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1. Introduction

In this work we study dimensional theoretical properties of some affine dynamical
systems.

By dimensional theoretical properties we mean Hausdorff dimension and box-
counting dimension of invariant sets and ergodic measures on theses sets. Especially
we are interested in two problems. First we ask whether the Hausdorff and box-
counting dimension of invariant sets coincide. Second we ask whether there exists
an ergodic measure of full Hausdorff dimension on these invariant sets. If this is not
the case we ask the question, whether at least the variational principle for Haus-
dorff dimension holds, which means that there is a sequence of ergodic measures
such that their Hausdorff dimension approximates the Hausdorff dimension of the
invariant set. It seems to be well accepted by experts that these questions are of
great importance in developing a dimension theory of dynamical systems (see the
book of Pesin about dimension theory of dynamical systems [PE2]).

Dimensional theoretical properties of conformal dynamical systems are fairly well
understood today. For example there are general theorems about conformal repellers
and hyperbolic sets for conformal diffeomorphisms (see chapter 7 of [PE2]). On the
other hand the existence of two different rates of expansion or contraction forces
problems that are not captured by a general theory this days. At this stage of de-
velopment of the dimension theory of dynamical systems it seems natural to study
non conformal examples. This is the first step to understand the mechanisms that
determine dimensional theoretical properties of non conformal dynamical systems.

Affine dynamical systems represent simple examples of non conformal systems. They
are easy to define, but studying their dimensional theoretical properties does never-
theless provide challenging mathematical problems and exemplify interesting phe-
nomena. We consider here a special class of self-affine repellers in dimension two,
depending on four parameters (see 2.1.). Furthermore we study a class of attractors
of piecewise affine maps in dimension three depending on four parameters as well.
The last object of our work are projections of these maps that are known as gener-
alized Baker’s transformations (see 2.2.).

The contents of our work is the following:

In chapter two we give an overview about some main results in the area of di-
mension theory of affine dynamical systems and define the systems we study in this
work. We will explain, what is known about the dimensional theoretical properties
of these systems and describe what our new results are. In chapter three we then
apply symbolic dynamics to our systems. We will introduce explicit shift codings
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and find representations of all ergodic measures for our systems using these codings.

From chapter four to chapter eight we study dimensional theoretical properties,
which our systems generally or generically have. In chapter four we will prove a
formula for the box-counting dimension of the repellers and the attractors (see the-
orem 4.1.). Then in chapter five we apply general dimensional theoretical results for
ergodic measures found by Ledrappier and Young [LY] and Barreira, Schmeling and
Pesin [BPS] to our systems. These results relate the dimension of ergodic measures
to metric entropy and Lyapunov exponents. Using this approach we will be able to
reduce questions about the dimension of ergodic measures in our context to ques-
tions about certain overlapping and especially overlapping self-similar measures on
the line. These overlapping self-similar measures are studied in chapter six. Our
main theorem extends a result of Peres and Solomyak [PS2] concerning the absolute
continuity resp. singularity of symmetric self-similar measures to asymmetric ones
(see theorem 6.1.3.).

In chapter seven we bring our results together. We prove that we generically (in
the sense of Lebesgue measure on a part of the parameter space) have the iden-
tity of box-counting and Hausdorff dimension for the repellers and the attractors.
(see theorem 7.1.1. and corollary 7.1.2.). This result suggest that one can expect
that the identity of box-counting dimension and Hausdorff dimension holds at least
generically in some natural classes of non conformal dynamical systems.
Furthermore we will see in chapter seven that there generically exists an ergodic
measure of full Hausdorff dimension for the repellers. On the other hand the vari-
ational principle for Hausdorff dimension is not generic for the attractors. It holds
only if we assume a certain symmetry (see theorem 7.1.1.). For generalized Baker’s
transformations we will find a part of the parameter space where there generically
is an ergodic measure of full dimension and a part where the variational principle
for Hausdorff dimension does not hold (see theorem 7.1.3.). Roughly speaking the
reason why the variational principle does not hold here is, that if there exists both a
stable and an unstable direction one can not generically maximize the dimension in
the stable and in the unstable direction at the same time. In an other setting this
phenomenon was observed before by Manning and McCluskey [MM].

In chapter eight we extend some results of the last section to invariant sets that
correspond to special Markov chains instead of full shifts (see theorem 8.1.1.).

In the last two chapters of our work we are interested in number theoretical excep-
tions to our generic results. The starting point of our considerations in section nine
are results of Erdés [ER1] and Alexander and Yorke [AY] that establish singularity
and a decrease of dimension for infinite convolved Bernoulli measures under special
conditions. Using a generalized notion of the Garsia entropy ([GA1/2]) we are able



to understand the consequences of number theoretical peculiarities in broader class
of overlapping measures (see theorem 9.1.1.).

In chapter ten we then analyze number theoretical peculiarities in the context of
our dynamical systems. We restrict our attention to a symmetric situation where
we generically have the existence of a Bernoulli measure of full dimension and the
identity of Hausdorff and box-counting dimension for all of our systems.

In the first section of chapter ten we find parameter values such that the variational
principle for Hausdorff dimension does not hold for the attractors and for the Fat
Baker’s transformations (see theorem 10.1.1.). These are the first known examples of
dynamical systems for which the variational principle for Hausdorff dimension does
not hold because of number theoretical peculiarities of parameter values. For the
repellers we have been able to show that under certain number theoretical conditions
there is at least no Bernoulli measure of full Hausdorff dimension; the question if the
variational principle for Hausdorff dimension holds remains open in this situation.
In the second section of chapter ten we will show that the identity for Hausdorff
and box-counting dimension can drops because there are number theoretical pecu-
liarities. In the context of Weierstrass-like functions this phenomenon was observed
by Przytycki and Urbanski [PU]. Our theorem extends this result to a larger class
of sets, invariant under dynamical systems (see theorem 10.2.1).

