ∈ P 4
all and d is the unique positive number satisfying

β1τ
d
1 + β2τ

d
2 = 1

then
dimB Λϑ = d+ 1 and dimB Λ̂ϑ = d+ 2.

Let us make a few remarks on this theorem:

Remarks

(1) A simple calculation shows that our theorem is consistent with the result of
Pollicott and Weiss [PW] in the special case β1 = β2 =: β and τ1 = τ2 =: τ (see
theorem 2.1.3.).

(2) Recall from the classical work of Moran [MO] that the Hausdorff and box-
counting dimension of a self-similar Cantor set induced by by transformations with
contraction rates τ1 and τ2 is given by the solution of τ d

1 +τ
d
2 = 1. There is an analogy

to our formula. In our setting of an self-affine set with overlaps in the projections the
contraction rates in the second direction induces weights in the dimension formula.

(3) The overlapping condition β1 + β2 ≥ 1 is necessary for our formula to hold.
In the case β1 + β2 < 1 the Hausdorff and box-Counting dimension of the self-affine
set is given by the bigger solution of the equations βx

1 + βx
2 = 1 and τx

1 + τx2 = 1.
This can be shown by transferring the arguments of Pollicott and Weiss [PW] in the
non overlapping symmetric to the non overlapping asymmetric situation .

(4) It may be interesting to notice that it follows from our result and the implicit
function theorem that the function

ϑ 7−→ dimB Λϑ

is C∞ on the interior of P 4
all.
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Proof of 4.1.

Let f(t) = β1τ
t
1 + β2τ

t
2. Since f(0) = β1 + β2 ≥ 1 and f is strictly monotonous

decreasing with limt−→∞ f(t) = 0 there is an unique positive number d with β1τ
d
1 +

β2τ
d
2 = 1. Fix d.

Given a real number r > 0 we define a set of finite sequences by

Xr := {(s1, . . . , sk)|min{τ1, τ2}r ≤ τs1τs2 . . . τsk < r where sj ∈ {1, 2} ∀j = 1 . . . k}.

Notice that the sequences in Xr have not the same length. Let k̄(r) be the maximal
length of a sequence in Xr. We observe that for every sequence (sj) ∈ {1, 2}k̄(r)
there is an unique k such that (s1, . . . , sk) ∈ Xr. Thus we get

∑

(s1,...,sk)∈Xr

βs1βs2 . . . βsk(τs1τs2 . . . τsk)
d

=
∑

(s1,...,sk)∈Xr

βs1βs2 . . . βsk(τs1τs2 . . . τsk)
d(β1τ

d
1 + β2τ

d
2 )

k̄(r)−k

=
∑

(s1,...,sk̄(r))∈{1,2}k̄(r)
βs1βs2 . . . βsk̄(r)

(τs1τs2 . . . τsk̄(r))
d = (β1τ

d
1 + β2τ

d
2 )

k̄(r) = 1 (1).

Beside equitation (1) we need one more fact. Let v be the unique positive number
satisfying τ v

1 + τ v2 = 1. Since τ1 + τ2 < 1 we have v ≤ 1 ≤ d+ 1. Consequently

∑

(s1,...,sk)∈Xr

(τs1τs2 . . . τsk)
d+1 ≤

∑

(s1,...,sk)∈Xr

(τs1τs2 . . . τsk)
v = 1 (2).

Now we are prepared to begin with the main proof. We define a cover of Λϑ by

Cr = {πϑ([κ(s1), . . . , κ(sk)]0)|(s1, . . . , sk) ∈ Xr}

where κ(1) = 1 and κ(2) = −1. Since {[κ(s1), . . . , κ(sk)]0|(s1, . . . , sk) ∈ Xr} is a
cover of Σ+ we get from 3.1.1. that Cr is in fact a cover of Λϑ.
An element of Cr is a rectangle parallel to the axis with x-length 2βs1βs2 . . . βsk

and y-length 2τs1τs2 . . . τsk . We cover each of this rectangles by squares parallel to
the axis of side length 2τs1τs2 . . . τsk . We choose the squares in a row such that
they only intersect in their boundary. So we get for each rectangle a covering by

dβs1βs2 ...βsk
τs1τs2 ...τsk

e squares (here dxe denotes the smallest integer bigger than x). In this

way we obtain a new cover Ĉr of Λϑ, which consists of squares with side length in
(2min{τ1, τ2}r, 2r]. Furthermore the number N̂(r) of elements in Ĉr is given by

N̂(r) =
∑

(s1,...,sk)∈Xr

dβs1βs2 . . . βsk

τs1τs2 . . . τsk
e.
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Now we have the following upper estimate,

N̂(r)rd+1 ≤ min{τ1, τ2}−(d+1)
∑

(s1,...,sk)∈Xr

dβs1βs2 . . . βsk

τs1τs2 . . . τsk
e(τs1τs2 . . . τsk)d+1

≤ min{τ1, τ2}−(d+1)(
∑

(s1,...,sk)∈Xr

βs1βs2 . . . βsk(τs1τs2 . . . τsk)
d+

∑

(s1,...,sk)∈Xr

(τs1τs2 . . . τsk)
d+1)

≤(1)/(2) 2min{τ1, τ2}−(d+1)

and the following lower estimate:

N̂(r)rd+1 ≥
∑

(s1,...,sk)∈Xr

dβs1βs2 . . . βsk

τs1τs2 . . . τsk
e(τs1τs2 . . . τsk)d+1

≥
∑

(s1,...,sk)∈Xr

βs1βs2 . . . βsk(τs1τs2 . . . τsk)
d =(1) 1.

Now let N(r) be the minimal cardinality of an arbitrary cover of Λϑ with squares
parallel to the axis of side length 2r. Obviously we have N(r) ≤ N̂(r) but we need
another argument for an opposite estimate.
Let R be a rectangle in the cover Cr. We see that the projection of Λϑ ∩ Cr on
the x-axis has the full x-length of the rectangle since we assumed β1 + β2 ≥ 1.
This implies that the intersection of each square in Ĉr with Λϑ is not empty. Thus
if we have a cover of Λϑ each element of Ĉr has to be intersected by at least one
element of the cover. But one square with side length 2r can not intersect more
than 9min{τ1, τ2}−2 squares in Ĉr because the squares in Ĉr have side length bigger
than 2min{τ1, τ2}r and intersect, if at all, only in the boundary. It follows that
N(r) ≥ 1/9min{τ1, τ2}2N̂(r).
Putting our estimates together we obtain

1

9
min{τ1, τ2}2 ≤ N(r)rd+1 ≤ 2min{τ1, τ2}−(d+1)

and hence

dimB Λϑ = lim
r−→∞

logN(r)

log(2r)−1
= lim

r−→∞
logN(r)

log r−1
= d+ 1.

The formula dimB Λ̂ϑ = d + 2 follows from the product structure of Λ̂ϑ and propo-
sition A5 of appendix A. So our proof is complete.

2

An analysis of the Hausdorff dimension of the sets Λϑ and Λ̂ϑ is very difficult. We
we will present our results in chapter seven and ten.
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5. Dimension formulas and estimates for ergodic

measures

5.1. Lyapunov exponents and charts

In this chapter we want to apply the general dimension theory of ergodic measures
that was developed in the last twenty years (see [YO], [LY], [BPS] and references
there in) to the systems we study. Our aim is to find formulas and upper bounds
for the dimension of ergodic measures for (Λϑ, Tϑ), (Λ̂ϑ, f̂ϑ) and ([−1, 1]2, fβ1,β2) in
terms of Lyapunov exponents, metric entropy and the dimension of the measures
µβ1,β2 . In this section we do some preparations, namely we show the existence of

Lyapunov exponents and charts related to a measure µ̂ϑ on Λ̂ϑ and calculate the
exponents.

Lemma 5.1.1.

There is a subset Ωϑ ⊆ Λ̂ϑ which has full measure for a all µ̂ϑ ∈ M(Λ̂ϑ, f̂ϑ) such
that f̂ϑ is a bijection on Ωϑ and f̂ϑ is differentiable for all x = (x, y, z) ∈ Ωϑ with

Dxf̂ϑ =






β1 0 0
0 2 0
0 0 ττ1




 if y > 0 Dxf̂ϑ =






β2 0 0
0 2 0
0 0 τ2




 if y < 0.

Proof

Denote by S the singularity [−1, 1]× {0} × [−1, 1] of the system and define the set
Ωϑ by

Ωϑ =
∞⋂

n=−∞
f̂n
ϑ ([−1, 1]3\S).

By definition we have f̂ϑ(Ωϑ) = Ωϑ and since f̂ϑ is injective it is in fact a bijection
on Ωϑ. Moreover if x ∈ Ωϑ then x 6∈ S and hence f̂ϑ is differentiable and has
obviously the derivative that we stated in the lemma. We only have to show now
that µϑ(Ωϑ) = 1. By elemental calculations we see that

Ωϑ = ({(x, y, z) ∈ Λ̂ϑ|y 6= 1, y 6= −1} ∪ {(1, 1, 1), (−1,−1,−1)})\
∞⋃

n=0

f−n(S).

Since µ̂ϑ is invariant and the union in the expression above is disjoint it has zero
measure. It remains to show that µ̂ϑ([−1, 1] × {1} × [−1, 1]) = µ̂ϑ({(1, 1, 1)} and
µ̂ϑ([−1, 1] × {−1} × [−1, 1]) = µ̂ϑ({(−1,−1,−1)}. But this is obvious since f̂ϑ is
just a contraction with fixed point (1, 1, 1) resp. (−1,−1,−1) on the sets [−1, 1]×
{1} × [−1, 1] resp. [−1, 1]× {1} × [−1, 1] .
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Now define linear subspaces of IR3 by

Eu =<






0
1
0




 > Es =<






0
0
1




 ,






1
0
0




 >

Etau =<






0
0
1




 > Ebeta =<






1
0
0




 > .

Given a Borel measure µ on Σ and γ1, γ2 ∈ (0, 1) we set

Ξµ
γ1,γ2

= µ([1]0) log γ1 + µ([−1]0) log γ2.

Proposition 5.1.2.

Given µ ∈M(Σ, σ) and ϑ = (β1, β2, τ1, τ2) ∈ P 4
all we have for µ̂ϑ-almost all x ∈ Λ̂ϑ.

lim
n−→∞

1

n
log ||Dxf

n
ϑ v|| = log 2 ∀v ∈ Eu

If Ξµ
β1,β2

≥ Ξµ
τ1,τ2

: lim
n−→∞

1

n
log ||Dxf

n
ϑ v|| = {

Ξµ
β1,β2

if v ∈ Es\Etau

Ξµ
τ1,τ2

if v ∈ Etau

If Ξµ
β1,β2

≤ Ξµ
τ1,τ2

: lim
n−→∞

1

n
log ||Dxf

n
ϑ v|| = {

Ξµ
τ1,τ2

if v ∈ Es\Ebeta

Ξµ
β1,β2

if v ∈ Ebeta

Proof

By lemma 5.1.1. we have for µ̂ϑ-almost all x ∈ Λ̂ϑ

log ||Dxf
n
ϑ (






0
y
0




)|| = n log 2 + log y ∀n ≥ 0.

This implies our claim about Eu. Now we look at Es. By lemma 5.1.1. and
proposition 3.1.3. and 3.2.5. we have for µ̂ϑ-almost all x ∈ Λ̂ϑ

log ||Dxf
n
ϑ (






x
0
z




)|| = log

√

(xβ
n−]̄n(s)+1
1 β

]̄n(s)
2 )2 + (zτ

n−]̄n(s)+1
1 τ

]̄n(s)
2 )2 ∀n ≥ 0

where s = (sk) = π̂−1ϑ (x) and ]̄n(s) counts the number of entrys in the set
{s0, s−1, . . . , s−n} that are −1.
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We now have to determine the limit of this expression for µ- almost all s ∈ Σ. By
Birkhoffs ergodic theorem (see 4.1.2. of [KH]) we have:

lim
n−→∞

1

n+ 1

n∑

k=0

f(σ−k(s)) =
∫

fdµ µ− a.e.

for all L1 functions f on Σ with respect to µ. Applying this to the functions

fbeta(s) =
log β1 if s0 = 1
log β2 if s0 = −1 ftau(s) =

log τ1 if s0 = 1
log τ2 if s0 = −1

we obtain

lim
n−→∞

1

n
log β

n−]̄n(s)+1
1 β

]̄n(s)
2 = Ξµ

β1,β2
and lim

n−→∞
1

n
log τ

n−]̄n(s)+1
1 τ

]̄n(s)
2 = Ξµ

τ1,τ2
µ− a.e.

and from this by elemental calculus

lim
n−→∞

1

n
log

√

(xβ
n−]̄n(s)+1
1 β

]̄n(s)
2 )2 + (zτ

n−]̄n(s)+1
1 τ

]̄n(s)
2 )2 = max{Ξµ

β1,β2
,Ξµ

τ1,τ2
} µ− a.e.

if x 6= 0 and y 6= 0. This implies our claims about the stable directions.

2

This proposition means that Lyapunov exponents exists almost everywhere for the
systems (Λ̂ϑ, f̂ϑ, µ̂ϑ) if µ is ergodic. Eu is the unstable direction with Lyapunov ex-
ponent log 2 and Es is the stable direction with exponent Ξµ

β1,β2
or Ξµ

τ1,τ2
depending

on which quantity is bigger. Accordingly E tau or Ebeta is the strong stable direction
with Lyapunov exponent Ξµ

τ1,τ2
resp. Ξµ

β1,β2
.

In order to guarantee the existence of Lyapunov charts associated with the Lya-
punov exponents we have to show that the set of points that does not approach
the singularity S := [−1, 1] × {0} × [−1, 1] with exponential rate has full measure.
Precisely we have:

Lemma 5.1.3.

Given µ ∈M(Σ, σ) and ϑ = (β1, β2, τ1, τ2) ∈ P 4
all we have for all ε > 0

µ̂ϑ({x ∈ Λ̂ϑ|∃l > 0 ∀n > 0 d(fn(x), S) > (1/l)e−εn}) = 1,

29



Proof

Fix ε > 0. First note that it is sufficient if we show

µ̂ϑ({x ∈ Λ̂ϑ|∃(nk)k∈IN −→∞ ∀k > 0 d(fnk(x), S) ≤ e−εnk}) = 0

because if we have for a point x that ∃n0∀n > n0 d(f
n(x), S) > e−εn then there

exists l > 0 such that d(fn(x), S) > (1/l)e−εn ∀n > 0.
By 3.1.3. and the definition of the measure µ̂ϑ this assertion is equivalent to the
following statement about the symbolic system (Σ, σ−1, µ):

µ(N) = 0 where N := {s ∈ Σ̂|∃(nk)k∈IN −→∞ ∀k > 0 d(σ−nk(s), S̃) ≤ e−εnk}

and S̃ = {s ∈ Σ|s−1 = 1 and sk = −1 ∀k < −1}. We will now prove this.
If s ∈ N we have d(σ−nk(s), S̃) ≤ e−εnk∀k > 0 By the definition of the metric d this
implies

σ−nk(s) ∈ [−1,−1, . . . ,−1, 1
︸ ︷︷ ︸

dcεnke

]−dcεnke−1 ∀k > 0

where the constant c is independent of ε, nk and s. This gives us:

σi(s) 6∈ [1]−2 i = nk, . . . , nk + dcεnke − 1 ∀k > 0.

Thus we have:

N ⊆ {s|∃(nk)k∈IN −→∞ ∀k > 0 : σi(s) 6∈ [1]−2 i = nk, . . . , nk + dcεnke − 1}.

Applying lemma 7.1. of [ST2] for the ergodic system (Σ, σ, µ) (with Y = [1]−2) we
obtain µ(N) = 0.

2

By this lemma the systems (Λ̂ϑ, f̂ϑ, µ̂ϑ) fall into the class of generalized hyperbolic
attractors in the sense of Schmeling and Troubetzkoy [ST1,2.1.]. From [ST1,3] it
follows that our systems have appropriate Lyapunov charts almost everywhere with
respect to the exponents given in 5.1.2. . For the definition and the constructed of
these Lyapunov charts we reefer to [KS].

5.2. Exact dimensionality and Ledrappier Young formula

Usually the general theory for the dimension of ergodic measures is stated in the
context of C2-diffeomorphisms in order to guarantee the existence of Lyapunov ex-
ponents and charts. But invertibility and the existence of Lyapunov exponents and
charts almost everywhere is enough to apply this theory. We refer to section 4 of
[ST1] for this fact. This is of great importance for us. For the systems (Λ̂ϑ, f̂ϑ, µ̂ϑ)
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we have shown invertibility and the existence of Lyapunov exponents and charts
almost everywhere in last section. We are thus allowed to apply the general results
found in [BPS], [LY] and [YO] in our context.
To this end first define partitions W s and W u of [−1, 1]3 in the stable and in the
unstable directions of f̂ϑ by the partition elements

W s(x) = [−1, 1]× {y} × [−1, 1] W u(x) = {x} × [−1, 1]× {z}

where x = (x, y, z) ∈ Λ̂ϑ. Given µ̂ϑ ∈ M(Λ̂ϑ, f̂ϑ) we have conditional measures
µ̂s
ϑ(x) on W s and µ̂u

ϑ(x) on W u. These measures are unique µ̂ϑ-almost everywhere
fulfilling the relations:

µ̂ϑ(B) =
∫

µ̂s
ϑ(x)(B ∩W s(x))dµ̂ϑ(x) resp. µ̂ϑ(B) =

∫

µ̂u
ϑ(x)(B ∩W u(x))dµ̂ϑ(x)

for all Borel sets B in [−1, 1]3. We refer to [LY] and [RO] for informations about
conditional measures on measurable partitions.

Let us define balls in the elements of the partitions by

Bs
r((x, y, z)) = {(x̄, ȳ, z̄)|ȳ = y and (x̄, z̄) ∈ Br(x, z)},

Bu
r ((x, y, z)) = {(x̄, ȳ, z̄)|x̄ = x z̄ = z and ȳ ∈ Br(y)}.