At the end of this work the reader will find two appendices, a list of notations
and the list of references. In appendix A we introduce the notions of dimension we
use in this work and collect some general facts in dimension theory. In appendix
B we state the facts about Pisot-Vijayarghavan number, we need in our analysis
of number theoretical peculiarities. The list of notations contains general notations
and a table with a summary of notations we use to describe the dynamical systems
that we study.
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2. Affine dynamical systems

2.1. Self-affine repellers

Self-affine repellers are simple examples of non conformal dynamical systems. We
introduce them now. Let T',...,T, : D — D be affine contractions of a domain D
in IR™. Assume that the sets T;(D) are disjoint . From Hutchinson [HU] we know
there is an unique compact self-affine subset A of D satisfying:

Define a map T on !, T;(D) by

T(x) =T Yx) if zeTy(D).

(2

Clearly T is a smooth expanding map. A is invariant and a repeller for 7', which
means that there is an open neighborhood V' of A such that A = {z € V|f™(x) €
V' Vn > 0} (see chapter 20 of [PE2]). We call A a self-affine repeller.

There is one generic result about the dimension of large classes of self-affine sets.

Theorem 2.1.1.

Let Ly,..., L, be linear contractions of IR™ with ||L;|| < 1/2 and let by,...,b,, €
IR™. If A is the compact self-affine set satisfying

then the identity dimp A = dimg A holds for almost all (by,...,b,) € IR™ in the
sense Lebesgue measure and the common value is independent of (by, ..., b,,).

Falconer [FA2] proved this theorem in the case ||L;|| < 1/3 and Solomyak [SO2]
extended the proof to the case ||L;|| < 1/2. Moreover Solomyak showed that the
statement does not longer hold if we replace 1/2 by 1/2 + 4.

Of course 2.1.1. leaves many questions open. First of all the question about the
existence of an ergodic measure of full Hausdorff dimension remains open. Moreover
one would like to have some information about classes of self-affine repellers with
larger expansion rates and there may be natural subclasses that fall in the excep-
tional set of 2.2.1. .



Let us discuss a very natural family of self-affine repellers that is completely un-
derstood today and proved to fall in the exceptional class of 2.1.1. .

Given integers [ > m > 2 choose a set A of pairs of integers (7, j) with 0 < i < [ and
0 < 7 < m. Denote the cardinality of A by a. Now let T} for £ = 1...a be affine
maps given in the following way: if k enumerates the element (7, j) € A then let

T5,([0,1%) = [i/1, (i + 1)/1] x [j/m, (5 + 1) /m].

J
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Figure 1: The images of the affine maps inducing a self-affine carpet with [ = 8
m =4 and A=1{(4,0),(2,1),(6,1),(7,1),(0,2),(1,2),(2,2),(5,2),(1,3),(3,3)}

Let A4 be the self-affine set generated by these affine contractions. A set of this type
is known as general Sierpinski carpet. We remark that A 4 viewed as a subset of
the Torus is invariant under the toral endomorphism given by:

A

T: (z,y) — (lz,my) mod 1.

Dimensional theoretical questions are answered by the following theorem of Mc-
Mullen:



Theorem 2.1.2. [MC]

Let ¢; be the number of those i for which (7, j) € A and let r be the number of those
j for which there is some i such that (i,j) € A. We have:

m—1

dimy Ay = log,, (D t;og’m) and  dimpg Ay = log,, 7 + log,(a/7).
i=0

Moreover there exists a Bernoulli measure of full Hausdorff dimension on A 4.

We remark that it is easy to see that a Bernoulli measure on the carpet is in fact
an ergodic measure with respect to the map 7" on the torus or the expanding map
T associated with the affine contractions.

Note that the theorem we implies that the Hausdorff and box-counting dimension
of a general Sierpinski carpet coincide if and only if the carpet is self-similar (1=m)
or the number of rectangles is constant or zero in every raw (t; = 0 or t; = const.
for all j).

There are some generalizations of 2.1.2. . Kenyon and Peres [KP] extended the
result to analogous subsets of higher dimensional cubes, which they called self-affine
Sierpinski sponges. Using this result they where also able to show the existence of
an ergodic measure of full Hausdorff dimension on all compact invariant sets for
endomorphisms of the d-Torus with integer eigenvalues. Gatzouras and Lalley [GL]
extended the result on self-affine carpets in another direction. They considered affine
contractions which map the unit square to rectangles with height greater than width
such that these rectangles are lined up in rows. They calculated the Hausdorff and
box-counting dimension of the limit set and found ergodic measures of full dimen-
sion.

Now we define the class of self-affine repellers we will study in our work.

Let P4 = {(B1,52,711,72) € (0,1)451 4+ B2 > land 71 + 7o < 1} be the set of
all parameters we consider. Given ¥ € P, we define two affine contractions 77 »
and T_;  of the square [—1,1]* by

Tio(x,2) = (Brr + (1 = fo), mz + (1 — 7))

T 1 9(x,2) = (fox — (1 — (o), 2z — (1 — 7)).

Let Ay be unique compact self-affine subset of [—1, 1]? satisfying

Ay =T19(Ay) UT 1 5(Ay)

9



and let Ty be the smooth expanding transformation on Ty 4([—1, 1]*) U T ¢([—1, 1]?)
defined by

Ty(z) = (Ti9) *(x) if x€Ty([-1,1]%) for i=1,2.

The set Ay is an invariant repeller for the transformation Ty.

2/

Tl,ﬂ([_lv 1]2)

Toi([-1,1%)

- 202

Figure 2: The transformations T; 5 and T_; y on [—1,1]?

We will now describe what is known about dimensional theoretical properties of the
systems (Ay, Ty).

The symmetric situation ¥ = (8,0,7,7) € Pa; has been studied by Pollicott and
Weiss [PW]. We need one definition to state the result. We say that 3 € (0,1) is a
Garsia-Erdos number if

n—1
3C>0Vz € R:card{(so,...,sn1)| D sxB" € [z, + ")} < C(28)" Vn > 0.
k=0

Examples of Garsia-Erdos numbers are the numbers %\/5 for n > 0. Furthermore
we know from appendix 3 of [PW] that for some p almost all € (1 — p,1) are

Garsia-Erdos numbers.
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Theorem 2.1.3. [PW]
If 9 = (8,8,7,7) € P4, then we have

log(1/7)°

If § is in addition a Garsia-Erdos number then we have
dimB A19 = dlmH Alg
and the equal-weighted Bernoulli measure on Ay has full Hausdorff dimension.

Now let us say what our new results about the dimensional theoretical properties of
the systems (Ay, Ty) are and where in our work the corresponding theorems can be
found:

New results

First of all in theorem 4.1.1. we will find a formula for dimp Ay for all ¥ € P2,
In fact the box-counting dimension is given by the unique positive solution of the
equation

St 4 By =1

Furthermore we show or almost all ¥ € P! = = {(B1,052,71,72) € PLlf <
f1 < 0.649} in the sense of four dimensional Lebesgue measure the identity
dimp Ay = dimy Ay and and the existence of an ergodic measure of full Haus-
dorff dimension for the system (Ay,Ty); see corollary 7.2. . The restriction of this
generic result depends on the technique we use and is due to a certain transversality
condition; see chapter six. In fact our main generic result in theorem 7.1. is little
bit stronger than corollary 7.2. and takes special cases into consideration. We will
see that the statements in the second part of Pollicott and Weiss theorem holds
for almost all 3 € (0.5,1) in the sense of one dimensional Lebesgue measure. Our
technique is different from the arguments of Pollicott and Weiss and the condition
we have for the identity of Hausdorff and box-counting dimension is not the number
theoretical Garsia-Erdds condition (see the remarks after 7.2.).

Let us now for a moment consider the case ¢ = (3,0, 7,7) with 7 = 0.5. In this
situation the set Ay coincides (up to a countable number of points) with the graph
of Weierstrass-like function studied by Przytycki and Urbanski [PU]. Przytycki and
Urbanski were able to show that the Hausdorff dimension of these graphs is less
than their box-counting dimension if (3 is the reciprocal of a Pisot-Vijayarghavan
number (short PV number). The reader will find the definition and examples of PV
numbers in appendix B.
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In our work number theoretical peculiarities are also one point of main effort. We
will show that if ¥ = (3, 8,7,7) € P4, and 3 is the reciprocal of a PV number then
we have no Bernoulli measure of full Hausdorff dimension for the system (Ay, Ty)
(see 10.1.1.(3)) and the inequality dimy Ay < dimp Ay holds (see 10.2.1.). The ar-
guments we need to get this result in our situation with 7 < 0.5 are very different
from the arguments of [PU].

2.2. Attractors of piecewise affine maps

Attractors of piecewise affine maps provide simple examples of generalized hyper-
bolic attractors. Especially the Belykh attractors raised great interest in the
literature (see [PE1]). We want to introduce them here. Consider piecewise affine
transformations on the square [—1, 1] given by

k,p1,p2 _ (5I+(1—ﬁ),py+(1—p) if kaﬂf
Jais (@ y) =1 (ﬁ;x— (1 —ﬁ;),p;y— (1—p) if y<kax

where (1,0, € (0,1) k € (—1,1) and py, p2 € (1,2/(|k] +1).
It is easy to see that there is a global attractor called Belykh attractor for all of
these maps.

The definition we used here is due to Pesin [PE1]. Belykh [BE] himself only con-
sidered the case 3; = (2 and p; = ps. Dimensional theoretical properties of the
systems in this special case were studied by Schmeling [SCH].

In our work we are interested in another special case. We set k = 0 and p; = py = 2
and obtain transformations

o1, _ Brr+(1=p)2y—1) if y >0
fﬁhBQ(x’y) T ,21%312(@'7 ) { (ﬂ;ﬂﬁ—(l—ﬂ;)ﬂy—i—l) if y<0 .

of the square [—1, 1] for all 31, 35 € (0,1). We call these maps generalized Baker’s
transformations. If 3 = 3; = (3, we write f3 instead of fg 3. Alexander and Yorke
[AY] called fs a Skinny Baker’s transformation if § < 0.5 and a Fat Baker’s
transformation if 5 > 0.5. fy5 is known as the Baker’s transformation.

The attractor for fg, g, is given by

Qp, 5, = closure( ﬂ f§1ﬂ2([—1, 1]%)).
k=0

In the case 31 + P2 < 1 dimensional theoretical properties of the dynamical system
(Q,.65+ [5,.8,) are well known:

12



Theorem 2.2.1.