Now applying the results of Barreira, Schmeling and Pesin [BPS] to the system
(Λ̂ϑ, f̂ϑ, µ̂ϑ) we obtain:

Proposition 5.2.1.

Let µ ∈ M(Σ, σ), ϑ = (β1, β2, τ1, τ2) ∈ P 4
all and let µ̂s

ϑ(x) be conditional measures
on W s and µ̂u

ϑ(x) conditional measures on W u with respect to µ̂ϑ. We have:

ds(x, µ̂s
ϑ(x)) := limr−→∞

log µ̂s
ϑ(x)(B

s
r(x))

log r
= const. =: dim µ̂s

ϑ µ̂ϑ − a.e.

du(x, µ̂u
ϑ(x)) := limr−→∞

log µ̂u
ϑ(x)(B

u
r (x))

log r
= const. =: dim µ̂u

ϑ µ̂ϑ − a.e.

d(x, µ̂ϑ) := limr−→∞
log µ̂ϑ(x)(Br(x))

log r
= dim µ̂u

ϑ + dim µ̂s
ϑ =: dim µ̂ϑ µ̂ϑ − a.e.

An introduction to the local dimension, which is used here, can be found in appendix
A. The proposition means that the measure µ̂ϑ is exact dimensional and that the
dimension is given by the sum of the unstable and stable dimension resp. the local
dimension of conditional measures on partitions in stable and unstable directions,
which is almost everywhere constant.
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Now we want to have some information about the quantities dim µ̂u
ϑ and dim µ̂s

ϑ.
This is easy for the unstable dimension, because this direction is one dimensional.
The next proposition follows from Ledrappier and Young [LY] or from the work of
Young [YO]:

Proposition 5.2.2.

Under the assumptions of 5.2.1. we have dim µ̂u
ϑ = hµ̂ϑ(f̂ϑ)/ log 2.

An analysis of dim µ̂s
ϑ is more difficult because we have two unstable directions

with different expansion rates. If Ξµ
β1,β2

≥ Ξµ
τ1,τ2

we have a partition W ss in the
strong stable direction given by the partition elements

W ss(x) = {x} × {y} × [−1, 1] where x = (x, y, z) ∈ Λ̂ϑ.

Given µ̂ϑ ∈M(Λ̂ϑ, f̂ϑ) we have conditional measures µ̂ss
ϑ (x) onW ss. These measures

are unique µ̂ϑ-almost everywhere fulfilling the relation:

µ̂ϑ(B) =
∫

µ̂ss
ϑ (x)(B ∩W ss(x))dµ̂ϑ(x)

for all Borel sets B in [−1, 1]3. From the uniqueness of the conditional measures we
have for µ̂ϑ-almost all x = (x, y, z)

µ̂s(x)(B) =
∫

µ̂ss
ϑ (x̄, y, z)(B ∩W ss(x̄, y, z))dprX µ̂

s
ϑ(x)(x̄)

for all Borel sets B in W s(x). This statement means that the transversal measures
in the sense of [LY] of the nested partitions W s and W ss are in our context given
by prX µ̂

s
ϑ(x).

Now let:

Bss
r ((x, y, z)) = {(x̄, ȳ, z̄)|ȳ = y , x̄ = x and z̄ ∈ Br(z)} and

Btrans((x, y, z)) = {(x̄, ȳ, 0)| x̄ = x and ȳ ∈ Br(y)}.
Applying the results of [LY] about the local dimensions of conditional measures in
the context of dynamical systems we obtain:

Proposition 5.2.3.

Let µ ∈ M(Σ, σ) and ϑ = (β1, β2, τ1, τ2) ∈ P 4
all with Ξµ

β1,β2
≥ Ξµ

τ1,τ2
. Let µ̂s

ϑ(x) be
conditional measures on W s and µ̂ss

ϑ (x) conditional measures on W ss with respect
to µ̂ϑ. We have

dss(x, µ̂ss
ϑ (x)) := limr−→∞

log µ̂ss
ϑ (x)(Bss

r (x))

log r
= const. =: dim µ̂ss

ϑ µ̂ϑ − a.e.
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dtrans(x, prX µ̂
s
ϑ(x)) := limr−→∞

log prX µ̂
s
ϑ(x)(B

trans
r (x))

log r

= dim µ̂s
ϑ − dimµss

ϑ =: dim µ̂trans
ϑ µ̂ϑ − a.e.

dim µ̂s
ϑ =

hµ̂ϑ(f̂ϑ)

−Ξµ
τ1,τ2

+ (1− Ξµ
β1,β2

Ξµ
τ1,τ2

) dim µ̂trans
ϑ

The last equitation is known in dimension theory of dynamical systems as
Ledrappier-Young formula.

5.3. Some consequences

We will find here some interesting consequences of the general results of the last
section. First we have an upper bound on the dimension of the measures µ̂ϑ.

Proposition 5.3.1.

Let µ ∈ M(Σ, σ), ϑ = (β1, β2, τ1, τ2) ∈ P 4
all and let d the unique positive number

satisfying β1τ
d
1 + β2τ

d
2 = 1. We have:

dim µ̂ϑ ≤
hµ(σ)

log 2
+ d+ 1.

Proof

Combining 5.2.1. and 5.2.2. with 3.2.6. we have:

dim µ̂ϑ =
hµ(σ)

log 2
+ dim µ̂s

ϑ.

Since µ̂ϑ is a measure on Λ̂ϑ the measures µ̂s
ϑ(x, y, z) are by definition concentrated

on the set {(x̄, ȳ, z̄)|y = ȳ (x, z) ∈ Λϑ}. Hence we have

dimH µ̂s
ϑ(x, y, z) ≤ dimH Λϑ ≤ dimB Λϑ ∀(x, y, z) ∈ Λ̂ϑ.

Using theorem A2 we now get dim µ̂s
ϑ ≤ dimB Λϑ . But from 4.1. we know dimB Λϑ =

d+ 1, which competes the proof.

2

It is well known in the theory of dynamical systems that the equal weighted Bernoulli
measure is the unique ergodic Borel measure of maximal entropy log 2 for the system
(Σ, σ); see 8.9. of [WA]. Thus the last proposition shows that the only ergodic
measures for the attractor (Λ̂ϑ, f̂ϑ) that can have full box-counting dimension is the
equal weighted Bernoulli measure b̂ϑ.
We now present an other upper bound on the dimension of µ̂ϑ, which is in terms of
the dimension of the measures (pr+µ)β1,β2 where pr

+ as usual denotes the projection
from Σ onto Σ+.
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Proposition 5.3.2.

Under the assumption of proposition 5.2.3. we have:

dim µ̂ϑ ≤
hµ(σ)

log 2
+

hµ(σ)

−Ξµ
τ1,τ2

+ (1− Ξµ
β1,β2

Ξµ
τ1,τ2

) dimH(pr
+µ)β1,β2 .

Proof

The result follows immediately combining 5.2.1. with 5.2.2. and 5.2.3. if we show
the inequality

dim µ̂trans
ϑ ≤ dimH(pr

+µ)β1,β2 .

To see this choose a Borel set B in the line with (pr+µ)β1,β2(B) = 1. Because we
know from 3.2.3. that prXνϑ = νβ1,β2 ∀ν ∈M(Σ+, σ) we have (pr+µ)ϑ(B×[−1, 1]) =
1. From 3.2.5. we know prXZµ̂ϑ = (pr+µ)ϑ. Hence we get µ̂ϑ(B× [−1, 1]× [−1, 1]) =
1. By the definition of the conditional measures µ̂s

ϑ(x) we get µ̂s
ϑ(x, y, z)(B × {y} ×

[−1, 1]) = 1 µ̂ϑ-almost everywhere. This implies prX µ̂
s
ϑ(x, y, z)(B × {y}) = 1 and

hence dimH prX µ̂
s
ϑ(x, y, z) ≤ dimH B µ̂ϑ-almost everywhere. With 5.2.3. and A2 we

now get dim µ̂trans
ϑ ≤ dimH B. This implies the desired inequality since B was an

arbitrary Borel set with (pr+µ)β1,β2(B) = 1.

2

For the Bernoulli measures b̂pϑ and bpϑ we get explicit dimension formulas in terms of
the dimension of the measures self-similar measures bpβ1,β2

Proposition 5.3.3.

For all ϑ = (β1, β2, τ1, τ2) ∈ P 4
all and p ∈ (0, 1) with p log β1 + (1 − p) log β2 ≥

p log τ1 + (1− p) log τ2 we have:

dim b̂pϑ =
−p log p− (1− p) log(1− p)

log 2
+
p log p+ (1− p) log(1− p)

p log τ1 + (1− p) log τ2

+(1− p log β1 + (1− p) log β2
p log τ1 + (1− p) log τ2

) dimH bpβ1,β2

and

dim bpϑ =
p log p+ (1− p) log(1− p)

p log τ1 + (1− p) log τ2
+ (1− p log β1 + (1− p) log β2

p log τ1 + (1− p) log τ2
) dimH bpβ1,β2 .
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Proof

We know from 3.2.5. that the measure b̂pϑ is the product of the measure bpϑ in
the (x, z)-plane with the measure `p on the y-axis. From this follows, that the
conditional measures (b̂pϑ)

s(x) are given by the measure bpϑ for b̂p-almost all x. Fur-

thermore the transversal measures prX(b̂
p
ϑ)

s(x) are given by bpβ1,β2 because we have

from 3.2.3. prX b̂
p
ϑ = bβ1,β2 . The dimension formulas are now just a consequence of

the propositions of section 5.2. and the following explicit formulas:

hbp(σ) = −p log p− (1− p) log(1− p) and Ξγ1,γ2
bp = p log γ1 + (1− p) log γ1.

For the first formula see for instance 12.4. of [DGS]. The second one is obvious.

2

We have the following upper bound on the Hausdorff dimension of the ergodic mea-
sure for the projected system ([−1, 1]2, fβ1,β2):

Proposition 5.3.4.

Let µ ∈M(Σ, σ) and (β1, β2) ∈ P 2
olapp. We have:

dimH µ̄β1,β2 ≤
hµ(σ)

log 2
+ 1.

Proof

Fix (β1, β2) ∈ P 2
olapp and choose τ ∈ (0, 0.5). Let ϑ = (β1, β2, τ, τ). Applying 5.3.2.

we have:

dim µ̂ϑ ≤
hµ(σ)

log 2
+

log(β1 + β2)

log τ−1
+ 1.

From proposition 3.2.5. we know prXY µ̂ϑ = µ̄β1,β2 , which obviously implies
dimH µ̄β1,β2 ≥ dimH µ̂ϑ. Hence

dimH µ̄β1,β2 ≤
hµ(σ)

log 2
+

log(β1 + β2)

log τ−1
+ 1 ∀τ ∈ (0, 0.5).

Letting τ −→ 0 we get our result.

2

From this proposition and 3.2.4. it follows, that the only ergodic measures for the at-
tractor ([−1, 1]2, fβ1,β2) that can have full Hausdorff dimension is the equal weighted
Bernoulli measure b̄β1,β2 .

We like to include here an upper bound on the Hausdorff dimension of the mea-
sures µ̄β1,β2 , which can be proved elementary without the results of 5.2. .
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Proposition 5.3.5.

Let µ ∈M(Σ, σ) and (β1, β2) ∈ P 2
olapp. We have dimH µ̄β1,β2 ≤ dimH(pr

+µ)β1,β2 + 1

Proof

Let B be a Borel set with (pr+µ)β1,β2(B) = 1. By 3.2.4. we have prX µ̄β1,β2 =
(pr+µ)β1,β2 . Hence µ̄β1,β2(B × [−1, 1]) = 1. Thus dimH µ̄β1,β2 ≤ dimH(B × [−1, 1])
and by proposition A5 dimH µ̄β1,β2 ≤ dimH(B) + 1. Since B was an arbitrary Borel
set with full (pr+µ)β1,β2 measure we get our result.

2

Our results here show that the study of the measures νβ1,β2 and especially the self-
similar measures bpβ1,β2 is essential for us. This discussion occupies the next chapter.
But before we state a result about the entropy of the measures µ̄β1,β2 .

Proposition 5.3.6.

If µ ∈M(Σ, σ) and (β1, β2) ∈ P 2
olapp we have hµ̄β1,β2

(fβ1,β2) = hµ(σ).

This fact is not trivial because the system ([−1, 1]2, fβ1,β2 , µ̄β1,β2) is only a mea-
sure theoretical factor of (Σ, σ, µ). We know only a long and quite complicated
proof of this proposition using conditional measures and dimensions. Because we
do not need this proposition in the main line of our argumentation we think it is
enough if we give a sketch of our proof; the details can be found in [NE].

Sketch of proof

We first define a partition W̄ u of [−1, 1]2 and a partition W su of [−1, 1]3 by

W̄ u(x, y) = {x} × [−1, 1] W su(x, y, z) = {x} × [−1, 1]2.

Given µ̄β1,β2 we have conditional measures µ̄u
β1,β2

(x, y) on the elements of W̄ u and
given µ̂ϑ we have conditional measures µ̂su

ϑ (x, y, z) on the elements of W su(x, z, z).
Using properties and uniqueness of conditional measures it is possible to show that
the following relations hold for µ̂ϑ-almost all (x, y, z) ∈ Λ̂ϑ:

(1) prXY µ̂
su
ϑ (x, y, z) = µ̄u

β1,β2
(x, y)

(2) µ̂su
ϑ (x, y, z)(B∩W su(x, y, z)) =

∫

µ̂u
ϑ(x, ȳ, z̄)(B∩W u(x, ȳ, z̄))dµ̂su

ϑ (x, y, z)(ȳ, z̄).

From 5.2.1. and A2 it follows that dimH µ̂u
ϑ(x, y, z) = dim µ̂u

ϑ holds µ̂ϑ-almost ev-
erywhere. But this implies for µ̂ϑ-almost all (x, y, z) ∈ Λ̂ϑ

(3) dimH µ̂u
ϑ(x, ȳ, z̄) = dim µ̂u

ϑ for µ̂su
ϑ (x, y, z)-almost all (x, ȳ, z̄) ∈W su(x, y, z).
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Let G be the set of all (x, y, z) such that (1),(2) and (3) hold. Fix (x, y, z) ∈ G.
Let B be an arbitrary Borel set such that µ̄u

β1,β2
(x, y)({x} × B) = 1. With (1)

it follows that µ̂su
ϑ (x, y, z)({x} × B × [−1, 1]) = 1 and with (2) we get from this

µ̂u
ϑ(x, ȳ, z̄)({x} × B × {z̄}) = 1 for µ̂su

ϑ (x, y, z) -almost all (x, ȳ, z̄) ∈ W su(x, y, z).
Hence dimH µ̂u

ϑ(x, ȳ, z̄) ≤ dimH B for µ̂su
ϑ (x, y, z) -almost all (x, ȳ, z̄) ∈ W su(x, y, z)

and with (3) dim µ̂u
ϑ ≤ dimH B. Since B was arbitrary, G has full µ̂ϑ measure and

µ̂ϑ projects to µ̄β1,β2 this shows:

dim µ̂u
ϑ ≤ dimH µ̄u

β1,β2
(x, y) µ̄β1,β2-a.e.

Now let us look at the entropy. On the one hand we know dim µ̂u
ϑ = hµ(σ)/ log 2

from 5.2.2. . On the other hand it is by means of [MN] not difficult to see in rather
direct way that dimH µ̄u

β1,β2
(x, y) ≤ hµ̄β1,β2

(fβ1,β2)/ log 2 holds µ̄β1,β2-a.e. (see [NE]).
Hence hµ(σ) ≤ hµ̄β1,β2

(fβ1,β2). For the opposite inequality see the remark after 3.2.6 .

2

It seems to be plausible that a more direct proof of the last proposition should be
possible only working with the entropy of conditional measures and without using
dimensions at all. But we have not elaborated this.
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6. Overlapping self-similar measures

6.1. Main results

In this section we begin to study the self-similar measure bpγ1,γ2 defined in 3.2. for
γ1, γ2 ∈ (0, 1) and p ∈ (0, 1). If γ1+ γ2 < 1 the measure is concentrated on a Cantor
set and hence singular. We will discuss here the overlapping case and thus assume
γ1 + γ2 ≥ 1. The overlapping symmetric self-similar measures bpγ are usually called
infinitely convolved Bernoulli measures. They raised great interest in the literature.
Using Fourier transformation techniques Winter [WI] showed in 1935 that bγ is
absolutely continuous if γ = 1

n√2
with n ≥ 0 and Erdös [ER2] showed in 1940 that

the measure is absolute continuous for almost all γ in a small neighborhood of one.
Recently one mayor progress was achieved by Solomyak:

Theorem 6.1.1. [SO1]

The measure bγ is absolutely continuous with square integrable density for almost
all γ ∈ (0.5, 1).

We like to inform the reader here that there are parameter values γ with special
number theoretical properties such that bγ is singular. We will discuss this issue in
detail in chapter nine.

Peres and Solomyak [PS1] found a considerably simplified proof of theorem 6.1.1. .
Moreover they extended the technique used in this proof to the measures bpβ, which
have different weights. They proved:

Theorem 6.1.2. [PS2]

Let p ∈ (0, 1). The measures bpγ are absolutely continuous for almost all γ ∈
(pp(1 − p)1−p, 0.649) and singular if γ < pp(1 − p)1−p. If p ∈ [1/3, 2/3] then the
bound 0.649 in this statement can be replaced by 1.

As far as we know the overlapping asymmetric self-similar measures bpγ1,γ2 have not
been studied jet. This will be our task here. We will prove an analogon of 6.1.2. in
the asymmetric situation. Let us first define a subset of the parameters set

P 2
olapp := {(γ1, γ2) ∈ (0, 1)2|γ1 + γ2 ≥ 1}

by
P 2

trans := {(γ1, γ2) ∈ P 2
olapp|γ2 ≤ γ1 ≤ 0.649}.