Let 8; + B2 < 1 and d be the unique positive number satisfying 4¢ + 3¢ = 1 then
dimp Qg, g, = dimpy Qp, g, = d+ 1 and there is an ergodic measure of full Hausdorff
dimension for the system (Qg, 3, f5,.6,)-

This result seems to be folklore in the dimension theory of dynamical systems. In
fact the attractor in the non-overlapping situation is a product of a standard Cantor
set in the line with the interval [—1,1]. The ergodic measure of full dimension is
a product of a Cantor measure (a Bernoulli measure on the standard Cantor set)
with the normalized Lebesgue measure on [—1,1]. We refer to chapter 23 of [PE2]
for theses facts.

We consider in this work the overlapping situation, which means (31, 32) € P2

olapp =
{(B1,32)|61 + B2 > 1}.

f B1,82

26,

200

Figure 3: The action of f3, 5, on the square [—1,1]* where 3; + (35 > 1

If (B1,0) € Pflapp the attractor of the map f3, g, is obviously the hole square
[—1,1)* with Hausdorff and box-counting dimension equal to two. The interesting
problem is whether there exist an ergodic measure of full Hausdorff dimension resp.
whether the variational principle for Hausdorff dimension holds for ([—1,1]2, f3,.5,)

if By +f2 > 1.

13



New results

From the work of Alexander and Yorke [AY] and a result of Solomyak (see 6.1.1.)
it is easy to deduce that for almost all 5 € (0.5,1) there is an ergodic measure
of full dimension for the Fat Baker’s transformation ([—1,1]?, f3). This measure is
given by the product of an infinite convolved Bernoulli measure with the normalized
Lebesgue measure on [—1, 1] (see 7.3.). Our main result about the Fat Baker’s trans-
formation is that the variational principle for Hausdorff dimension does not hold for
([=1,1]2, f3) if 3 is the reciprocal of a PV number (see 10.1.1. (1)). This result is of
great interest. Its is the first known example showing that the variational principle
for Hausdorff dimension can fail to hold because of number theoretical peculiarities.
Beside this we have new results in the asymmetric situation. On the one hand
we will show that if 3106, < 0.25 then the variational principle does not hold for
the systems ([—1,1], f3,3,)- On the other hand we will see that for almost all
(Br, B2) € Phyns = {(B1.32) € PlopplBe < f1 < 0.649} with 313, > 0.25 there exists
an ergodic measure of full Hausdorff dimension for the system ([—1,1], f3,.5,)-

The last class of dynamical systems we study in this work is given by piecewise
affine maps in dimension three:

foi[-1,13 — [=1,1]°

: B+ (A =01),2y =1, mz+(1—-7)) if y>0
fﬁ(x’y’z)_{(ﬁ;x—(l—ﬁlmyﬂ,éz—(1—72)) iy <0

where 0 = (04, B2, 71, 72) € Py

Figure 4: The action of fy on [—1,1].
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We see that the projection of f onto the (z, y)-plane is fg, g, for 0 = (81, B2, 71, 72) €
P2,. Obviously the maps fs, g, are non invertible if 3; + B2 > 1 but their lifts fy
are invertible.

Furthermore we notice that the attractor Aﬁ of ﬁg is a product of the self-affine
set Ay in the (z, z)-plane with the interval [—1, 1] on the y-axis:

Ay = closure(lﬁ f(=1,1) = {(z,y,2)|(z,2) € Ay, y€[-1,1]}.

New results

By the product structure of the sets Ay and proposition A5 we have dimpy,/p Ay =
dimg, g Ay+1. Thus all our results about Hausdorff dimension and box-counting di-

mension of the self-affine sets Ay have an analogon for Ay (see 4.1.,7.1.,7.2., 10.2.1.).

Very interesting is the question whether the variational principle for Hausdorff di-
mension holds. We will show in 7.1. that in the generic situation (for almost all
¥ e PL. )it can only hold for (Ag, fy) if we have log, log(24,) = log,,(22). Thus
the variational principle for Hausdorff dimension is not generic on the parameter
set PA_if we consider (Ay, fy) but it is generic if we consider (Ay,Ty). This phe-
nomenon is related to fact that the map ﬁg is hyperbolic; it has both a stable and
an unstable direction (see also the first remark after 7.2.).

For the symmetric systems (Ag 5.,.r, fﬁﬂ’q—ﬂ-) the situation is different. There exists
an ergodic measure of full dimension for almost all # € (0.5,1) (see 7.1.). But again
there are number theoretical peculiarities. If 5 € (0,5) is the reciprocal of a PV
number and 7 is small then variational principle does not hold for (/A\B@T,T, fﬁﬂmr)

(see 10.1.1.(2))

15



3. Applying symbolic dynamics

3.1. Shift Codings
Let ¥ = {—1,1}# and ¥ = {—1,1}. With the product metric defined by

d(s,t) = Z lsk — tk|2_|k| for s = (sg) and ¢t = (t)

k=—oc T€SP. 0

Y (resp. 1) becomes a perfect, totally disconnected and compact metric space; see
proposition 7.6. of [DGS]. A cylinder set in ¥ (resp. X%) is given by

[to,t1 - tu)o = {(Sk)|Svsrr =t for K =0,..., u}.
The forward shift map o on 3 (resp. 37) is given by o((sx)) = (Sgr1). The back-
ward shift 07! is defined on ¥ and given by o((sz)) = (sx_1).

We will use (3, o) resp. (X,071) and (X7, o) to describe the dynamics of the systems
defined in the previous chapter symbolically by coding the points of the invariant
set. We begin with the class of self-affine repellers defined in 2.1. .

Given s € X7 we denote by fix(s) the cardinality of {s;|ls;, = =1 i = 0...k}.
For 71,72 € (0,1) we define a map 7% _ : ¥F — [17_7722 11171] by
bels) (@ +1
T e Z s
We scale this map so that it is into [—1,1]. Let L., ,, be the affine transformation
on the line that maps =2 to —1 and 7171 to 1 and let m,, ., = L, 5, o7 . For

= (b1, B2, 71, T2) € Pu We set 9 = (T8, By T 7s)-

Proposition 3.1.1.

The systems (X7, 0) and (Ay, Ty) are homeomorph conjugated via my.

Proof

It is obvious that 7., ,, is continuous since

1 ,yn—&-l ’7n+1
d(s,t) < on = Sk = tpfor k=0,...,n = |fy,,(8) = Ty ()] <~ + 22

Tlem 1y

hence 7y is continuous. Just looking at the definition of 7., ,, we see that

{ ’Yl 7172((%))—1 if so=1

7T'Yl/¥2<(8k+1)) 72 Ty, 72((Sk)> +1 if So = -1

16



Hence we have

Lopon (77 oy (s0)) = 1) i 59 = 1

7T71,72(U<§>> = L71,72(7T'>;1,72<<Sk+1))) = { L ( 171;‘ . (( k)) + 1) if so=—1

N 7T7172()+(1_71_) if so=1 «
U ) - =) it s=—1 )
Since my(s) € Ty p([—1,1)%) if sp = 1 and my(s) € T19([—1,1]?) if s = —1 this
implies
T s(my(s)) if so=1
mo(o(s)) ={ T- 11919(7;2( ) if so = —1 = Ty(my(s)).

This means that o and Ty are conjugated via my. Furthermore we see by induction
that

mo(s) =Typwo...0Ts, , o(mp(c™(s))) € Topp0 ... 0Ty, o([—1,1])

and thus
’/T19(§) = h_rpooTSOﬁ ©...0 Sn—l,ﬁ([_L 1]2)'

n

So Ty is onto Ay and invertible since T »([—1,1]*) N T_1 4([—1,1]*) = 0. The conti-
nuity of the inverse map follows from compactness.

O

Now we examine the systems ([—1,1]2, f3,.3,) for (01, 32) € Define ¢ from

¥~ :={-1,1}#%" onto [-1,1] by

olapp

= Z s_x27% where s = (Sp)pez- € 2.

This function is well known. It maps the signed dyadic expansion of a point in
[—1, 1] to this point. ¢ is continuous and one to one restricted to (X \{(s)|FkoVk <
ko @ s, = 1}) U {(1)} Let X = (X\{(sx)|FkoVk < ko : s, = 1}) U {(1)}.
For (61,02) € lapp we now define 75,5 : X — [—1,1]2 by 75 .5 ((sk) =
(1,6, ((Sk)kems ), S ((Sk)kez-))

Proposition 3.1.2.

1

Tp,,6, 18 continuous, surjective and conjugates the backward shift 7 and fg, 5, on

X

17



Proof

It is obvious that the map is continuous and surjective since the components are

continuous and onto [—1, 1].
Let s = (s;) € ¥. We have (sg41)kez— # (..., 1,1, —1) and hence

S((sk41)hez-) = D 55112 " >0 & 50 = 1.
k=1

Thus
fai,8: 0 7?51,/32((‘9/64-1)) =
(Brma,. 6 ((Sk41)keny) + (1= B1), 26((sk1)hez=) — 1) if s0 = +1
(Bamp, g, ((Sk41)kemvy) = (1= B2), 26((Sk41)rez-) +1) if 5o = =1~
In view of (*) in the proof of 3.1.1. and the definition of ¢ we now see that fg 3, o
768, ((Sk4+1)) = Tp,8,((sk)). o as a map of X is invertible and we get fg 3, o

o0, (8) = Ty 3, (07 (5))-
0

Now we have a look at the lifts (Ay, f9). For 9 = (By, s, 71, 72) € P4 we define
g+ 5 — Ny by 75,6, ((s8)) = (71, ((5k)kemo ), S((Sk)rez-)s Try mo (k) kemo)))

Proposition 3.1.3.

Tty is continuous and surjective. Moreover it is bijective from S onto Ay and conju-
gates the backward shift map ¢~! and fy on X.

Proof

It is obvious that 7y is continuous. Treating the third component in the same way
as the first we see that 7y conjugates 0’1 and fy on X using the arguments of the

proof of 3.1.2. . That the map is onto Ay and one to one restricted to ¥ follows
from proposition 3.1.1. and the properties of the map .

O

Given a shift coding it is easy deduce interesting properties of a dynamical system.
We say that a topological dynamical system (A,T) has strange dynamics, if it
has the following properties:

(1) There are periodic orbits of all periods for T"in A
(2) The set of periodic points of 7" is dense in A
(3) There are orbits of 7" which are dense in A.

Property (3) is known as topological transitivity of the system (A,7T). From the
propositions of these section we get the following corollary:
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Corollary 3.1.4

The dynamical systems ([—1,1]%, f5,4,), (Ag, f9) and (Ay, Ty) have strange dynam-
ics.

Proof

It is easy to see that the systems (X1, ), and (X, 0~1) have strange dynamics. Since
all our coding maps are surjective and continuous it follows that all our systems have
properties (2) and (3). Since my and the restriction of 7y to ¥ are bijective (1) holds
for the systems (Ayg, fy) and (Ayg, Ty). We observe that the points of a periodic orbit
in ¥ have different images under 73, 5, since the component given by ¢ is different.
Thus (1) holds for ([—1,1]%, f5, 5,) as well.