Now we formulate our result:
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Theorem 6.1.3.

Let p ∈ (0, 1) and P 2
abs := {(γ1, γ2) ∈ P 2

trans|(γ2p)p(γ1(1 − p))1−p ≤ γ1γ2}. The
measures bpγ1,γ2 are absolutely continuous for almost all (γ1, γ2) ∈ P 2

abs in the sense
of two dimensional Lebesgue measure and singular if (γ2p)

p(γ1(1− p))1−p > γ1γ2.

The first part of this theorem follows from corollary 6.2.2. of the next section
using the theorem of Fubini. The singularity assertion is stated in corollary 6.3.2.
and follows from a more general upper bound on the box-counting dimension of the
measures µγ1,γ2 we will prove in 6.3.1. .

We think that it is necessary to make a few remarks on our main result:

Remarks

(1) Fist note that by the symmetry of the measures in question the assumption of
γ2 ≤ γ1 in the definition of P 2

trans means no loss of generality.

(2) We have to say a few word about the bound 0.649 that appears in 6.1.3. (and
also in 6.1.2.). On the first sight this bound seems to be somewhat crude. In the
proof we will see that it is due to a certain transversality condition that we
need. In fact the bound is given by the infimum of all double zeros of power series
with absolute value of the coefficients less equal to one and first coefficient equal to
one. 0.649 is an approximation of this quantity. We refer to step 4 of the proof of
proposition 6.2.1. for this issue.

(3) Peres and Solomyak [PS2] used some additional arguments concerning Fourier
transformations to improve the bound to 1 in the symmetric situation if p ∈
[1/3, 2/3]. These arguments do not work if p < 1/3. We have not been able to
improve the bound in the asymmetric situation but we do not believe that this
bound is really essential.

6.2. Absolute continuity

Let us first recall some definitions from chapter three. The measures bp∗γ1,γ2 are given
by (π∗γ1,γ2)

−1 ◦ bp. bp is the Bernoulli measure on Σ+ = {−1, 1}IN0 with probability
distribution (p, 1− p) on {1,−1} and the map π∗γ1,γ2 is given by

π∗γ1,γ2(s) =
∞∑

k=0

skγ
]k(s)
2 γ

k−]k(s)+1
1 .

The quantity ]k(s) counts how often −1 appears in {s0, . . . , sk}. The measures bpγ1,γ2
are just the measures bp∗γ1,γ2 scaled by the affine transformation that maps −γ2

1−γ2
to
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−1 and γ1
1−γ1

to 1. Now we state our result on absolute continuity and density of the
measures at hand.

Proposition 6.2.1.

Let p ∈ (0, 1), q ∈ (1, 2] and c ∈ (0, 1]. The density of the measures bpγ,cγ is in Lq for

almost all γ ∈ [γ0(c, q, p), 0.649] where γ0(c, q, p) = (pq + c1−q(1− p)q)
1

q−1 .

The technique we will use in the following proof is similar to argumentations that
have been developed in [PS 1/2].

Proof

Obviously it is enough if we show that the proposition holds for the unscaled mea-
sures bp∗γ,cγ .
Fix p, q and c during the proof.

1. Step: An integral condition for the measures to have density in Lq

We define the (lower) local density of a measure µ on the real line by

D(µ, x) = limr−→0

µ(Br(x))

2r
.

If we have ∫

(D(µ, x))q−1dµ(x) <∞

then µ is absolute continuous and has density in Lq. This follows from Mattila
[MA,2.12]. Thus it is sufficient for us to show that

=(γ0) :=
∫ 0.649

γ0

∫

(D(bp∗γ,cγ , x))
q−1dbp∗γ,cγ(x) dγ <∞

holds for all γ0 > γ0(c, q, p).

2. Step: Some estimates on the integral

By applying Fatou’s lemma then changing variables using the definition of the mea-
sures bp∗γ,cγ and reversing the order of integration we obtain:

=(γ0) ≤ limr−→0

1

(2r)q−1

∫ 0.649

γ0

∫

(b∗pγ,cγ(Br(x)))
q−1 db∗pγ,cγ(x)dγ

= limr−→0

1

(2r)q−1

∫ 0.649

γ0

∫

Σ+
(b∗pγ,cγ(Br(π

∗
γ,cγ(s))))

q−1 dbp(s)dγ
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= limr−→0

1

(2r)q−1

∫

Σ+

∫ 0.649

γ0
(b∗pγ,cγ(Br(π

∗
γ,cγ(s))))

q−1 dγdbp(s).

Applying Hölder’s inequality,
∫

fα ≤ C1(
∫

f)α where α ∈ (0, 1] and f ≥ 0, we get

=(γ0) ≤ C1limr−→0

1

(2r)q−1

∫

Σ+
(
∫ 0.649

γ0
b∗pγ,cγ(Br(π

∗
γ,cγ(s)) dγ)

q−1dbp(s).

Now note that
∫ 0.649

γ0
b∗pγ,cγ(Br(π

∗
γ,cγ(s))) dγ =

∫ 0.649

γ0

∫

1Br(π∗γ,cγ(s))(x) db
∗p
γ,cγ(x)dγ

=
∫ 0.649

γ0

∫

Σ+
1{t| |π∗γ,cγ(s)−π∗γ,cγ(t)|≤r}db

p(t)dγ

=
∫

Σ+
`({γ ∈ [γ0, 0.649]| |π∗γ,cγ(s)− π∗γ,cγ(t)| ≤ r}) dbp(t).

Thus =(γ0) is bounded from above by

C1 limr−→0

1

(2r)q−1

∫

Σ+
(
∫

Σ+
`({γ ∈ [γ0, 0.649]| |π∗γ,cγ(s)−π∗γ,cγ(t)| ≤ r}) dbp(t))q−1dbp(s).

3. Step: Using the structure of the map π

For s = (sk) and t = (tk) in Σ+ let |s ∧ t| = min{k|sk 6= tk}. We have:

φs,t(γ) := πγ,cγ(s)− πγ,cγ(t) =
∞∑

k=0

(skc
]k(s) − tkc

]k(t))γk+1

= γ|s∧t|+1
∞∑

k=0

(sk+|s∧t|c
]k+|s∧t|(s) − tk+|s∧t|c

]k+|s∧t|(t))γk

= γ|s∧t|+1(s|s∧t|c
]|s∧t|(s) − t|s∧t|c

]|s∧t|(t))(1 +
∞∑

k=1

sk+|s∧t|c
]k+|s∧t|(s) − tk+|s∧t|c

]k+|s∧t|(t)

s|s∧t|c
]|s∧t|(s) − t|s∧t|c

]|s∧t|(t)

︸ ︷︷ ︸

:=ak(s,t)

γk)

= 1/2(s|s∧t| − t|s∧t|)(1 + c)γ |s∧t|+1c]|s∧t|−1(s)(1 +
∞∑

k=1

ak(s, t)γ
k).

For the last equitation we used the fact that ]|s∧t|−1(s) = ]|s∧t|−1(t)
1. Now setting

gs,t(γ) = 1 +
∑∞

k=1 ak(s, t)γ
k and C2 = 1/2(s|s∧t| − t|s∧t|)(1 + c) we have the formula

φs,t(γ) = C2γ
|s∧t|+1c]|s∧t|−1(s)gs,t(γ).

1We use the convention that ]n(s) = 0 if n < 0
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Here the absolute value of C2 does not depend on s and t. We now claim that the
absolute value of the coefficients of the polynomials gs,t is less or equal to one:

|ak(s, t)| ≤ 1 ∀ k > 0 and s, t ∈ Σ+.

Since ]|s∧t|−1(s) = ]|s∧t|−1(t) we can write:

|ak(s, t)| =
(σ|s∧t|(s))kc

σ|s∧t|(s) − (σ|s∧t|(t))kc
σ|s∧t|(t)

1 + c
.

But we have

|(σ|s∧t|(s))kcσ
|s∧t|(s) − (σ|s∧t|(t))kc

σ|s∧t|(t)| ≤ |cσ|s∧t|(s)|+ |cσ|s∧t|(t)| ≤ 1 + c

by the definition of |s ∧ t|, which proves our claim.

4. Step: The transversality condition

We say that the ρ-transversality condition holds for a C1 function g on a closed
interval I if g(x) < ρ⇒ g

′
(x) > ρ ∀x ∈ I. This means that the graph of the function

g crosses all horizontal lines that it meets below height λ transversally with slope
at most −ρ. Obviously the transversality condition holds for some ρ on an interval
I if and only if g has no double zero on the interval I.

If we have the ρ-transversality condition for g on I then

`{x ∈ I||g(x)| ≤ r} ≤ 2rρ−1 ∀r > 0.

This is easy to see. If r ≥ ρ then the claim is obvious. If r < ρ then g is monotonous
decreasing with g

′
< −ρ on the set {x ∈ I||g(x)| ≤ r} by ρ-transversality. But this

immediately yields the assertion.

From lemma 2 of [PS2] we know that:

O := inf{x|x is a double zero of a power series f = 1 +
∞∑

k=1

akx
k with |ak| ≤ 1}

≈ 0.649138.

It follows that there is a ρ such that the ρ-transversality condition holds for all
polynomials f = 1 +

∑∞
k=1 akx

k with |ak| ≤ 1 on the Interval [0, O]. Especially ρ
transversality holds for all polynomials gs,t defined in the third step of our proof on
[0, 0.649]. Thus we get:
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`{γ ∈ [γ0, 0.649]| |φs,t(γ)| ≤ r}

≤ `{γ ∈ [γ0, 0.649]| |gs,t(γ)| ≤ r|C2|−1γ−|s∧t|−1c−]|s∧t|−1(s)}
≤ 2ρ−1r|C2|−1γ−|s∧t|−10 c−]|s∧t|−1(s) = C3rγ

−|s∧t|−1
0 c−]|s∧t|−1(s) with C3 = 2ρ−1|C2|−1.

5. Step: Integrating

We put our estimates of step two and four together and obtain

=(γ0) ≤ C4

∫

Σ+
(
∫

Σ+
γ
−|s∧t|−1
0 c−]|s∧t|−1(s) dbp(t))q−1dbp(s)

where C4 = C1C
q−1
3 21−q. Now we integrate:

∫

Σ+
γ
−|s∧t|−1
0 c−]|s∧t|−1(s) dbp(t) =

∞∑

n=0

γ−n−1
0 c]n−1(s)bp({t ∈ Σ+| |s ∧ t| = n}

=
∞∑

n=0

γ−n−1
0 c−]n−1(s)pn−]n−1(s)(1− p)]n−1(s)(sn(1/2− p) + 1/2)

Using the inequality (
∑
xi)

α ≤ ∑
xα
i for α = q − 1 ≤ 1 we continue with:

=(γ0) ≤ C4

∞∑

n=0

∫

Σ+
(γ−n−1

0 c−]n−1(s)pn−]n−1(s)(1−p)]n−1(s)(sn(1/2−p)+1/2))q−1dbp(s)

= C4

∞∑

n=0

γ
(−n−1)(q−1)
0 ((1−p)q−1p+pq−1(1−p))

n∑

k=0

(c−k(1−p)kpn−k)q−1bp{s ∈ Σ+|]n−1(s) = k}

= C4((1− p)q−1p+ pq−1(1− p))
∞∑

n=0

γ
(−n−1)(q−1)
0

n∑

k=0

(

n

k

)

((1− p)qc1−q)kpq(n−k)

= C4((1− p)q−1p+ pq−1(1− p))γ1−q
0

∞∑

n=0

(γ
−(q−1)
0 ((1− p)qc1−q + pq)n.

The sum in the last expression converges exactly if γ0 > γ0(c, q, p) = (pq + c1−q(1−
p)q)

1
q−1 . So =(γ0) <∞ holds for all γ0 > γ0(c, q, p) and our proof is complete.

2

Proposition 6.2.1. has the following corollary:

Corollary 6.2.2.

Let c ∈ (0, 1] and p ∈ (0, 1). The measures bpγ,cγ are absolutely continuous for almost
all γ ∈ [γ0(c, p), 0.649] where γ0(c, p) = pp((1− p)/c)1−p.
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Proof

One only has to show that limq−→1 γ0(c, q, p) = γ0(c, p). But this is easy to see by
taking logarithm and using the rule of l’Hospital.

2

6.3. An upper bound the on dimension

We will prove here an general upper bound on the box-counting dimension of the
measures µγ1,γ2 defined in 3.2. where γ1, γ2 ∈ (0, 1) are arbitrary and µ is a shift
ergodic measures. Applying this general upper bound to the overlapping self-similar
measures bpγ1,γ2 implies the singularity assertion of our main theorem 6.1.3. . Recall
that Ξµ

γ1,γ2
= µ([1]0) log γ1 + µ([−1]0) log γ2.

Proposition 6.3.1.

If µ ∈M(Σ+, σ) and γ1, γ2 ∈ (0, 1) we have:

dimBµγ1,γ2 ≤ min{1, hµ(σ)

−Ξµ
γ1,γ2

}.

Proof

Fix γ1, γ2 and p. First note that it is trivial that the box-counting dimension of the
measure in question is less or equal to one since it is defined on the real line. We
now define a metric δγ1,γ2 on Σ+ by

δγ1,γ2(s, t) = γ
|s∧t|−]|s∧t|−1(s)

1 γ
]|s∧t|−1(s)

2 .

We first claim that

dγ1,γ2(s, bp) := lim
ε−→0

logBγ1,γ2
ε (s)

log ε
=

hµ(σ)

−Ξµ
γ1,γ2

µ-almost everywhere.

Here dγ1,γ2 is the local dimension of the measure bp with respect to metric δγ1,γ2

and accordingly Bγ1,γ2
ε is a ball of radius ε with respect to this metric. Applying

Birkhoffs ergodic theorem (see 4.1.2. of [KH]) to (Σ+, σ, µ) with the function

h(s) = { log γ1 if s0 = 1
log γ2 if s0 = −1

we see that:

lim
n−→∞

1

n+ 1
log diamγ1,γ2([s0, . . . , sn]0) = lim

n−→∞
1

n+ 1

n+1∑

k=0

h(σk(s)) =
∫

h dµ(s) = Ξµ
γ1,γ2
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µ-almost everywhere. By Shannon-McMillan-Breiman theorem (see [DGS] 13.4.)
we have:

lim
n−→∞

− 1

n+ 1
log µ([s0, . . . , sn]0) = hµ(σ) µ-almost everywhere.

Thus we see:

lim
ε−→0

logBγ1,γ2
ε (s)

log ε
= lim

n−→∞
log µ([s0, . . . , sn]0)

diamγ1,γ2([s0, . . . , sn]0)
=

hµ(σ)

−Ξµ
γ1,γ2

Of course we can define the box-counting dimension of the measure µ with respect
to the metric δγ1,γ2 on Σ in exactly the same way as we define the box-counting
dimension of a measure on IRq in appendix A. Furthermore it is not difficult to see
that an analogon of A2 holds for Borel probability measures on the metric space
(Σ+, δγ1,γ2). Thus we have

dimγ1,γ2
B µ =

hµ(σ)

−Ξµ
γ1,γ2

where the box-counting dimension dimγ1,γ2
B has to be calculated using δγ1,γ2 .

Now we claim that the map π∗γ1,γ2 is Lipschitz with respect to the metric δγ1,γ2 :

|π∗γ1,γ2(s)− π∗γ1,γ2(t)| ≤
∞∑

k=|s∧t|
|skγk−]k(s)+1

1 γ
]k(s)
2 − tkγ

k−]k(t)+1
1 γ

]k(t)
2 |

= γ
|s∧t|−]|s∧t|−1(s)

1 γ
]|s∧t|−1(s)

2

∞∑

k=0

|sk+|s∧t|γk−]k(σ
|s∧−t|(s))+1

1 γ
]k(σ

|s∧t|(s))
2 − tk+|s∧t|γ

k−]k(σ
|s∧t|(t))+1

1 γ
]k(σ

|s∧t|(t))
2 |

≤ δγ1,γ2(s, t)
2

1−max{γ1, γ2}
.

But the map πγ1,γ2 is just π∗γ1,γ2 scaled on [−1, 1] and hence Lipschitz with respect
δγ1,γ2 as well. Since applying a Lipschitz map to the measures µ does obvious not
increase its box-counting dimension, the proof is complete.

2

Let us remark that it is well known that the Hausdorff and box-counting dimension
of of µγ1,γ2 equals −hµ(σ)/Ξ

µ
γ1,γ2

in the case that γ1 + γ2 < 1; see for instance 13.1.
of [PE2]. In our work we are more interested in the overlapping case γ1 + γ2 ≥ 1 .

From 6.3.1. we get the following corollary about the self-similar measures bpγ1,γ2 :
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Corollary 6.3.2.

Let γ1, γ2, p ∈ (0, 1). We have

dimBb
p
γ1,γ1

≤ min{1, p log p+ (1− p) log(1− p)

p log γ1 + (1− p) log γ2
}.

Moreover bpγ1,γ2 is singular if (γ2p)
p(γ1(1− p))1−p > γ1γ2.

Proof

To see the upper bound just recall that hbp(σ) = −p log p − (1 − p) log(1 − p) and
Ξγ1,γ2(b

p) = p log γ1 + (1− p) log γ2. From the upper bound we have dimBb
p
γ1,γ2

< 1
if (γ2p)

p(γ1(1− p))1−p > γ1γ2, which clearly implies our singularity assertion.

2
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7. Generic dimensional theoretical properties of

the systems

We will now formulate our main generic results about the dimensional theoretical
properties of the class of repellers (Λϑ, Tϑ) and the class of attractors (Λ̂ϑ, f̂ϑ). The
term ”generic” has to be understood in a special sense referring to the Lebesgue
measure on certain subspaces of the parameter space P 4

all. The restrictions of our
generic results depend on the transversality condition; see chapter six. Recall from
this chapter that

P 2
trans = {(β1, β2)|β1 + β2 ≥ 1 and 0 < β2 ≤ β1 ≤ 0.649}.

Theorem 7.1.