3.2. Representation of ergodic measures

Given a compact metric space X we denote by M(X) the set of all Borel proba-
bility measures on X. With the weak® topology M (X) becomes a compact, con-
vex and metricable space. If T is a Borel measurable transformation on X we
call a measure p T-invariant if g o 77! = u. The set of all invariant measures
forms a compact, convex and nonempty subset of M (X). A invariant measure u
is called ergodic if T™'B = B = u(B) € {0,1} holds for all Borel sets B in X.
M(X,T) :={p € M(X)|pp T-ergodic} is compact, convex and nonempty. It con-
sists of the extreme points of the set of invariant measures. By b? for p € (0,1) we
denote the Bernoulli measure on ¥ resp. X1, which is the product of the discrete
measure giving 1 the probability p and —1 the probability (1 — p). We write b for
the equal-weighted Bernoulli measure b°°. The Bernoulli measures are ergodic with
respect to forward and backward shifts. For these basic facts in ergodic theory we
refer to the book of Denker, Grillenberger and Sigmund [DGS].

We will need one more definition. Given &” on {—1,1}#" we define the correspond-
ing Bernoulli measure ¢? on [—1,1] by 7 = b’ o ¢ L. £ := (°® is the normalized
Lebesgue measure on [-1,1].

We will now introduce the measures we study in the context of our dynamical
systems.

Let p € M(X1,0) and 71,7, € (0,1). We define two Borel probability measures on
the real line by

”:1772 =HO (W;ﬁz)_l and iy, 4, = p10 (7r71ryz)_1~
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The measure (i, , is just p}, . scaled on the interval [—1, 1] by the transformation
L

Yiv2+

% 1
Hyiye = Hoyy yp © Lm 2

If v1 + 72 > 1 we say that pu., , is overlapping, if not, we say that this measure is
non-overlapping. For v € (0,1) we write p., instead of i, and call this measure
symimetric.

b? for a Bernoulli measure b is a self-similar measure in the sense of the

V1,72
following proposition:

Proposition 3.2.1.
For all p € (0,1) and all 71,7 € (0,1). the relation b? b” oS + (1 —

V1,72 ’71 Y2

p)bE, ., o Ss holds with Sy (x) = yitr 4+ (1 =971 and Sy(x) = v5 to — (1 — 5 h).

Proof
b, (B) = (L (B))

= Pl({sls = LAT,(8) € BY) + P ({slsy = —1 Ay (s) € BY)
=bP({s]s1=1AS; o, s oo(s) € B})+b({s|s1 = —1AS;'om, 1, 00(s) € B})
bp({slsl =1Aa(s) emy 72(51( N + 0 ({sls1 = =1 Ao(s) € w30, (S2(B))})

0 S1(B) + (1 —p) W& ., 0 S2(B) holds for all Borel subsets B of the real

. "/1 Y2
hne.

O

The symmetric self-similar measures 0% are usually called infinite convolved
Bernoulli measures because of the following fact:

Proposition 3.2.2.

The measures bY are given by the infinite convolution of the discrete measures b5,
which give (1 —~)y™ the probability p and —(1 — )™ the probability (1 — p).
Proof

b? is obviously the distribution of the random variable Y7 = 02 j X" (1 — )"
where XP" are independent random variables taking the values 1 and —1 with prob-
ability p resp. 1—p. It is well known that the distribution of the sum of independent
random variables is the convolution of the distributions of these random variables.
But the distribution of X?"(1 — 7)™ is given by the measure b2".
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We remark that we do not have a convolution structure for the asymmetric measures
e L 5,- We can not write the measure as a distribution of the sum of independent
random variables in this case, because the term that is added randomly at the n’th
step depends on the terms that were added before.

In chapter six and nine we will continue with the discussion of the measures de-
fined here.

Now we go to characterize the ergodic measures for the dynamical system (Ay, Ty).

Proposition 3.2.3.

The map 4 — py := po 7'('1;1 is a affine homeomorphism from M (3", o) onto
M(Ay,Ty). If ¥ = (B1, B2, 71, 72) then the projection of py onto the x-axis is pg, s,
and the projection onto the z-axis is pir, r,.

Proof

The first statement follows from proposition 3.1.1 using proposition 3.11. of [DGS]
and the remark on page 24 of [DGS]. The second statement is a direct consequence
of the product structure of the map my and the definition of the involved measures.

O

We now describe all ergodic measures for the dynamical system ([—1, 13, 3, 5,). We
will need pr., the projection from X onto X7.

Proposition 3.2.4.

o g, g, = [ O 7?511752 is a continuous affine map from M(X,0) onto
M([=1,1]%, f,,5,)- The projection of fig, g, onto the z-axis is the measure (pr*u)g, s,
and by, 5, is the product of b5 5 with (7.

Proof

Since 7g, g, is surjective and continuous we get from proposition 3.1. of [DGS] that
[t — fig, 3, = O Ty 5 is a continuous affine map from M (X) onto M([—1,1]%). If
w is shift invariant we obviously have p(X) = 1. Because we know from proposition
3.1.2. that 7g, 5, conjugates the backward shift and fs, 5, on ¥ we get that fig, g, is
/5.8, ergodic if p is shift ergodic.

It remains to show that the map is onto M ([—1,1]?, f3, 5,) restricted to M(3, o).

)
So let us choose an arbitrary measure & in M ([—1,1]2, f3,3,)-
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We first want to show that &(ms, 5,(2\X)) = 0. Let D be set of all numbers of the
form k/2™ with n € IN and |k| < n — 1. A direct calculation shows that:

4.6, (E\X) = (Dx[-1,1)U({1} x[-1,1)) = (p o, ({0} [1, =1]))U({1}x[-1,1)).

Recall that the measure ¢ is in particular shift invariant. Hence the measure of the
first set in union is zero because it is given by a disjunct infinite union of sets with
the same measure. The measure of the second set is zero since {1} x [—1,1) C
S5k ({1} x (1= 285,1)) V&> 0.

Now take pi,.. € M(X) such that ,up,neo7rﬁ_117 5, = & [pre 18 nOt necessary shift invariant
so we define a measure p as a weak™ accumulation point of the sequence

1 & .
Rl

Hn =

From the considerations above we have pi,..(2) = 1 and hence:

1 n
oo mom,t
n—+1 gt Hpre 581,62

-1
Hn O g 5, =

1 & -1 —i 1 & —
= n+1 ;}Mpreoﬂﬂl,ﬁz Ofﬂlﬁz = n4+1 ;Sofﬁlyﬁz :g'

Thus fig, g, is just the measure  and p is shift invariant by definition. We have thus
shown that the set M (&) := {p|p o-invariant and ug, g, = £} of Borel measures on
¥ is not empty. Since the map pu —— [ig, g, is continuous and affine on the set of
o-invariant measures we know that M (&) is compact and convex. It is a consequence
of Krein-Milman theorem that there exists an extremal point p of M(€).

We claim that p is an extremal point of the set of all o-invariant Borel measures on
Y. and hence ergodic.

If this is not the case then we have p = tuy + (1 — t)us where ¢t € (0,1) and pq, o
are two distinct o-invariant measures. This implies £ = t(p1)p,,8, + (1 — ) (12) g, 6, -
Since € is ergodic we have (11)s,,8, = (1t2)3 3, = € and hence py, o € M(€). This
is a contradiction to u being extremal in M ().

Now we calculate the projection: pryfig, g, (B) = fig, s, (B x [=1,1]) = (75, (B x

D) = W{=L1% x m55,(B) = alpri'(msly(B)) = pron(msis,(B) =
(pT+/‘L)61762(B)

Since the measure »” on X is the product of o on {—1,1}#% and O on L and
s maps b on {—1,1}%0 to P we see that bg, g, = bs, 5, ¥ IP.
O

Let us now give an analysis of ergodic measures for the lifts (/A\,g, fﬁ).
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Proposition 3.2.5.

The map g +—— flg = po 7y

is a affine homeomorphism from M (3, 0) onto
M (Ay, fs). The projection of fiy on the (z,z)-plane is (prypu)g. Moreover bl is
a product of bY with ¢*. If ¥ = (0, 02,71, 72) then the projection of fiy on the

(1‘, y)'plane is ﬂﬁl B2

Proof

By the same reasoning we used in the proof of 3.2.3. we can show that the map is
continuous, affine and surjective. We will use the fact that 7, restricted to ¥ is a
bijection to show that the map is invertible.

Given a measure £ € M(Ay, fy) we define a measure FE€ € M(Z) by FE(B) =
&(my9(B)) for all Borel sets in ¥. Let p be in M (X, 0) and B be a Borel set in . We
have Fuy(B) = pu(my " (m9(B))) = p(E Ny (my(B))) = w(EN B) = p(B). Hence F
is the inverse map to 4 — jiy. The continuity of F' follows by the compactness of
M(X%,0).

The first statement about the projections follows in the same way as our projection
result in 3.2.4. . The second statement is is obvious since prxymy = 73, 3,

O

From the proposition of this sections and the propositions of the last section we get a
corollary about the metric entropy of the measure theoretical dynamical systems we
study. For the definition of the metric entropy h,(7") of a dynamical system (X, T)
with an invariant measure p and a treatment of the properties of this quantity
we recommend [WA], [DGS] or [KH]. To get the corollary we cab use for instance
proposition 11.14. of [WA].

Corollary 3.2.6.

hy,(Ty) = hy(0) holds for all u € M(Z*,0) and hy,(fs) = hu(o) holds for all
we M, o).

We also get the inequality hg, . (fs,8,) < hu(o) as a corollary of 3.1.2. and 3.2.3. .
In fact even the identity hz, . (fs,5,) = hu(o) holds. This is easy to see for Bernoulli
measures by projecting the systems onto the y-axis using the product structure of
thﬁQ but more difficult if we consider other measures. We will sketch a proof of this
identity using conditional measures and dimensions in 5.3.6. .
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4. Calculation of box-counting dimension

Before we discuss the dimension of measures and the Hausdorff dimension of sets in
the context of our dynamical systems we calculate here the box-counting dimension
of the repellers Ay and the attractors Ay defined in chapter two. We refer to appendix
A for the definition of the various kinds of dimension and basic facts in dimension
theory.

Theorem 4.1.

If 9 = (B, B2, 71, 72) € P4, and d is the unique positive number satisfying
Gt + Bors = 1

then )
dimpAy =d+1 and dimgAy =d + 2.

Let us make a few remarks on this theorem:

Remarks

(1) A simple calculation shows that our theorem is consistent with the result of
Pollicott and Weiss [PW] in the special case 81 = 2 =: f and 13 = 72 =: T (see
theorem 2.1.3.).

(2) Recall from the classical work of Moran [MO] that the Hausdorff and box-
counting dimension of a self-similar Cantor set induced by by transformations with
contraction rates 7; and 7y is given by the solution of 7¢+7§ = 1. There is an analogy
to our formula. In our setting of an self-affine set with overlaps in the projections the
contraction rates in the second direction induces weights in the dimension formula.