General case
For all p ∈ (0, 1) and almost all (β1, β2) ∈ P 2

trans and all τ1, τ2 > 0 with τ1 + τ2 < 1
and log τ2 log p/β1 = log τ1 log(1− p)/β2 we have:

dimH bpϑ = dimH Λϑ = dimB Λϑ =
log p/β1
log τ1

+ 1 and

dimH Λ̂ϑ = dimB Λ̂ϑ =
log p/β1
log τ1

+ 2

where ϑ = (β1, β2, τ1, τ2). Moreover if p = 0.5 then b̂pϑ has full dimension on Λ̂ϑ and
if p 6= 0.5 then the variational principle for Hausdorff dimension does not hold for
(Λ̂ϑ, f̂ϑ).

Special case β1 = β2 = β
For p ∈ (0, 1) set I = (0.5, 1) if p ∈ (1/3, 2/3) and I = (0.5, 0.649) if not. We
have for almost all β ∈ I and all τ1, τ2 > 0 with τ1 + τ2 < 1 and log τ2 log p/β =
log τ1 log(1− p)/β:

dimH bpϑ = dimH Λϑ = dimB Λϑ =
log p/β

log τ1
+1 and dimH Λ̂ϑ = dimB Λ̂ϑ =

log p/β

log τ1
+2

where ϑ = (β, β, τ1, τ2). Moreover if p 6= 0.5 (which means τ1 6= τ2) then the varia-
tional principle for Hausdorff dimension does not hold for (Λ̂ϑ, f̂ϑ).

Special case τ1 = τ2 = τ
For almost all (β1, β2) ∈ P 2

trans and all τ ∈ (0, 0.5) we have:

dimH bpϑ = dimH Λϑ = dimB Λϑ =
log(β1 + β2)

log τ−1
+ 1
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and dimH Λ̂ϑ = dimB Λ̂ϑ =
log(β1 + β2)

log τ−1
+ 2

where ϑ = (β1, β2, τ, τ) and p = β1/(β1 + β2). Moreover if β1 6= β2 then the varia-
tional principle for Hausdorff dimension does not hold for (Λ̂ϑ, f̂ϑ).

Special case τ1 = τ2 = τ and β1 = β2 = β
For almost all β ∈ [0, 5, 1] and all τ ∈ (0, 0.5) we have

dimH b0.5ϑ = dimH Λϑ = dimB Λϑ =
log 2β

log τ−1
+ 1 and

dimH b̂0.5ϑ = dimH Λ̂ϑ = dimB Λ̂ϑ =
log 2β

log τ−1
+ 2

where ϑ = (β, β, τ, τ).

We include a corollary, which states the main general result of the last theorem
in a weaker but more straightforward way. Recall that:

P 4
trans = {(β1, β2, τ1, τ2) ∈ P 4

all|(β1, β2) ∈ P 2
trans}.

Corollary 7.2.

For almost all ϑ ∈ P 4
trans we have:

dimH bpϑ = dimH Λϑ = dimB Λϑ = d+ 1 and dimH Λ̂ϑ = dimB Λ̂ϑ = d+ 2

where ϑ = (β1, β2, τ1, τ2) and d is the solution of β1τ
x
1 + β2τ

x
2 = 1 and p = β1τ

d
1 .

Let us discuss our results:

Remarks

(1) Corollary 7.2. shows that on the set of parameters P 4
trans we have generically the

identity of Hausdorff and box-counting dimension for the repellers (Λϑ, Tϑ) and the
attractors (Λ̂ϑ, f̂ϑ).

(2) The existence of a measure of full dimension is only a generic property of the
repellers. Not even the variational principle for Hausdorff dimension holds gener-
ically with respect to the Lebesgue measure on P 4

trans for the attractors. It holds
for (Λ̂ϑ, f̂ϑ) only if we have logτ1 log(2β1) = logτ2(2β2). In the proof we will see
that this phenomenon is due to the fact that one can not maximize the stable and
the unstable dimension (resp. the dimension of the corresponding conditional mea-
sures) at the same time. In the context of Axiom A diffeomorphisms exactly this
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was observed by Manning and McCluskey [MM]. It allowed them to show that the
variational principle is not generic for Axiom A systems in the topological sense; it
only holds on a nowhere dense set of Axiom A systems.

(3) Now we comment on the special case β1 = β2 and τ1 = τ2. The condition
on β we need to get the identity for Hausdorff and box-counting dimension in this
case is dimH bβ = 1. By Solomyak’s theorem (6.1.1.) this condition holds almost
everywhere in (0, 5, 1). Pollicott and Weiss used the number theoretical condition
that β is a Garsia-Erdös number to get this identity (see 2.1.3.). The property to be
a Garsia-Erdös number can been shown to be equivalent to the absolute continuity
of bβ with uniformly bounded density (see 2.1.3. and 5. of [PW]). This condition
seems to be stronger than dim bβ = 1. But in fact we do not know if there are
numbers such that dim bβ = 1 and β is not Garsia-Erdös.

We will now formulate our result about the generic dimensional theoretical properties
of the projected systems ([−1, 1]2, fβ1,β2) including the Fat Baker’s transformations
fβ.

Theorem 7.3.

General case
For almost all (β1, β2) ∈ P 2

trans with β1β2 ≥ 0.25 the measure b̄β1,β2 = bβ1,β2 × ` is a
measure full dimension for ([−1, 1]2, fβ1,β2). But if β1β2 < 0.25 then the variational
principle for Hausdorff dimension does not hold for the system ([−1, 1]2, fβ1,β2).

Special case β1 = β2
For almost all β ∈ (0.5, 1) b̄β = bβ × ` is a measure full dimension for ([−1, 1]2, fβ)

The claim about the Fat Baker’s transformation fβ in 7.3. is in fact just a simple
consequence of Solomyak’s theorem [SO1] and the work of Alexander and Yorke
[AY].

Before we begin with the proofs we remark that we have number theoretical ex-
ceptions to our generic results in the symmetric situation β1 = β2. These results are
formulated in chapter ten. Let us now go into the proofs.

Proof of 7.1.

General case:

Fix p ∈ (0.5, 1). We first claim that for almost all (β1, β2) ∈ P 2
trans and τ1, τ2 ∈ (0, 1)

with τ1 + τ2 < 1 and log τ2 log p/β1 = log τ1 log(1− p)/β2 the identity dim bpβ1,β2 = 1
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holds.
If we are given (β1, β2) ∈ P 2

trans and there exists τ1 + τ2 < 1 with log p/β1
log τ1

=
log(1−p)/β2

log τ2
=: d we have:

(pβ1)
p((1− p)β2)

1−p = (β1β2τ
d
1 )

p(β1β2τ
d
2 )

1−p = β1β2τ
dp
1 τ

d(1−p)
2 < β1β2.

Now we see that our claim follows from theorem 6.1.3. with the help of A3.
Fix ϑ = (β1, β2, τ1, τ2) with the properties of our claim and let d be defined as above.
We have:

β1τ
d
1 + β2τ

d
2 = β1τ

log p/β1
τ1

1 β2τ
(1−p)β2

τ2
2 = p+ (1− p) = 1.

From 4.1. we thus get:

dimB Λϑ = d+ 1 and dimB Λϑ = d+ 2

Moreover from 5.3.3. we get:

dimH bpϑ =
p log p+ (1− p) log(1− p)

p log τ1 + (1− p) log τ2
+ (1− p log β1 + (1− p) log β2

p log τ1 + (1− p) log τ2
)

= 1 +
β1τ

d
1 log β1τ

d
1 + β2τ

d
2 log β2τ

d
2 − (β1τ

d
1 log β1 + β2τ

d
2 log β2)

β1τ d1 log τ1 + β2τ d2 log τ2

= 1 +
β1τ

d
1 log τ

d
1 + β2τ

d
2 log τ

d
2

β1τ d1 log τ1 + β2τ d2 log τ2
= d+ 1.

Just by definition we have dimH bpϑ ≤ dimH Λϑ ≤ dimB Λϑ. Thus we get

dimH bpϑ = dimH Λϑ = dimB Λϑ = d+ 1

and with the help of A5

dimH Λ̂ϑ = dimB Λ̂ϑ = d+ 2.

Our first statement in the general situation is proved.
Consider the special case p = 0.5. We get from 5.3.3.

dim b̂ϑ =
hb(σ)

log 2
+ d+ 1 = d+ 2.

This means that b̂ϑ is a measure of full dimension.
Now consider the opposite case p 6= 0.5. Assume that the variational principle
for Hausdorff dimension holds for (Λϑ, f̂ϑ). Then by 3.2.5. there is a sequence of
measures µn ∈M(Σ, σ), such that

dimH(µ̂n)ϑ −→ d+ 2
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Recall that the equal-weighted Bernoulli measure b is the unique measure inM(Σ, σ)
which maximizes the metric entropy with hb(σ) = log 2 and that the metric entropy
is upper-semi-continuous on M(Σ, σ). By this facts and 5.3.1. we necessarily have

µn −→ b.

From 5.3.2. we have the inequality

dimH µ̂ϑ ≤ 1 +
hµ(σ)

log 2
− hµ(σ) + Ξµ

β1,β2

Ξµ
τ1,τ2

for all µ ∈M(Σ, σ). With the help of upper semi-continuity of hµ(σ) we thus get:

limn−→∞ dimH(µ̂n)ϑ ≤ 2− log 2 + 0.5 log β1 + 0.5 log β2
0.5 log τ1 + 0.5 log τ2

.

We have:

− log 2 + 0.5 log β1 + 0.5 log β2
0.5 log τ1 + 0.5 log τ2

= −2 log 2 + log p− d log τ1 + log(1− p)− d log τ2
log τ1 + log τ2

= d− 2 log 2 + log p+ log(1− p)

log τ1 + log τ2
< d,

which implies limn−→∞ dimH(µ̂n)ϑ < d + 2. This is a contradiction and the varia-
tional principle for Hausdorff dimension does not hold for (Λϑ, f̂ϑ).

Special case β1 = β2 = β:

One proves the result by exactly the same arguments that we used in the general
situation. The only difference is that one uses the theorem of Peres and Solomyak
(6.1.2) for the symmetric self-similar measures instead of theorem 6.1.3. for the
asymmetric ones.

Special case τ1 = τ2 = τ :

Setting p = 1
1+c

in 6.2.2. we have for all c ∈ (0, 1] dimH b
1/(1+c)
β,cβ = 1 for almost

all β ∈ [ 1
1+c

, 0.649]. Using the theorem of Fubini we get from this dimH bpβ1,β2 = 1

with p = β1
β1+β2

for almost all (β1, β2) ∈ P 2
trans.

Now from 4.1. and 5.3.3. the dimension formula for the (Λϑ, Tϑ) and with help A5
the dimension formula for Λ̂ϑ follows.
If β1 6= β2 our result about the variational principle can be proved by the same
arguments that we used in the general situation if p 6= 0.5.
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Special case β1 = β2 = β and τ1 = τ2 = τ :

The statement is just an obvious consequence of 4.1., Solomyak’s theorem 6.1.1.
and the dimension formula in 5.3.3. .

2

Proof of 7.2.

It follows directly from the general case in 7.1. that for all p ∈ (0, 1) there exists a
set A(p) ⊆ P 2

trans with `2(A(p)) = `2(P 2
trans) such that for all (β1, β2) ∈ A(p) and all

τ1, τ2 > 0 with τ1 + τ2 < 1 and log τ2 log p/β1 = log τ1 log(1 − p)/β2 our statement
about the dimensions holds. Let G(τ1) be given by the following union:

⋃

p∈(0,1)
{(β1, β2, τ2)|(β1, β2) ∈ A(p) , τ1+τ2 < 1 , log τ2 log p/β1 = log τ1 log(1−p)/β2}.

It is easy to see that the union

⋃

p∈(0,1)
{(β1, β2, τ2)|(β1, β2) ∈ P 2

trans , τ1+τ2 < 1 , log τ2 log p/β1 = log τ1 log(1−p)/β2}

equals the set {(β1, β2, τ2)|(β1, β2) ∈ P 2
trans , τ1 + τ2 < 1}. By the theorem of Fubini

we thus have `3(G(τ1)) = `3{(β1, β2, τ2)|(β1, β2) ∈ P 2
trans , τ1 + τ2 < 1}. Now let

G =
⋃

τ1∈(0,1)
{(β1, β2, τ1, τ2)|(β1, β2, τ2) ∈ G(τ1)}.

Note that we have G ⊆ P 4
trans and `4(G) = `4(P 4

trans). But by definition our dimen-
sion formulas hold for all ϑ ∈ G. This competes the proof.

2

Proof of 7.3.

General case:

First recall from 3.2.4. that b̄β1,β2 = bβ1,β2 × ` is an ergodic measure for the system
([−1, 1]2, fβ1,β2). It follows directly from 6.1.3. that the measure bβ1,β2 is absolutely
continuous for almost all (β1, β2) ∈ P 2

trans with β1β2 ≥ 0.25. For these (β1, β2) the
measure bβ1,β2 × ` is absolutely continuous as well and thus has dimension two (see
A3). This proves our first statement.

If β1β2 < 0.25 then we have hb(σ) < −Ξb
β1,β2

. By upper semi continuity of
the metric entropy there is a weak∗ neighborhood U of b in M(Σ+, σ) such that
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−hµ(σ)/Ξ
µ
β1,β2

≤ c1 < 1 holds for all µ ∈ U . Now note that we have from 5.3.5. and
6.3.1.

dimH µ̄β1,β2 ≤ 1 + dimH(pr
+µ)β1,β2 ≤ 1 +

−hpr+µ(σ)

Ξpr+µ
β1,β2

.

From these facts we get dimH µ̄β1,β2 ≤ c + 1 < 2 for all µ ∈ Ũ = (pr+)−1(U).
Obviously Ũ is a neighborhood of b in M(Σ, σ). Furthermore we have by 5.3.4.

dimH µ̄β1,β2 ≤
hµ(σ)

log 2
+ 1.

Again by upper semi continuity of metric entropy it follows that dimH µ̄β1,β2 ≤
c2 + 1 < 2 for all µ ∈M(Σ, σ)\Ū . Putting these facts together we get:

dimH µ̄β1,β2 ≤ max{c1, c2}+ 1 < 2 = dim[−1, 1]2 ∀µ ∈M(Σ, σ).

This proves our second statement.

Special case β1 = β2:

Recall from 3.2.4. that b̄β=bβ×` is an ergodic measure for the system ([−1, 1]2, fβ).
From 6.1.1. we know that the measure bβ is absolutely continuous for almost all
β ∈ (0.5, 1). For these β we know that bβ × ` is absolutely continuous and thus has
dimension two (see A3).

2
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8. Extension of some results to Markov chains

This chapter forms a kind of supplement to last four chapters. We will extend some
of our main general and generic results to invariant sets for the maps Tϑ and f̂ϑ that
correspond to special Markov chains.

Let A =

(

a1,1 a−1,1
a1,−1 a−1,−1

)

be a (2, 2)-matrix with entrys aij in {0, 1}. By ΣA

(resp. Σ+
A) we denote the subset of Σ (resp. Σ+) given by {(sk)|asksk+1

= 1}. These
sets are obviously invariant under the shift map σ (resp. σ−1). The systems (Σ+

A, σ)
and (ΣA, σ−1) are called (1-step) Markov chains (see [KH]). Now we define subsets
Λϑ

A and Λ̂ϑ
A of [−1, 1]2 by

Λϑ
A = πϑ(Σ

+
A) and Λ̂ϑ

A = π̂ϑ(ΣA)

for ϑ ∈ P 4
all. By 3.1.1. the set Λϑ

A is invariant under the map Tϑ and by 3.1.3. the
set Λ̂ϑ

A is invariant under the map f̂ϑ.

If the matrix A is not in {
(

1 1
1 0

)

,

(

0 1
1 1

)

} then the sets ΣA (resp. Σ+
A) and

consequently the sets Λ̂A
ϑ (resp. ΛA

ϑ ) are at most countable. Dimensional theoretical
properties are trivial in this case. By symmetry we may restrict our attention to the

case A =

(

1 1
1 0

)

. Fix this matrix for the rest of this chapter. We remark that

the dynamical system (Σ+
A, σ) is known as goldenshift (see [SV]).

For p ∈ (0, 1) define Markov measures on ΣA (resp. Σ+
A) in the following way:

Consider the stochastic matrix P =

(

p1,1 p−1,1
p1,−1 p−1,−1

)

:=

(

p 1
1− p 0

)

and the

stochastic vector (p1, p−1) = (1/(2 − p), (1 − p)/(2 − p)). Define a measure on the
cylinder sets in ΣA (resp. Σ+

A) by

mp([t0, t1 . . . , tu]v) = pt0

u−1∏

i=0

ptiti+1
.

Now extend this measure to a Borel probability measure mp on ΣA (resp. Σ+
A). It

is well known that mp is ergodic with respect to the shift map (see [DGS]). Define
measures mp

ϑ and m̂p
ϑ by

mp
ϑ = mp ◦ π−1ϑ and m̂p

ϑ = mp ◦ π̂−1ϑ .

By 3.2.3. mp
ϑ is an ergodic measure for the system (ΛA

ϑ , Tϑ) and by 3.2.5. m̂p is an

ergodic measure for the systems (Λ̂A
ϑ , f̂ϑ).

54



Our main result in this chapter is nothing but an extension of 4.1. and 7.1.2.
to the invariant sets ΛA

ϑ and Λ̂ϑ. Let

P 4
A = {(β1, β2, τ1, τ2)|β1 + β1β2 ≥ 1, τ1 + τ2 < 1}

and P 4
A−trans = {(β1, β2, τ1, τ2) ∈ P 4

A|β1 ≤ β2 ≤ 0.649}.

Theorem 8.1.1.

(1) For all ϑ = (β1, β2, τ1, τ2) ∈ P 4
A we have

dimB ΛA
ϑ = d+ 1 and dimB Λ̂A

ϑ = d+ 1 +
log((

√
5 + 1)/2)

log 2

where d is unique positive number satisfying β1τ
d
1 + β1β2(τ1τ2)

d = 1.

(2) For almost all ϑ = (β1, β2, τ1, τ2) ∈ P 4
A−trans (in the sense of four dimensional

Lebesgue measure) we have

dimH mp
ϑ = dimH ΛA

ϑ = dimB ΛA
ϑ and dimH Λ̂A

ϑ = dimB Λ̂A
ϑ

where p = β1τ
d
1 and d is as in (1).

Remarks

(1) The condition β1 + β1β2 ≥ 1 is necessary. It means that the projection of
Λϑ

A onto the first component has positive length. This fact is essential for our proof
(see also remark (3) in chapter four).

(2) Note that we can write our dimension formula in the symmetric situation
ϑ = (β, β, τ, τ) ∈ P 4

A using the topological entropy htop(σ|ΣA
):

dimB ΛA
ϑ = 1 +

log β + htop(σ|ΣA
)

log τ
and

dimB Λ̂A
ϑ = 1 +

log β + htop(σ|ΣA
)

log τ
+

log β + htop(σ|ΣA
)

log 2

(3) Of course the reader will ask the question if there are generalizations of 8.1.1. to
n-step Markov chains (see [KH] for definition). Let us first discuss the box-counting
dimension. We were not able to prove an analogon of 8.1.1.(1) for all n-step Markov
chains. But under certain assumption such a generalization is in fact possible using
our methods. Let us discuss this in detail. We say that a Markov chain ΣMarkov
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(resp. Σ+
Markov) has block form if there is a set of finite sequences B={b1, . . . , bk},

where bi have entrys in {1,−1}, such that each element of ΣMarkov (resp. Σ+
Markov)

can be written as a sequence of elements in B. If ΣMarkov has block form and in
addition prXπϑ(ΣMarkov) has positive length we get

dimB πϑ(Σ
+
Markov) = d+ 1 and dimB π̂ϑ(ΣMarkov) = d+ 1 +

htop(σ|ΣMarkov
)

log 2
.

Here d is the solution of

k∑

i=0

τ
]1(bi)
1 τ

]−1(bi)
2 (β

]1(bi)
1 β

]−1(bi)
2 )x = 1

where ]1 counts the number of entrys that are 1 and ]−1 counts the number of entrys
that are −1 in an element b of B and htop(σ|ΣMarkov

) denotes the topological entropy
of the Markov chain. The proof of this statement differs from the proof of 8.1.1.(1)
only in technical respects; no new idea is needed. We have thus decided not to write
down the proof of this assertion.
We remark that some but not all Markov chains have block form. For instance the
blocks (1) and (−1, 1, 1) induces a 2-step Markov chain. But the 2-step Markov
chain which is is given by excluding only the block (2, 1, 2) does not have block
form.

(4) A generalization of 8.1.1.(2) fails because we need the transversality condition
to treat the Hausdorff dimension (see chapter six). To see this again consider the
Markov chain induced by the blocks (1) and (−1, 1, 1). The condition for overlap-
ping projections is β1 + β2

1β2 ≥ 1, which implies β1 ≥ 0.65 or β2 ≥ 0.65. This
contradicts the transversality condition β1 ≤ β2 ≤ 0.649.

Now we want to give a comprehensive proof of 8.1.1., only elaborating the details
that are different from what was done in the last chapters.

Proof of 8.1.1.

Fix ϑ = (β1, β2, τ1, τ2) ∈ P 4
A and the number d.

1. Step: Calculation of box-counting dimension

Let τ3 = τ1τ2 and β3 = β1β2. Given r > 0 we define a set of finite sequences
by

Xr := {(s1, . . . , sk)|min{τ1, τ3}r ≤ τs1τs2 . . . τsk < r where sj ∈ {1, 3} ∀j = 1 . . . k}.
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Let
Cr = {πϑ([κ(s1), . . . , κ(sk)]0)|(s1, . . . , sk) ∈ Xr}

where κ(1) = 1 and κ(3) = (−1, 1). Since {[κ(s1), . . . , κ(sk)]0)|(s1, . . . , sk) ∈ Xr} is
a cover of Σ+

A we have that Cr is a cover of ΛA
ϑ . An element of Cr is a rectangle

parallel to the axis with x-length 2βs1βs2 . . . βsk and y-length 2τs1τs2 . . . τsk . We cover
each of this rectangles by squares parallel to the axis of side length 2τs1τs2 . . . τsk .
We choose the squares in a row such that they only intersect in their boundary. In
this way we obtain a new cover Ĉr of ΛA

ϑ , which consists of squares with length in
(2min{τ1, τ3}r, 2r]. By exactly the same arguments we used in the proof of 4.1. we
see that we have the following estimates for the number of elements N̂r in the cover
Ĉr:

1 ≤ rd+1N̂(r) ≤ 2min{τ1, τ3}−(d+1).

Now we want to analyze the sets ΛA
ϑ ∩ R where R is a rectangle in Cr. First note

that the projection of ΛA
ϑ onto the x-axis is given by the set I fulfilling the relation

I = L1(I) ∪ ÃL1 ◦ L2(I) where L1(x) = β1x + (1 − β1) and L2(x) = β2x + (1 − β2).
Using the fact that β1 + β1β2 ≥ 1 a direct calculation shows that I is the interval
[β1β2−2β1+1

1−β1β2
, 1]. Let l be the length of this interval. We now see that `(prXΛ

A
ϑ ) = l.

But this implies `(prX(R∩ΛA
ϑ )) = l`(prX(R)). Thus the number of those squares in

Ĉr that have nonempty intersection with ΛA
ϑ is bigger than lN̂(r). One square with

side length 2r parallel to the axis can not intersect more than 9min{τ1, τ3}−2 squares
in Ĉr because the squares in Ĉr have side length bigger than 2min{τ1, τ3}r and
intersect, if at all, only in the boundary. Thus if we have a cover of Λ̂A

ϑ with square
of side length 2r parallel to the axis, this cover has at least 1/9min{τ1, τ3}2lN̂(r)
elements. Let N(r) be the minimal cardinality of an cover of ΛA

ϑ with square of side
length 2r parallel to the axis. Putting our estimates together we obtain

1/9min{τ1, τ3}2l ≤ 1/9min{τ1, τ3}2lN̂(r)rd+1 ≤ N(r)rd+1l ≤ min{τ1, τ3}−(d+1).

This shows dimB ΛA
ϑ = d + 1. It remains to deduce the dimension formula for Λ̂A

ϑ .
By the product structure of the map π̂ϑ we get:

Λ̂A
ϑ = {(x, y, z)|(x, z) ∈ ΛA

ϑ and y ∈ F}

where F = ι(pr−(ΣA)). Here ι is defined in 3.1. and pr− is the projection from Σ
onto Σ−. Define ῑ by

ῑ((sk)k∈IN0) =
∞∑

k=0

sk2
−k−1.

It is easy to see that F = ῑ(Σ+
A). But this set is well known in dimension theory and

we get from [FU]

dimH F = dimB F =
htop(σ|Σ+

A
)

log 2
=

log((
√
5 + 1)/2)

log 2
.
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Using the definition of the box-counting dimension with δ-mesh cubes (see 3.1. of
[FA]) we see dimB Λ̂A

ϑ = dimB ΛA
ϑ + dimB F . This gives us the dimension formula

for Λ̂A
ϑ . Now the first part of theorem 8.1.1. is proved. 2. Step: The dimension of

the Markov measures mp
ϑ

If we assume Ξmp
τ1,τ2

≤ Ξ
mp

β1,β2
we get from the Ledrappier-Young formula (see 5.2.3.

and 5.3.3.) the following formula for the Markov measures mp
ϑ:

dimmp
ϑ =

hmp(σ)

−Ξmp
τ1,τ2

+ (1− Ξ
mp

β1,β2

Ξ
mp
τ1,τ2

) dimmp
β1,β1

.

Here the measure mp
β1,β2

is given by mp
β1,β2

= mp ◦ π−1β1,β2
.

Just by definition we have

Ξ
mp

β1,β2
=

1

2− p
log β1 +

1− p

2− p
log β2 and Ξmp

τ1,τ2
=

1

2− p
log τ1 +

1− p

2− p
log τ2.

Furthermore we know from 4.4. of [KH],

hmp(σ) = −( p

2− p
log p+

1− p

2− p
log(1− p)).

This gives us the formula:

dimmp
ϑ =

p log p+ (1− p) log(1− p)

log τ1 + (1− p) log τ2
+ (1− log β1 + (1− p) log β2

log τ1 + (1− p) log τ2
) dimmp

β1,β1
.

3. Step: Absolute continuity of the measures mp
β1,β2

We claim that an analogon of proposition 6.2.1. holds for the Markov measures
mp

β1,β2
on the real line:

Claim: Let p ∈ (0, 1) and c ∈ (0, 1]. The measures mp
β,cβ are absolutely continuous

with density in L2 for almost all β ∈ [0, 0.649] with p2/β + (1− p)2/(cβ2) ≤ 1.

Using the arguments of the first four steps in the proof of 6.2.1. we see that it
is enough if we show

=(β0) =
∫

Σ+

∫

Σ+
β
−|s∧t|−1
0 c−]|s∧t|−1(s)dmp(t)dmp(s) <∞

for all β0 with p
2/β0+(1− p)2/(cβ2

0) ≤ 1 . Here all notations are the same as in the
proof of 6.2.1. . We integrate:

=(β0) =
∞∑

n=0

∫

Σ+

∞∑

n=0

γ−n−1
0 c−]n−1(s)mp({t ∈ Σ+| |s ∧ t| = n)}dmp(s)

58



≤ max{p, 1− p}
∞∑

n=1

∫

Σ+

∞∑

n=0

γ−n−1
0 c−]n−1(s)mp([s0, . . . sn−1]0)dm

p(s)

= max{p, 1− p}β−10

∞∑

n=1

∑

s∈{−1,1}n
β−n
0 c−]n−1(s)mp([s0, . . . sn−1]0)

2.

For t ∈ {1, (−1, 1)}n we denote by ]1(t) the number of entrys in t that are 1 and by
]−1,1(t) the number of entrys that are (−1, 1). With this notations we have

=(β0) ≤
max{p, 1− p}

2− p
β−10

∞∑

n=1

∑

t∈{1,(−1,1)}n
γ
−]1(t)−2]−1,1(t)
0 c−]−1,1(t)p2]1(t)(1− p)2]−1,1(t)

=
max{p, 1− p}

2− p
β−10

∞∑

n=1

(
p2

β0
)]−1(t)(

(1− p)2

cβ2
0

)]−1,1(t)

=
max{p, 1− p}

2− p
β−10

∞∑

n=1

(
p2

β0
+

(1− p)2

β2
0c

)n.

Now we see that our claim holds.

4. Step: Conclusion of the proof

We will prove the following statement:

Claim: For all p ∈ (0, 1) and almost all (β1, β2) ∈ {(β1, β2) ∈ P 2
trans|β1 + β1β2 ≤ 1}

and all τ1, τ2 with τ1 + τ2 < 1 and log(p/β1)
log τ1

= log((1−p)/(β1β2))
log(τ1τ2)

we have

dimH mp
ϑ = dimH ΛA

ϑ = dimB ΛA
ϑ and dimH Λ̂A

ϑ = dimB Λ̂A
ϑ

where ϑ = (β1, β2, τ1, τ2).

Using the argumentations in the proof of 7.1.2. this claim implies the second part
of our theorem. Therefore we now gone prove this claim:

With the help of Fubini’s theorem we get from our claim in the third step of this
proof:

For all p ∈ (0, 1) and almost all (β1, β2) ∈ P 2
trans with p2/β1 + (1 − p)2/(β1β2) ≤ 1

the identity dimmp
β1,β2

= 1 holds .

If we are given p ∈ (0, 1) and (β1, β2) ∈ {(β1, β2) ∈ P 2
trans|β1 + β1β2 ≤ 1} and

τ1, τ2 with τ1 + τ2 < 1 and log p/β1
log τ1

= log(1−p)/(β1β2)
log(τ1τ2)

=: d then we have p = β1τ
d
1 ,

(1− p) = β1β2(τ1τ2)
d and

p2β1 + (1− p)2/(β1β2) = β1τ
2d
1 + β1β2(τ1τ2)

2d < 1.
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Hence for all p ∈ (0, 1) and almost all (β1, β2) ∈ {(β1, β2) ∈ P 2
trans|β1 + β1β2 ≤ 1}

and all τ1, τ2 with τ1 + τ2 < 1 and log p/β1
log τ1

= log(1−p)/(β1β2)
log(τ1τ2)

we have dimmp
β1,β2

= 1
and with the help of the dimension formula from the second step of our proof:

dimmp
ϑ =

p log p+ (1− p) log(1− p)

log τ1 + (1− p) log τ2
+ (1− log β1 + (1− p) log β2

log τ1 + (1− p) log τ2
)

= 1+
β1τ

d
1 log β1β2(τ1τ2)

d + β1β2(τ1τ2)
d log(β1β2(τ1τ2)

d − log β1 − β1β2(τ1τ2)
d log β2

log τ1 + β1β2(τ1τ2)d log τ2

= 1 +
log τ d

1 + β1β2(τ1τ2)
d log τ d

2

log τ1 + β1β2(τ1τ2)d log τ2
= d+ 1.

We know from the first step of the proof that dimB ΛA
ϑ = d+ 1. Hence we get:

dimmp
ϑ = dimH ΛA

ϑ = dimB ΛA
ϑ .

Moreover we know from the first step of the proof that dimB Λ̂A
ϑ = dimB ΛA

ϑ+dimB F .
On the other hand by the product formula of Falconer [FA1, 7.4.] we have dimH Λ̂A

ϑ =
dimH ΛA

ϑ + dimH F . Thus dimH Λ̂A
ϑ = dimB Λ̂A

ϑ holds. This completes the proof of
our claim.

2
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9. Erdös measures

9.1. Singularity

In this chapter we usually assume that β ∈ (0, 5, 1) is the reciprocal Pisot-
Vijayarghavan number (short: PV number). We refer to appendix B for def-
inition, examples and properties of these algebraic integers. Erdös [ER1] showed in
1939 that the equal-weighted infinitely convolved Bernoulli measure bβ is singular
if β ∈ (0, 5, 1) is the reciprocal PV number. Furthermore it follows from a work
of Alexander and Yorke [AY] that dimH bβ < 1 in case that β is the reciprocal PV
number. This was observed by Przytycki and Urbanski [PU] who also gave their
own proof of this fact. It is not known (and perhaps a difficult problem) whether
there are other parameters β than reciprocals of PV numbers such that infinitely
convolved measures Bernoulli bβ measure is singular. Some information how big
the set of exceptions can be maximal follows from a very resent result of Peres and
Schlag [PSch]. They have shown the relation dimH{β ∈ (0.5, 1)| dimH bβ < 1} < 1
for infinitely convolved measures Bernoulli bβ.

Our objects here are all symmetric overlapping measures µβ where β ∈ (0, 5, 1)
is the reciprocal PV number and µ ∈ M(Σ+, σ). We call such a measure µβ an
Erdös measures.

Our main theorem extends the results mentioned above:

Theorem 9.1.1.

Let β ∈ (0, 5, 1) be the reciprocal PV number and µ ∈ M(Σ+, σ). dimH µβ < 1
holds if and only if µβ is singular. Moreover the set {µ ∈ M(Σ+, σ)|µβ is singular}
is open in the weak∗ topology on M(Σ+, σ) and contains all Bernoulli measures.

This theorem will follow from several different propositions we prove in this chapter
(see the end of 9.3.). In view of 7.1. it is natural to ask whether there are measures
µ ∈ M(Σ+, σ) with dimH µβ = 1 at all. We will answer this question in 9.4. . We
remark that the technique, we will develop here, can not be extended to the asym-
metric measures µβ1,β2 . We will see where the problems come from.

We first state the generalization of Erdös result to all infinitely convolved Bernoulli
measures. The proof we give is nothing but an obvious extension of Erdös original
argument.
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Proposition 9.1.2.

If β ∈ (0, 5, 1) is the reciprocal PV number then the measures bpβ are singular for all
p ∈ (0, 1).

Proof

By [JW] we know that the Fourier transformation of a convolution is the product of
the Fourier transformation of the convolved measures. Consequently by 3.2.1. the
Fourier transformation φ of bpγ is given by:

φ(bpβ, ω) =
∞∏

n=0

(cos((1− β)βnω) + (2p− 1) sin((1− β)βnω)).

We see that:

|φ(bpβ, ω)| =
∞∏

n=0

|(cos((1−β)βnω)+(2p−1) sin((1−β)βnω))| ≥
∞∏

n=0

| cos((1−β)βnω)|.

Now let ωk = 2πβ−k/(1− β). We have:

|φ(bpβ, ωk)| ≥
∞∏

n=0

| cos(2πβn−k)| =
k∏

n=0

| cos(2πβn−k)|
∞∏

n=k+1

| cos(2πβn−k)|

= C
k∏

n=0

| cos(2πβ−n)|

where C is a constant independent of k and not zero. Now let β be the reciprocal of
a PV number. From proposition B1 of appendix B we know that there is a constant
0 < θ < 1 such that: ||β−n||ZZ ≤ θn ∀n ≥ 0 where ||.||ZZ denotes the distance to the
nearest integer. This implies |φ(bpβ, ωk)| ≥ Ĉ > 0 for all k > 0. Thus we have that
|φ(bpβ, ω)| does not tend to zero with ω −→∞. Hence by Riemann-Lebesgue lemma
bpβ can not be absolutely continuous if β is the reciprocal of a PV number. But
it follows from the theory of infinity convolutions developed by Jessen and Winter
[JW] that bpβ is either absolutely continuous or singular. This completes the proof.

2

We remark that we have no nice product formula for the Fourier transformation of
the bp∗β1,β2 in the asymmetric situation. In fact we have:

φ(bp∗β1,β2 , ω) = lim
v−→∞

∑

s∈{−1,1}v
pv−]v(s)(1− p)]v(s)

v∏

n=1

esnωβ
n−]n(s)
1 β

]n(s)
2 .

and the Fourier transformation of bpβ1,β2 is just this function scaled on [−1, 1]. We
have not been able to apply the idea used in the proof of 9.1.2. to this Fourier
transformation and have thus not been able to find β1 6= β2 with β1 + β2 ≥ 1 such
that bpβ1,β2 is singular.
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9.2. Garcia entropy

Garcia [G1/G2] introduced a kind of entropy related to the equal weighted infinitely
convolved Bernoulli measures. We will generalize his account here. In contrast to
Garsia we will work on the hole shift space Σ+ and consider all measures µβ for
µ ∈M(Σ+, σ).

Let ∼n,β be the equivalence relation on Σ+ given by

i ∼n,β j ⇔
n−1∑

k=0

ikβ
k =

n−1∑

k=0

jkβ
k

and define a partition Πn,β of Σ+ by Πn,β = Σ+/ ∼n,β. Recall that entropy of a
partition Π with respect to a Borel probability measure µ on Σ+ is

Hµ(Π) = −
∑

P∈Π
µ(P ) log µ(P ).

We denote the join of two partitions Π1 and Π2 by Π1 ∨ Π2. This is the partition
consisting of all sections A ∩B for A ∈ Π1 and B ∈ Π2.

The following lemma is easy to proof but essential for us.

Lemma 9.2.1.

The partition Πn,β ∨ σ−n(Πm,β) is finer than the partition Πn+m,β and the sequence
Hµ(Πn,β) is sub-additive for a shift invariant measure µ on Σ+.

Proof

We have that σ−n(Πm,β) = Σ+/ ³n,m where ³n,m is given by

i ³n,m j ⇔
n+m−1∑

k=n

ikβ
k =

n+m−1∑

k=n

jkβ
k.

and hence Πn,β ∨ σ−n(Πm,β) = Σ+/ ≈n,m where

i ≈n,m j ⇔
n−1∑

k=0

ikβ
k =

n−1∑

k=0

jkβ
k and

n+m−1∑

k=n

ikβ
k =

n+m−1∑

k=n

jkβ
k.

Now obviously i ≈n,m j ⇒ i ∼n+m,β j. Thus Πn,β ∨ σ−n(Πm,β) is finer than the
partition Πn+m,β.
Now let µ ∈ M(Σ+, σ). By well known properties of Hµ (see 10.13. of [DGS]) we
have:

Hµ(Πn+m,β) ≤ Hµ(Πn,β ∨ σ−n(Πm,β))

≤ Hµ(Πn,β) +Hµ(σ
−n(Πm,β)) = Hµ(Πn,β) +Hµ(Πm,β)

.
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We can now define theGarsia entropy Gβ(µ) for a shift invariant Borel probability
measure µ on Σ+:

Gβ(µ) := lim
n−→∞

Hµ(Πn,β)

n
= inf

n

Hµ(Πn,β)

n
.

The limit in the definition exists and equals the infimum because the sequence
Hµ(Πn,β) is sub-additive. If we have a σ invariant measure µ on the full shift space
Σ = {−1, 1}ZZ , we define the Garsia entropy of µ as Gβ(µ) := Gβ(pr+µ), where pr+
is the projection of Σ onto Σ+. Gβ(pr+µ) is well defined because pr+µ is σ invariant
if µ is σ invariant.

Let us think a moment about the asymmetric case. We could define partitions
of Σ+ in the same way as in the symmetric case. But an analogon of Lemma 9.2.1.
does not hold and the limit in the definition of the Garsia entropy does not have to
exist.

The Garsia entropy Gβ(µ) is less equal to the usual metric entropy hµ(σ) for a
σ invariant measure µ, since the partition of Σ+ into cylinder sets of length n is
finer than Πn,β. If β is not the solution of an algebraic equation with coefficients
in {−1, 0, 1}, these partitions are identical and Gβ(µ) = hµ(σ) holds. Also the
partitions Πn,β are not in general generated by a transformation we can show that
the Garsia entropy G, interpreted as a function on the space of σ invariant Borel
probability measures on Σ+, has typical properties of an entropy.

Proposition 9.2.2.

The function µ 7−→ Gβ(µ) is upper-semi-continuous and affine on the space of σ
invariant Borel probability measures on Σ+.

Proof

We first prove that the function is upper-semi-continuous. Let µ, µn be σ invariant
Borel probability measures with µn → µ. Fix ε > 0.
From the definition of the Garsia entropy we know there exists an k such that,

Gβ(µ) ≥
Hµ(Πk,β)

k
− ε

2
.

The elements of the partition Πk,β are finite unions of cylinder sets in Σ+ and hence
open and closed. Thus we know that, limn−→∞ µn(P ) = µ(P ) ∀P ∈ Πk,β.
Hence there exists an n0 such that for all n ≥ n0

1

k
|Hµ(Πk,β)−Hµn(Πk,β)| ≤

ε

2
.
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Using both inequalitys and 9.2.1. we have:

Gβ(µ) ≥
1

k
Hµn(Πk,β)− ε ≥ Gβ(µn)− ε.

This proves upper-semi-continuity.

Now let µ1, µ2 be σ invariant and µ = pµ1 + (1 − p)µ2 with p ∈ (0, 1). For all
partitions Π the inequality

0 ≤ −pHµ1(Π)− (1− p)Hµ2(Π) +Hµ(Π) ≤ log 2

holds (see proposition 10.13. of [DGS]). Thus by the definition of the Garsia entropy
we have Gβ(µ) = pGβ(µ1) + (1− p)Gβ(µ2). But this means that G is affine.

2

The next proposition shows the significants of the Garsia entropy in our discussion.

Proposition 9.2.3.

Let β ∈ (0.5, 1) be the reciprocal of a PV number and µ be a shift invariant Borel
probability measure on Σ+. We have Gβ(µ) ≤ log β−1. Moreover if µβ is singular
then Gβ(µ) < log β−1 holds.

Garsia sketched in [GA1] a proof of the inequality Gβ(b) < log β−1 using a slightly
different notion of Garsia entropy. We will adopt some of his ideas in our proof.

Proof

Fix β. Define πn from Σ+ to [−1, 1] by πn((sk)) =
∑n−1

k=0 sk(1 − β)βk and let
µn = µ◦π−1n . Let ](n) be the number of distinct points of the form

∑n−1
k=0 ±(1−β)βk

and ω(n) be the minimal distance between two of those points. Furthermore denote
the points by xn

i i = 1 . . . ](n) and let mn
i be the µ measure of the corresponding

elements in Πn,β, which means mn
i = µn(x

n
i ).

We first state a property of PV numbers we will have to use here, see proposition
B2 of appendix B:

β−1 is PV number ⇒ ∃ c̄ : ω(n) ≥ c̄βn.

Since (](n)− 1)ω(n) ≤ 2 we get ](n) ≤ 4ω(n)−1 ≤ cβ−n with c := 4c̄−1.

From this we have that Hµ(Πn,β) ≤ log ](n) ≤ log c + n log β−1 and hence
Gβ(µ) ≤ log β−1.
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Now we assume that µβ is singular. It follows that there exists a constant C such
that:
∀ε > 0 ∃ disjoint intervals (a1, b1), . . . , (au, bu) with

u∑

l=1

(bl − al) < ε and µβ(O) > C where O :=
u⋃

l=0

(al, bl).

With out loss of generality we may assume µβ(al) = µβ(bl) = 0 for l = 1 . . . u. It
is obvious that the discreet distribution µn converges weakly to µβ. Thus we have:
∃n1(ε) ∀n > n1(ε) : µn(O) > C. We now expand the intervals a little bit, so that
their length is a multiple of ω(n).

kl,n := max{k | kω(n) ≤ al} al,n := kl,nω(n)

k̄l,n := min{k | bl ≤ kω(n)} bl,n := k̄l,nω(n)

Since ω(n) −→ 0 we have:
∃n2(ε) > n1(ε) ∀n > n2(ε) : (al,n, bl,n) disjunct for l = 1 . . . u and

u∑

l=1

(bl,n − al,n) < ε and µn(Ō) > C where Ō =
u⋃

l=0

(al,n, bl,n).

Let ]̂(n) be the number of distinct points xn
i in Ō. Since in one interval (al,n, bl,n)

there are at most k̄l,n−kl,n points xn
i we have ω(n)]̂(n) ≤ ε and hence ]̂(n) ≤ εcβ−n.

For all n > n2(ε) we can now estimate:

Hµ(Πn,β) = −
](n)
∑

i=1

mn
i logm

n
i = −

∑

xni ∈Ō
mn

i logm
n
i −

∑

xni 6∈Ō
mn

i logm
n
i

≤ µn(Ō) log
]̂(n)

µn(Ō)
+ (1− µn(Ō)) log

](n)− ]̂(n)

1− µn(Ō)

≤ µn(Ō) log ]̂(n) + (1− µn(Ō)) log ](n) + log 2

≤ µn(Ō) log εcβ−n + (1− µn(Ō)) log cβ−n + log 2

≤ n log β−1 + C log ε+ log c+ log 2.

If ε is small enough we have Hµ(Πn,β)/n < log β−1 for all n ≥ n2(ε). With the
sub-additivity of Hµ(Πn,β) the desired result follows.

2

In the special case that β is the golden ratio there exists an explicit formula for the
Garsia entropy of the equal-weighted Bernoulli measure found by Alexander and
Zagier:
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Theorem 9.2.4. [AZ]

G√
5−1
2

(b) = log 2− 1

18

∞∑

n=1

kn
4n
≈ (log

2√
5− 1

) · 0.995714 . . .

where kn =
∑

a1,...,at∈IN
a1+...+at=n
p/q=〈a1,...,at〉

(p+ q) log(p+ q)

and 〈a1, . . . , at〉 denotes the continuous fraction.

This theorem was also proved by Sidorov and Vershik [SV]. One needs quit deli-
cate combinatorial considerations to find this formula and it seems to be very hard
to prove a formula for other reciprocals of PV numbers. We do not want to include
the prove of 9.2.4. here but we like to present a very nice interpretation of the Garsia
entropy of Bernoulli measures in the light of the articles [AZ] and [SV].

If β is the reciprocal of a PV number we define an infinite binary graph associated
with β. We label the edges of the graph with −1 each left and +1 each right. The
vertices at the n’th level of the graph are supposed to correspond to the points x of
the form x =

∑n−1
k=0 skβ

k with sk ∈ {−1, 1} and paths are the sequences (s0, . . . sn−1)

treated as the representations of these points. If β =
√
5−1
2

this graph is called the
Fibonacci graph.
Now we may think of a random walk on such a graph where we go left with proba-
bility (1−p) and right with the probability p. The probability to reach a vertex x at
the n-level of the graph is in our notation just bp(P ) where P is the element of the
partition Πn,β corresponding to x. The entropy of the random walk, we described,
is the Garsia entropy Gβ(b

p).

What has been done in [AZ] and [SV] is (in some sense) to count the number
of paths in the Fibonacci graph that reach a vertex x at the n’th level of the graph.
This allows to calculate b(P ) for P ∈ Π

n,
√
5−1
2

and hence the Garsia entropy G√
5−1
2

(b)

resp. the entropy of the random walk with transition probabilities (1/2, 1/2) on the
Fibonacci graph.
We remark that this approach is not strong enough to calculate G√

5−1
2

(bp) if p 6= 0.5.

One would have to know not only how many paths reach a vertex, but also how many
of them have a given number of steps, say, to the right. It seems awkward to count
these quantities.
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Figure 5: The Fibonacci graph

We end these section with a conjecture about Gβ(b
p) as a function in p.

Conjecture 9.2.5.

Gβ(b
p) is a continuous unimodal function in p with maximum at p = 0.5.

In the case that β =
√
5−1
2

we have some (vague) numerical evidence for this conjec-
ture. Moreover we think that it gets intuitive plausible, if we look at symmetries of
the Fibonacci graph.

9.3. An upper bound on the dimension of Erdös measures

We will here prove an upper bound on Hausdorff dimension of all measures µβ in
terms of the Garsia entropy. In view of our result about the Garsia entropy in 9.2.3.,
if β is the reciprocal of a PV number, this bound is of special interest if we consider
Erdös measures.
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Because we will operate with Rényi dimension dimR (see appendix A) we are inter-
ested in an upper bound on the quantity

hµ(ε) = inf{Hµ(Π)|Π a partition with diamΠ ≤ ε}

by the entropy of the partitions Πn,β of Σ+. The following lemma plays the crucial
role in our argumentation.

Lemma 9.3.1.

hµβ(2β
n) ≤ Hµ(Πn,β)

Proof

Fix β ∈ (0.5, 1), τ ∈ (0, 0.5), a measure µ on Σ+ and n ∈ IN .
We define a partition of Λβ,τ by ℘n = πβ,τ (Πn,β). By definition we have

Hµ(Πn,β) = Hµβ,τ (℘n).

We should say something about the structure of ℘n. The image of a cylinder set
[i0, . . . , in−1]0 in Σ+ under πβ,τ is the part of Λβ,τ lying in the rectangle Tin−1 ◦ . . . ◦
Ti0(Q) of x-length 2βn. It is not difficult to check that two cylinder sets lie in the
same element of Πn,β if and only if the corresponding rectangles lie above each other.
So the projection of an element in ℘n onto the x-axis has length 2βn.
The projection onto the x-axis of two elements in ℘n may overlap. Starting with
℘n, we want to construct inductively a partition ℘̄n of Λβ,τ with non-overlapping
projections, in a way that does neither increase length of the projections nor entropy.
LetN(℘) be the number of pairs of elements in a partition ℘ that do have overlapping
projections onto the x-axis. We now construct a finite sequence ℘k

n of partitions.
First let ℘0

n = ℘n. Now let ℘k
n be constructed and N(℘k

n) > 0.
Let P1 and P2 be two elements of ℘k

n with overlapping projections. Without loss of
generality we may assume µβ,τ (P1) ≥ µβ,τ (P2) and define:

P̂1 = P1 ∪ (P2 ∩ (prXP1 × [−1, 1])) P̂2 = P2\(prXP1 × [−1, 1]).

We have P̂1∪̇P̂2 = P1∪̇P2, P1 ⊆ P̂1 and P̂2 ⊆ P2.
Thus we know: µβ,τ (P1) + µβ,τ (P2) = µβ,τ (P̂1) + µβ,τ (P̂2) and

µβ,τ (P̂1) ≥ µβ,τ (P1) ≥ µβ,τ (P2) ≥ µβ,τ (P̂2).
Since the function −x log x is concave, this implies:

−(µβ,τ (P̂1) log µβ,τ (P̂1) + µβ,τ (P̂2) log µβ,τ (P̂2)) ≤

−(µβ,τ (P1) log µβ,τ (P1) + µβ,τ (P2) log µβ,τ (P2)).
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Hence if we substitute P̂1, P̂2 for P1, P2, we get a partition ℘k+1
n of Λβ,τ with non-

increased entropy.
From the definition of P̂1 and P̂2 we see that prXP̂1 = prXP1, prXP̂2 ⊆ prXP2 and
that the projections of P̂1 and P̂2 onto the x-axis do not overlap. So the length
of the projections are obviously not increased. Furthermore we observe that there
cannot be any new overlaps of the projections of P̂1 or P̂2 with the projections
of other elements in ℘k

n, that do not appear, when we consider P1 or P2. Hence
N(℘k+1

n ) < N(℘k
n).

So after a finite number of steps we get a partition ℘̄n with

Hµβ,τ (℘n) ≥ Hµβ,τ (℘̄n),

non-overlapping projections onto the x-axis and diam prX℘̄n ≤ 2βn.
prX℘̄n is a partition of the interval [−1, 1] and we have

Hµβ(prX ℘̄n) = Hµβ,τ (℘̄n),

since the measure µβ is the projection of µβ,τ onto the x-axis. Now the proof is
complete:

hµβ(2β
n) ≤ Hµβ(prX℘̄n) = Hµβ,τ (℘̄n) ≤ Hµβ,τ (℘n) = Hµ(Πn,β).

2

The idea of cutting up overlaps we used here appeared in an other form in the
work of Alexander and Yorke [AY]. From our lemma it is easy for us to deduce the
following proposition:

Proposition 9.3.2.

If µ is a shift ergodic Borel probability measure on Σ+ we have:

dimH µβ ≤ Gβ(µ)/ log β
−1.

Proof

First we estimate the Rényi dimension:

dimRµβ = limε−→∞
hµβ(ε)

log ε−1
= limn−→∞

hµβ(2β
n)

log 0.5β−n
= limn−→∞

hµβ(2β
n)

n log β−1

≤ lim
n−→∞

Hµ(Πn,β)

n log β−1
=

Gβ(µ)

log β−1
.

Using part (2) of theorem A2 from appendix A we get:

70



∀δ > 0 ∃X with µβ(X) > 0 and d(x, µβ) ≤ Gβ(µ)/ log β
−1 + δ ∀x ∈ X.

But the measure µβ is exact dimensional, because it is the transversal measure in
the context of the ergodic dynamical system (Λβ,β,τ,τ , Tβ,β,τ,τ , µβ,β,τ,τ ). This fact was
observed by Ledrappier and Porzio, see [LP]. So our estimate must hold µβ-almost
everywhere and by part (3) of theorem A2 we get dimH µβ ≤ Gβ(µ)/ log β

−1 + δ for
all δ > 0. This proves the proposition.

2

Let us here again remark that Alexander and Yorke [AY] have proved the identity
dimR bβ = Gβ(b)/ log β

−1 for the equal-weighted infinitely convolved Bernoulli mea-
sure bβ. In their proof they used the self-similarity of this measure. Our proof of
9.3.2. shows that appealing to self-similarity is not necessary for the upper bound.

At the beginning of this section we have formulated our main result in theorem
9.1.1. . We are now able to give the proof of this result.

Proof of 9.1.1.

Let β ∈ (0, 5, 1) be the reciprocal of a PV number. We have for all µ ∈M(Σ+, σ):

µβ is singular⇒9.2.3. Gβ(µ) < log β−1 ⇒9.3.2. dimH µβ < 1⇒ µβ is singular.

These implications prove the first statement of our theorem. Now choose an Erdös
measure ξβ with dim ξβ < 1. We have Gβ(ξ) < log β−1. By upper-semi-continuity
of G (9.2.2.) Gβ(µ) < log β−1 and hence dimµβ < 1 holds for all µ in a hole
weak∗ neighborhood of ξ in M(Σ+, σ). Thus the set {µ ∈ M(Σ, σ)|µβ is singular}
is open in the weak∗ topology on M(Σ, σ). The set contains the Bernoulli measure
by proposition 9.1.2. .

2

9.4. Construction of an Erdös measure with full dimension

Let β−1 be a PV number as usual. We will construct here a measure m ∈M(Σ+, σ)
(depending on β) such that the Erdös measure mβ has Hausdorff dimension one.
From the proof of our main theorem 9.1.1. we know that it is sufficient to find a
m ∈ M(Σ+, σ) of full Garsia entropy, which means Gβ(m) = log β−1. In ergodic
theory there is a quite natural construction of an invariant measure with maximal
metric entropy, see 4.5. of [KH] or 18 of [DGS]. We will use a similar construction
for the Garsia entropy.
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Proposition 9.4.1.

Let β ∈ (0.5, 1) be the reciprocal of PV number. There exists a measure m ∈
M(Σ+, σ), such that Gβ(m) = log β−1 and hence dimH mβ = 1.

Proof

In this prove we will omit the subscript β. We first construct a shift invariant mea-
sure m with Gβ(m) = log β−1 and afterwards prove the existence of an ergodic one.

Recall that ]β(n) denotes the number of elements of the partition Πβ,n. Now choose
measures mn ∈M(Σ+) such that

mn(P ) = 1/]β(n) ∀P ∈ Πβ,n

and let m be a weak∗ accumulation point of the sequence

m̄n =
1

n

n−1∑

i=0

mn ◦ σ−i.

By this construction we immediately have that m is invariant under σ.

Given two partitions ℘1 and ℘2 on Σ+ we write ℘1 ¹ ℘2 if ℘2 is finer than ℘1.
Note that ℘1 ¹ ℘2 ⇒ σ−k(℘1) ¹ σ−k(℘2) and σ−k(℘1 ∨ ℘2) ¹ σ−k(℘1) ∨ σ−k(℘2)
where ∨ denotes the join as usual. Recall that we know from lemma 9.2.1.
Πn+m ¹ Πn ∨ σ−n(Πm). From these facts we get by induction Πaq ¹

∨a−1
i=0 σ

−iq(Pq).
Let bxc be the integer part of x. Given n and q and k with 0 < q < n and 0 ≤ k < q
we set a(k) = b(n− k)/qc and write n− k in the form a(k)q+ r with 0 ≤ r < q. We
get

Σn ¹ σ−k(Σn−k) ∨ Σk ¹ σ−k(Σa(k)q) ∨ σ−(a(k)q+k)(Σr) ∨ Σk

¹
a(k)−1
∨

i=0

σ−iq+r(Σq) ∨ σ−(a(k)q+k)(Σr) ∨ Σk

and hence

Hmn(Σn) ≤
a(k)−1
∑

i=0

Hmn(σ
−iq+k(Σq)) +Hmn(σ

−(a(k)q+k)(Σr)) +Hmn(Σk)

≤
a(k)−1
∑

i=0

Hmn(σ
−iq+k(Σq)) + 2q log 2.

The last inequality follows from the fact, that the partitions Σq and Σr have less
than 2q elements. Now summing over k gives

qHmn(Σn) ≤
q−1
∑

k=0

a(k)−1
∑

i=0

Hmn(σ
−iq+k(Σq)) + 2q2 log 2 ≤ nHm̄n(Σq) + 2q2 log 2.
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This implies
Hmn(Σn)

n
≤ Hm̄n(Σq)

q
+ 2 log 2

q

n
.

By the definition of the measures mn we have Hmn(Σn) = log ](n) and from propo-
sition B2 of appendix B we know ](n) ≥ C̄β−n. This gives us:

log β−1 +
log C̄

n
≤ Hm̄n(Σq)

q
+ 2 log 2

q

n
.

By the definition of m we thus have log β−1 ≤ Hm(Σq)/q, which implies log β−1 ≤
G(m). The opposite inequality has been proved in 9.2.3. .

We have shown up to this point that the set M := {µ|µ σ-invariant and G(µ) =
log β−1} of Borel measures on Σ+ is not empty. We know from 9.2.2. that G is up-
per semi-continuous and affine, which implies that M is compact and convex with
respect to the weak∗ topology. By Krein-Milman theorem there exist an extremal
point m of M .
We show that m is extremal in the space of σ invariant Borel probability measure
and hence σ ergodic.
If this is not the case we have m = pµ1 + (1 − p)µ2 for two distinct σ invariant
measures µ1 and µ2 and p ∈ (0, 1). Since µ is extremal in M we have that µ1 or µ2

is not in M . From 9.2.3. it follows that G(µ1) < log β−1 or G(µ2) < log β−1. This
implies G(m) < log β−1 because G is affine. This is a contradiction to m ∈M .

2

We remark here that we do not know if the measure of full dimension in the last
proposition is unique. The construction describe is not unique. Obviously one can
choose the measures mn in different ways. But it is not clear, if this induces different
Erdös measures of full dimension.
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10. Number theoretical peculiarities

10.1. Ergodic Measures

Now we study the ergodic measures for the systems (Λϑ, Tϑ), (Λϑ, f̂ϑ) and
([−1, 1]2, fβ) in the case that ϑ = (β, β, τ, τ) ∈ P 4

all and β a reciprocal of a PV
number. We concentrate on the variational principle for Hausdorff dimension.

Theorem 10.1.1.

If β is the reciprocal for a PV number we have:
(1) The variational principle for Hausdorff dimension does not hold for the Fat
Baker’s transformation ([−1, 1]2, fβ).
(2) The variational principle for Hausdorff dimension does not hold for the attrac-
tors (Λ̂ϑ, f̂ϑ) where ϑ = (β, β, τ, τ) and τ is sufficient small.
(3) For the repellers (Λϑ, Tϑ) with ϑ = (β, β, τ, τ) and τ sufficient small Bernoulli
measures do not have full Hausdorff dimension.

Remark

This theorem compared with our results in chapter seven shows that the dimensional
theoretical properties of a dynamical systems can considerably change because of
number theoretical peculiarities. Particular looking at the attractors (Λ̂ϑ, f̂ϑ) for τ
small and on the systems ([−1, 1]2, fβ) we see that in situations, where the varia-
tional principle for Hausdorff dimension generically holds, it does not have to hold
generally because of such peculiarities. Looking at the repellers (Λϑ, Tϑ) for τ small,
we see that generically a Bernoulli measure of full dimension is available but if the
parameters have special number theoretical properties then such a measure does not
exist. This provides substantial difficulties. We can not decide with our technique
whether there exists a measure full dimension for (Λϑ, Tϑ) if β is the reciprocal of a
PV number .

Now we want to proof theorem 10.1.1.

Proof of 10.1.1.

(1) Let µ ∈M(Σ, σ). By 5.3.5. and 9.3.2. we have:

dimH µ̄β ≤ 1 + dimH(pr
+µ)β ≤ 1 +Gβ(pr

+µ)/ log β−1.

By 9.2.2. and 9.2.3. Gβ(pr
+µ)/ log β−1 ≤ c1 < 1 holds for all µ in hole weak∗

neighborhood U of b in M(Σ, σ). Hence dimH µ̄β ≤ c1 + 1 < 2 holds for all µ in U .

74



On the other hand we have by the properties of the metric entropy hµ(σ)/ log 2 ≤
c2 < 1 on the complement of U . With 5.3.4. it follows that dimH µ̄β ≤ c2 + 1 < 2
holds for all µ ∈M(Σ+, σ)\U . Putting these facts together we obtain:

dimH µ̄β ≤ max{c1, c2}+ 1 < 2 = dim[−1, 1]2 ∀µ ∈M(Σ, σ).

But by 3.2.4. all ergodic measures for the system ([−1, 1]2, fβ) are of the form µ̄β

for some µ ∈M(Σ, σ). So the proof is complete.

(2) Let µ ∈M(Σ, σ). By 5.3.2. we have:

dim µ̂ϑ ≤
hµ(σ)

log 2
+

hµ(σ)

log τ−1
+ (1− log β

log τ
) dimH(pr

+µ)β.

This implies

dim µ̂ϑ ≤ 1 +
hµ(σ)

log 2
+

log 2β

log τ−1

and combined with 9.3.2.

dim µ̂ϑ ≤ 1 +
Gβ(pr

+µ)

log 2
+

log 2β

log τ−1
.

By the same arguments we used in (1) we now see

dimH µ̂β ≤ max{c1, c2}+ 1 +
log 2β

log τ−1
∀µ ∈M(Σ, σ)

where the constants c1, c2 are the same as in (1). If τ is sufficient small we get

dimH µ̂β ≤ c < 2 ≤ dimH Λ̂ϑ

for all µ ∈ M(Σ, σ). But by 3.2.5. all ergodic measures for the system (Λ̂ϑ, f̂ϑ) are
of the form µ̄β for some µ ∈M(Σ, σ). This completes the proof.

(3) From 5.3.3. we know

dimH bpϑ =
−p log p− (1− p) log(1− p)

log τ−1
+ (1− log β

log τ
) dimH bpβ ∀p ∈ (0, 1).

From 9.1.1. we have dimH bpβ ≤ c < 1 for all p ∈ (0, 1). This implies

dimH bpϑ ≤ c+
log 2 + c log β

log τ−1
∀p ∈ (0, 1).

If τ is sufficient small, we get our result:

dimH bpϑ ≤ c̄ < 1 ≤ dimH Λϑ ∀p ∈ (0, 1).

2

75



10.2. Invariant Sets

We prove here upper bounds on the Hausdorff dimension of the repellers Λϑ and
attractors Λ̂ϑ in the symmetric situation ϑ = (β, β, τ, τ) ∈ P 4

all under the assumption,
that β−1 is a PV number. An important consequence of this upper bound is the
following theorem:

Theorem 10.2.1.

If β is the reciprocal for a PV number, τ ∈ (0, 0.5) and ϑ = (β, β, τ, τ) we have:

dimH Λϑ < dimB Λϑ and dimH Λ̂ϑ < dimB Λ̂ϑ.

Remark

If we compare this result with 7.1. we learn that dimensional theoretical properties
of invariant sets of a dynamical system can considerably change because of number
theoretical peculiarities of parameter values. For our classes of attractors and re-
pellers we generically have the identity for Hausdorff dimension and box-counting
dimension, but for parameter values with special number theoretical properties this
identity does not hold.

To get 10.2.1. we prove now explicit upper bounds on the Hausdorff dimension
of Λϑ.

Proposition 10.2.2.

If β is the reciprocal for a PV number, τ ∈ (0, 0.5) and ϑ = (β, β, τ, τ) we have:

dimH Λϑ ≤
log(

∑

P∈Πn,β
(]P )

log β
log τ )

n log β−1
∀n ≥ 1

where Πn,β is the partition of Σ+ defined in 9.2. and ]P denotes the number of
cylinder sets of length n contained in an element of this partition.

Proof

Fix a reciprocal of a PV number β, τ ∈ (0, 0.5) and ϑ = (β, β, τ, τ). Let n ≥ 1 and
set

un =
log(

∑

P∈Πn,β
(]P )

log β
log τ )

n log β−1
.
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Consider the set of cylinders in Σ+ given by Cn = {[s̃1s̃2 . . . s̃m]0 | s̃i ∈ {−1, 1}n i =
1 . . .m}. Define a set function η on Cn by

η([s̃]0) =
]P (s̃)log β/ log τ

]P (s̃)
βnun and η([s̃1s̃2 . . . s̃m]0) = η([s̃1]0) · η([s̃2]0) · . . . · η([s̃m]0)

where s̃, s̃1, . . . s̃m are elements of {−1, 1}n and P (s̃) denotes the element of the par-
tition Πn,β containing the cylinder [s̃]0.

Note the facts that Cn is a basis of the metric topology of Σ+ and that
∑

s̃∈{−1,1}n η([s̃]0) = 1 by the definition of un. Thus we can extend η to a Borel
probability measure on Σ+.

Now recall that the map πϑ = πβ,β,τ,τ given by

πϑ(s) = (
∞∑

i=0

si(1− β)βi,
∞∑

i=0

si(1− τ)τ i)

is a homeomorphism from Σ+ onto Λϑ. Thus ηβ,τ := η ◦ π−1ϑ defines a Borel proba-
bility measure on Λϑ.

Given m ≥ 1 we set q(m) = dm(log β/ log τ)e. Given a sequence s̃i ∈ {−1, 1}n
for i = 1 . . .m we define a subset of Λϑ by

Rs̃1...s̃n = {(
∞∑

i=0

si(1− β)βi,
∞∑

i=0

ti(1− τ)τ i) | si, ti ∈ {−1, 1}

(s(i−1)n, . . . , sin−1) = s̃i i = 1 . . .m and (t(i−1)n, . . . , tin−1) = s̃i i = 1 . . . q(m)}.
We see that Rs̃1...s̃m is ”almost” a square in Λϑ of side length βmn. We have:

c1β
mn ≤ diamRs̃1...s̃m ≤ c2β

mn (1)

where the constants c1, c2 are independent of the choice of s̃i.

Now let as examine the ηβ,τ measure of the sets Rs̃1...s̃m .
Assume that t̃i ∼n,β s̃i for i = q(m) + 1 . . .m where ∼n,β is the equivalence relation
introduced in 9.2. . The rectangles πϑ([s̃1 . . . s̃q(m)t̃q(m)+1 . . . t̃m]0) are all disjoint and
lie above each other in the set Rs̃1...s̃m . Hence we have

ηβ,τ (Rs̃1...s̃m) ≥ η(
⋃

t̃i∼n,β s̃i i=q(m)+1...m

πϑ([s̃1 . . . s̃q(m)t̃q(m)+1 . . . t̃m]0) =

=
∑

t̃i∼n,β s̃i i=q(m)+1...m

η([s̃1 . . . s̃q(m)t̃q(m)+1 . . . t̃m]0).
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Using the fact s̃ ∼n,β t̃⇒ ]P (s̃) = ]P (t̃)⇒ η([s̃]0) = η([t̃]0) this equals

m∏

i=1

η([s̃i]0)
∑

t̃i∼n,β s̃i i=q(m)+1...m

1 =
m∏

i=1

]P (s̃i)
log β/ log τ

]P (s̃i)
βmnun

∑

t̃i∼n,β s̃i i=q(m)+1...m

1 =

=

∏m
i=1 ]P (s̃i)

log β/ log τ

∏q(m)
i=1 ]P (s̃i)

βmnun = (φs̃1...s̃mβ
nun)m

where

φs̃1...s̃m = (

∏m
i=1 ]P (s̃i)

log β/ log τ

∏q(m)
i=1 ]P (s̃i)

)1/m.

Now fix an ε > 0 We use the sets Rs̃1...s̃m to construct a good cover of Λϑ in the
sense for Hausdorff dimension. To this end set

Rm := {Rs̃1...s̃m |φs̃1...s̃m ≥ βnε}.

We have an upper bound on the cardinality of Rm. If R ∈ Rm then ηβ,τ (R) ≥
βmn(un+ε) and since ηβ,τ is a probability measure we see:

card(Rm) ≤ β−mn(un+ε) (2).

Now let R(M) =
⋃

m≥M Rm. We want to prove that R(M) is a cover of Λϑ for all
M ≥ 1.

For s = (sk) ∈ Σ+ we define the function φm by φm(s) = φs0...smn−1 . In addition we
need two auxiliary functions on Σ+:

fm(s) =

∏m
i=0 ]P ((s(i−1)n, . . . , sin−1))

1/m

∏q(m)
i=0 ]P ((s(i−1)n, . . . , sin−1))1/q(m)

,

gm(s) = (
q(m)
∏

i=1

]P ((s(i−1)n, . . . , sin−1)))
1/q(m)(log β log τ−q(m)/m).

Since 1 ≤ ]P (s̃) ≤ 2n we have 1 ≤ gm(s) ≤ 2n(log β/ log τ−q(m)/m). Thus by the
definition of q(m) we have gm(s) −→ 1. Moreover we have limm−→∞fm(s) ≥ 1
because

∏t
i=0 ]P ((si−1n, . . . , sin−1))

1/t ≥ 1 ∀t ≥ 1.
A simple calculation shows φm(s) = (fm(s))

log β/ log τgm(s). The properties of f and
g thus imply:

limm−→∞φm(s) ≥ 1 ∀ s ∈ Σ+.

This will help us to show that R(M) is a cover of Λϑ. For all s = (sk) ∈ Σ+ there is
an m ≥ M such that φm(s) ≥ βnε and thus πϑ(s) ∈ Rs0,...,smn−1 ∈ R(M). Since πϑ

78



is onto Λϑ we see that R(M) is indeed a cover of Λϑ.

We are now able to complete the proof. For every ε > 0 and every M ∈ IN we
have:

∑

R∈R(M)

(diamR)un+2ε =
∑

m≥M

∑

R∈Rm

(diamR)un+2ε

≤(1)
∑

m≥M

∑

R∈Rm

(c2β
mn)un+2ε =

∑

m≥M

card(Rm)(c2β
mn)un+2ε

≤(2) cun+2ε
2

∑

m≥M

βmnε.

The last expression goes to zero with M −→ 0. By the definition for Hausdorff
dimension we thus get dimH Λϑ ≤ un+2ε and since ε is arbitrary, we have dimH Λϑ ≤
un.

2

Some ideas we have used here are to due the prove of McMullen’s theorem (2.1.2.)
by Pesin in [PE2].

Now we use strategies developed in the proof of 9.2.3. to get:

Proposition 10.2.3.

If β is the reciprocal for a PV number, τ ∈ (0, 0.5) and ϑ = (β, β, τ, τ) we have:

∃ N ∀ n > N
log(

∑

P∈Πn,β
(]P )

log β
log τ )

n log β−1
<

log(2β/τ)

log(1/τ)
.

Proof

Fix a reciprocal of a PV number β. Consider the proof of 9.2.3. for the equal
weighted Bernoulli measure b. Recall that we denote by xn

i i = 1 . . . ](n) the dis-
tinct points of the form

∑n−1
k=0 ±(1−β)βk and by mn

i the b measure of corresponding
element P i

n from the partition Πn,β.

By the singularity of bβ we have more than we used in 9.2.3. :
∀C ∈ (0, 1) ∀ε > 0 ∃ disjoint intervals (a1, b1), . . . , (au, bu) with

u∑

l=1

(bl − al) < ε and bβ(O) > C where O :=
u⋃

l=0

(al, bl).
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By the same arguments we used in the proof of 9.2.3., we conclude:
∃c > 0 ∀C ∈ (0, 1) ∀ε > 0 ∃N = N(ε, C) ∀n ≥ N :

∑

xni ∈Ō
mn

i > C and ]̂(n) := card{xn
i ∈ Ō} ≤ εcβ−n.

Since mn
i = b(P i

n) = ]P i
n/2

n, where ]P denotes the number of cylinder sets of length
n contained in P , it follows that there is a subset Π̂n,β of Πn,β with ]̂(n) elements
such that

∑

P∈Π̂n,β

]P ≥ C2n

Now we estimate:

∑

P∈Πn,β

(]P )log β/ log τ =
∑

P∈Π̂n,β

(]P )log β/ log τ +
∑

P∈Πn,β\Pin,β

(]P )log β/ log τ

≤ ]̂(n)1−log β/ log τ (
∑

P∈Π̂n,β

]P )
log β/ log τ

(](n)− ]̂(n))1−log β/ log τ+(
∑

P∈Πn,β\Pin,β

]P )
log β/ log τ

≤ (εcβ−n)1−log β/ log τ2n log β/ log τ + (cβ−n)1−log β/ log τ ((1− C)2)n log β/ log τ

= βn(log β/ log τ−1)2n log β/ log τ ((εc)1−log β/ log τ + c1−log β/ log τ (1− C)log β/ log τ ).

Now choose ε and C such that ((εc)1−log β/ log τ + c1−log β/ log τ (1− C)log β/ log τ ) < 1.
For all n ≥ N(ε, C) we have:

log(
∑

P∈Πn,β
(]P )

log β
log τ )

n log β−1
<

log(2β/τ)

log(1/τ)
+
log((εc)1−log β/ log τ + c1−log β/ log τ (1− C)log β/ log τ )

n log β−1
.

The last term in this sum is negative and hence our proof is complete.

2

Now the proof of our theorem is obvious:

Proof of 10.2.1.

From 4.1. we know that the box-counting dimension of Λϑ is given by
log(2β/τ)/ log(1/τ) in the situation we study here. Thus 10.2.2. and 10.2.3. imme-
diately imply dimH Λϑ < dimB Λϑ. The inequality dimH Λ̂ϑ < dimB Λ̂ϑ follows from
this with the help of proposition A5.

2
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We end this work with three problems concerning number theoretical peculiarities
that we were not able to solve.

Open problems

(1) What is the Hausdorff dimension of Λϑ if β is the reciprocal of a PV number,
τ ∈ (0, 0.5) and ϑ = (β, β, τ, τ)?

(2) Does the variational principle for Hausdorff dimension hold for the systems
(Λϑ, Tϑ) in this situation?

(3) Are there number theoretical peculiarities for the systems (Λϑ, Tϑ), (Λ̂ϑ, f̂ϑ) and
([−1, 1], fβ1,β2) in the asymmetric situation, ϑ = (β1, β2, τ1, τ2) ∈ P 4

all with β1 6= β2?
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Appendix A: General facts in dimension theory

We will here first define the most important quantities in dimension theory and then
collect some basic facts. We refer to the book of Falconer [FA1] and the book of
Pesin [PE2] for a more detailed discussion of dimension theory.
Let Z ⊆ IRq. We define the s-dimensional Hausdorff measure Hs(Z) of Z by

Hs(Z) = lim
λ−→0

inf{
∑

i∈I
(diamUi)

s|Z ⊆
⋃

i∈I
Ui and diam(Ui) ≤ λ}.

The Hausdorff dimension dimH Z of Z is given by

dimH Z = sup{s|Hs(Z) =∞} = inf{s|Hs(Z) = 0}.
Let Nε(Z) be the minimal number of balls of radius ε that are needed to cover Z.
We define
the upper box-counting dimension dimB resp. lower box-counting dimen-
sion dimB of Z by

dimBZ = limε−→0
logNε(Z)

− log ε
dimBZ = limε−→0

logNε(Z)

− log ε
.

We remark that these quantities are not changed if we replace Nε(Z) by the min-
imal number of squares parallel to the axis with side length ε that are needed to
cover Z. Furthermore we note that limit in the definition exists, if it exists for some
exponential decreasing sequence.

Now let µ be a Borel probability measure on IRq. We define the dimensional theo-
retical quantities for µ by

dimH µ = inf{dimH Z|µ(Z) = 1}
and

dimBµ = lim
ρ−→0

inf{dimBZ|µ(Z) ≥ 1− ρ}.

We introduce one more notion of dimension for a measure µ. Let hµ(ε) =
inf{Hµ(Π)|Π a partition with diamΠ ≤ ε} where Hµ(Π) is the usual entropy of Π.
We define the upper Rényi dimension dimR resp. lower Rényi dimension dimR

of Z by

dimRZ = limε−→0
hµ(ε)

− log ε
dimRZ = limε−→0

hµ(ε)

− log ε
.

The upper local dimension d(x, µ) resp. lower local dimension d(x, µ) of the
measure µ in a point x is defined by

d(x, µ) = limε−→0
µ(Bε(x))

log ε
d(x, µ) = limε−→0

µ(Bε(x))

log ε
.

Basic relations of the dimensions defined here are stated in the following proposition
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Proposition A1

(1) dimH Z ≤ dimBZ ≤ dimBZ holds for all Z ⊆ IRq.
(2) dimH µ ≤ dimBµ ≤ dimBµ holds for all Borel probability measures µ on IRq.
(3) dimRµ ≤ dimBµ holds for all Borel probability measures µ on IRq.

The first two inequalities are obvious and third one is proved in [YO]. The rela-
tions between the local dimension and the other notion of dimension of measures
are described in the following theorem:

Theorem A2

(1) d(x, µ) ≤ c -a.e. ⇒ dimH µ ≤ c.
(2) d(x, µ) ≥ c -a.e. ⇒ dimH µ ≥ c and dimRµ ≥ c.
(3) d(x, µ) ≤ c -a.e. ⇒ dimBµ ≤ c.
(4) d(x, µ) = d(x, µ) = c a.e. ⇒ dimHµ = dimB µ = dimR µ = c.

A proof of this theorem is contained in the work of Young [YO]. If the condition in
part (4) of the last theorem holds, the measure µ is called exact dimensional and
the common value of the dimensions is denoted by dimµ. In particular absolute
continuous measures are exact dimensional:

Proposition A3

If µ is an absolutely continuous Borel probability measure on IRq then d(x, µ) =
d(x, µ) = q µ-a.e. .

One basic fact we have to mention is that dimensional theoretical quantities are
not increased by Lipschitz maps and are hence bi-Lipschitz invariants.

Proposition A4

Let f be a Lipschitz map from IRq into itself then we have:
(1) dimB/H f(Z) ≤ dimB/H Z for all Z ⊆ IRq.
(2) dimB/H µ ◦ f−1 ≤ dimB/H µ for all Borel probability measures µ on IRq.
Here dimB can be both upper and lower box-counting dimension.

The proof of this proposition is obvious from the definitions. Especially we see
that a projection on a linear subspace of IRq does not increase Hausdorff and box-
counting dimension of a set or a measure.

There is one other elemental fact we use in our work:
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Proposition A5

If Z ⊆ IRq and I is an interval then dimH/B(Z × I) = dimH/B +1, where dimB can
be both upper and lower box-counting dimension.

The statement for Hausdorff dimension follows from proposition 7.4. of [FA1] and
the statement for box-counting dimension is easy to see using 3.1. of [FA1].

At the end of this appendix we like to remark that the terminology in dimension
theory is not unique. What we called box-counting dimension is also known as
Minkowsky dimension or as capacity. The Rényi dimension is often called informa-
tion dimension.
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Appendix B: Pisot-Vijayarghavan numbers

A Pisot-Vijayarghavan number (short: PV number) is by definition the root of
an algebraic equitation whose conjugates lie all inside the unit circle in the complex
plane. Salem [SA] showed that the set of PV numbers is a closed subset of the reals
and that 1 is an isolated element.
In our context we are interested in numbers β ∈ (0.5, 1) such that β−1 is a PV num-
ber. We list some examples including all reciprocals of PV numbers with minimal
polynomial of degree two and three and a sequence of such numbers decreasing to
0.5.

x2 + x− 1 (
√
5− 1)/2

x3 + x2 + x− 1 0.5436898. . .
x3 + x2 − 1 0.754877 . . .
x3 + x− 1 0.6823278. . .

x3 − x2 + 2x− 1 0.5698403. . .
x4 − x3 − 1 0.7244918. . .

xn + xn−1 . . .+ x− 1 rn −→ 0.5

Table 1: Reciprocals of PV numbers

An important property of PV numbers is that their powers are near integers. More
precise:

Proposition B1

If α is a PV number then there is a constant 0 < θ < 1 such that ||αn||ZZ ≤ θn

∀n ≥ 0 where ||.|| denotes the distance to the nearest integer.

This statement can be found in [ER1]. There is an another property of PV numbers
that is of great importance for us. For β ∈ (0, 1) we denote by ]β(n) the number of
distinct points of the for

∑n−1
k=0 ±βk and by ωβ(n) the minimal distance between two

of those points.

Proposition B2

If β ∈ (0.5, 1) is the reciprocal of a PV number then there are positive constants
c̄ > 0 and C̄ > 0 such that ωβ(n) ≥ c̄βn and ]β(n) ≥ C̄β−1 holds for all n ≥ 0.

For the first inequality we refer to [GA2] lemma 1.6. and for the second inequality
see (15) of [PU]. Finally we like to mention that there is a whole book about Pisot
and Salem numbers [BDGPS]. Certainly the reader will find much more information
about the role of these numbers in algebraic number theory in this book than we
provided here for our purposes.
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General notations

IN denotes the set of natural numbers {1, 2, 3, 4, 5, . . .}

IN0 := IN ∪ {0}

ZZ denotes the set of integers {. . . ,−2,−1, 0, 1, 2, . . .}

ZZ− denotes the set of negative integers {−1,−2,−3,−4, . . .}

ZZ−0 := ZZ− ∪ {0}

IR denotes the set of real numbers

sup(A) denotes the supremum of a set A ⊆ IR

inf(A) denotes the infimum of a set A ⊆ IR

lim denotes the limes superior

lim denotes the limes inferior

dxe denotes the smallest integer bigger then x ∈ IR

bxc denotes the biggest integer smaller then x ∈ IR

|x| denotes the absolute value of x ∈ IR

d(x, y) denotes the distance between two points x and y in a metric space

Bε(x) denotes the open ball of radius ε around x in a metric space

diam(A) denotes the diameter of a subset A of a metric space
:= sup{d(x, y)|x ∈ A y ∈ A}

card(A) denotes the cardinality of a set A

closure(A) denotes the closure of the set A with respect to a given topology

prX(A) denotes the projection of A ⊆ IRq onto the first component

prY (A) denotes the projection of A ⊆ IRq onto the second component
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prZ(A) denotes the projection of A ⊆ IRq onto the third component

prXY (A) denotes the projection of A ⊆ IRq onto the first two components

prXZ(A) denotes the projection of A ⊆ IRq onto the first and the third component

prY Z(A) denotes the projection of A ⊆ IRq onto the second and the third component

Σ := {−1, 1}ZZ

Σ̄ := Σ\{(sk)|∃k0∀k ≤ k0 : sk = 1}) ∪ {(1)}

Σ+ := {−1, 1}IN0

ΣA denotes a Markov chain in Σ ; see chapter eight

Σ+
A denotes a Markov chain in Σ+ ; see chapter eight

pr+ denotes the projection from Σ onto Σ+

σ denotes the shift map; σ((sk)) = (sk+1)

bp denotes the Bernoulli measure on Σ resp. Σ+ which is the product of the
discrete measure giving 1 the probability p and −1 the probability (1− p)

b := b0.5

` denotes the normalized Lebesgue measure on the interval [−1, 1]

mp denotes a Markov measure; see chapter eight

htop(T ) denotes the topological entropy of a continuous transformation
on a topological space; see [KH] for definition

hµ(T ) denotes the metric entropy of a transformation T with respect to an
invariant measure µ; see [KH] for definition

dimB denotes the box-counting dimension; see appendix A

dimH denotes the Hausdorff dimension; see appendix A
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dimR denotes the Renyi dimension; see appendix A

d(x, µ) denotes the local dimension of a measure µ in a point x; see appendix A

Some notations and basic relations in our work

system (Λ̂ϑ, fϑ) (Λϑ, Tϑ) ([−1, 1]2, fβ1,β2)
type attractor repeller endomorphism

parameters ϑ ∈ P 4
all ϑ ∈ P 4

all (β1, β2) ∈ P 2
olapp

projections prXY ◦ fϑ = fβ1,β2
prXZΛ̂ϑ = Λϑ

see page 14 page 9 page 12

coding system (Σ, σ−1) (Σ+, σ) (Σ, σ−1)
coding map π̂ϑ πϑ π̄β1,β2

projections prXZ ◦ π̂ϑ = πϑ ◦ pr+ prX ◦ πϑ = πβ1,β2 prX ◦ π̄β1,β2 =
prXY ◦ π̂ϑ = π̄β1,β2 πβ1,β2 ◦ pr+

see page 17 page 16 page 18

ergodic measures µ̂ϑ µϑ µ̄β1,β2

projections prXY µ̂ϑ = µ̄ϑ prXµϑ = µβ1,β2 prX µ̄β1,β2 = (pr+µ)β1,β2
see page 23 page 21 page 21
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Zusammenfassung der Ergebnisse

In dieser Dissertation werden dimensionstheoretische Eigenschaften einiger Klassen
affiner dynamischer System behandelt. Wir untersuchen eine Klasse von selbst-
affinen Repellern und eine Klasse von Attraktoren stückweise affiner Abbildungen,
die jeweils von vier Parametern abhängen. Darüber hinaus betrachten wir verall-
gemeinerte Baker’s Transformationen, ein Klasse von Endomorphismen abhängig
von zwei Parametern. Bei unserer dimensionstheoretischen Analyse leiten uns
im wesentlichen zwei Fragestellungen. Erstens fragen wir, ob die Hausdorff Di-
mension der betrachteten invarianten Mengen mit deren Box-Counting Dimension
übereinstimmt. Zweitens fragen wir, ob auf den betrachteten invarianten Mengen ein
ergodisches Maß voller Hausdorff Dimension existiert bzw. ob das Variationsprinzip
der Hausdorff Dimension gilt, was bedeutete, daß sich die Dimension der betra-
chteten Menge durch die Dimension ergodischer Maße auf der Menge approximieren
lässt. Im Rahmen dieser Arbeit konnten wir ein ganze Reihe neuer Ergebnisse
erzielen, die interessante Phänomene im Bereich der Dimensionstheorie dynamis-
cher Systeme, anhand der von uns gewählten Beispiele, aufzeigen. Wir denken,
daß unsere Ergebnisse und Methoden auch bei der Entwicklung einer allgemeinen
Theorie relevant sein könnten. Wir werden nun unsere Hauptergebnisse zusammen-
fassend darstellen. Die Berechnung der Box-Counting Dimension der Attraktoren
und Repellern, die wir betrachten, ist mit elementaren Überdeckungs Argumenten
möglich und wir erhalten eine allgemein gültige Formel. Weiterhin zeigen wir,
daß die Box-Counting Dimension der Repeller und Attraktoren generisch (im Sinne
des Lebesgue Maßes auf Teilen des Parameterraums) mit deren Hausdorff Dimension
übereinstimmt. Für die Repeller finden wir generisch ergodische Maße voller Haus-
dorff Dimension. Auf der anderen Seite zeigen wir, daß das Variationsprinzip für die
Attraktoren nicht generisch gilt. Für die verallgemeinerte Baker’s Transformation
gibt es Parameterbereich in denen generisch ein ergodisches Maß voller Hausdorff
Dimension existiert und Bereiche in denen das Variationsprinzip nicht gilt. Die
Beweise dieser generischen Resultate basieren zum einen auf einer geeigneten An-
wendung der allgemeinen Dimensionstheorie ergodischer Masse und zum anderen
auf einem Studium bestimmter selbst- ähnlicher Maße. Weitere Hauptergebnisse
unserer Arbeit beziehen sich auf zahlentheoretische Ausnahmen zu unseren gener-
ischen Resultaten in einer symmetrischen Situation. Wir zeigen, daß die Identität
zwischen Hausdorff und Box-Counting Dimension der Attraktoren und der Repeller
nicht gilt, wenn die Parameter bestimmte zahlentheoretische Eigenschaften besitzen.
Weiterhin zeigen wir, daß für die symmetrische Attraktoren sowie für die Fat Baker’s
Transformationen das Variationsprinzip der Hausdorff Dimension unter bestimmten
zahlentheoretischen Bedingungen nicht gilt, obwohl es in diesem symmetrischen Fall
generisch gilt. Für die Reppeller konnten wir unter diesen Bedingungen nur zeigen,
daß kein Bernoulli Maß voller Dimension existieren kann.
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