(3) The overlapping condition [3; + o > 1 is necessary for our formula to hold.
In the case 31 4+ B2 < 1 the Hausdorff and box-Counting dimension of the self-affine
set is given by the bigger solution of the equations 7 + 35 = 1 and 77 + 75 = 1.
This can be shown by transferring the arguments of Pollicott and Weiss [PW] in the
non overlapping symmetric to the non overlapping asymmetric situation .

(4) It may be interesting to notice that it follows from our result and the implicit
function theorem that the function

Y — dimpg Ay

is C* on the interior of PJ,.
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Proof of 4.1.

Let f(t) = Bimi + Bary. Since f(0) = 51 + 2 > 1 and f is strictly monotonous
decreasing with lim; ., f(¢) = 0 there is an unique positive number d with 3;7{ +
Bord = 1. Fix d.

Given a real number r > 0 we define a set of finite sequences by

Xy =A{(s1,...,s5) | min{m, m}r < 75,7, ... 75, <7 where s; € {1,2} Vj =1...k}.

Notice that the sequences in X, have not the same length. Let k(r) be the maximal
length of a sequence in X,. We observe that for every sequence (s;) € {1,2}*"

there is an unique k such that (si,...,sx) € X,. Thus we get
Z 6s1ﬁ52 < ﬁsk (7—517-32 .- -Tsk>d
(sl,A..,Sk)GXT

- Z ﬁ&ﬁsg .. -ﬁsk (7'317'52 . TSk)d(ﬂlel -+ ﬁ2Tg)E(T)—k

(818K ) EX

= > B Boy -+ - By (Tor Tog - - - TS;;(T))d = (Bl + Bor)F) =1 (1).

(51,...,5E(T))€{1,2}E(T)

Beside equitation (1) we need one more fact. Let v be the unique positive number
satisfying 7 4+ 75 = 1. Since 73 + 72 < 1 we have v <1 < d 4+ 1. Consequently

Z (T, Tsy - - .7'3,6)d+1 < Z (ToyTsy -+ - T, )' =1 (2).

(81588 )EX (515,88 )EXr

Now we are prepared to begin with the main proof. We define a cover of Ay by

C, ={my([k(s1), .-, k(sK)]o)|(s1,---,8K) € X,.}

where k(1) = 1 and k(2) = —1. Since {[x(s1),...,k(sk)]o|(s1,...,5:) € X, } is a
cover of X we get from 3.1.1. that C, is in fact a cover of Ay.

An element of C, is a rectangle parallel to the axis with az-length 283, 0, ... Bs,
and y-length 27, 7, ...7s,. We cover each of this rectangles by squares parallel to
the axis of side length 27, 7,,...7,,. We choose the squares in a row such that
they only intersect in their boundary. So we get for each rectangle a covering by
fm} squares (here [x] denotes the smallest integer bigger than z). In this

Ts1Tsg--Ts,
way we obtain a new cover C;. of Ay, which consists of squares with side length in
(2min{ry, 7o }r, 2r]. Furthermore the number N(r) of elements in C, is given by

Bs1Bs, - - - Bs

Tg1Tsg + - Ts

N(r) = Z [ 1.

(S1,...,8k)€XT k
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Now we have the following upper estimate,

B Bss - - - Bsy

To1Tsg -+ - Tey

N(r)rd+1 < min{Tl,Tg}_(d+1) Z [

(810,88 )EXr

1(76, sy - - .7'516)‘“r1

< min{m, TQ}_(d+1)< Z By Bsy « - By, (Tsy Ty - - .Tsk)d—l— Z (T, Tsy - - .Tsk)dH)

(51,...,Sk)€Xr (51 ..... Sk)EXT
</® 9 minfr,, 7}~

and the following lower estimate:

631552 .- -Bs d+1

k
Ty Tsy « - - Tsy, 1717y -7,

N(r)ritt > oo

(51,-,58)EXr

> Z BsiBss - - By (Tsy Ty - - - Tsk)d =1,
(815eeey8K ) EX

Now let N(r) be the minimal cardinality of an arbitrary cover of Ay with squares
parallel to the axis of side length 2r. Obviously we have N(r) < N(r) but we need
another argument for an opposite estimate.
Let R be a rectangle in the cover C,.. We see that the projection of Ay N C) on
the x-axis has the full xz-length of the rectangle since we assumed 3, + G2 > 1.
This implies that the intersection of each square in C, with Ay is not empty. Thus
if we have a cover of Ay each element of C, has to be intersected by at least one
element of the cover. But one square with side length 2r can not intersect more
than 9 min{r, 7'2}_2 squares in C’r because the squares in C’r have side length bigger
than 2min{r, 7 }r and intersect, if at all, only in the boundary. It follows that
N(r) > 1/9min{r, 7 }2N(r).
Putting our estimates together we obtain

1
3 min{Tl,Tz}2 < N(r)rdJrl < 2min{m, Tg}_(d+1)

and hence o N o N
dimp Ay — lim 208N o ToaN(r)
r—oo log(2r)~t  r—oc logr—!

The formula dimg Ay = d + 2 follows from the product structure of Ay and propo-
sition A5 of appendix A. So our proof is complete.

O

An analysis of the Hausdorff dimension of the sets Ay and Ay is very difficult. We
we will present our results in chapter seven and ten.
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5. Dimension formulas and estimates for ergodic
measures

5.1. Lyapunov exponents and charts

In this chapter we want to apply the general dimension theory of ergodic measures
that was developed in the last twenty years (see [YO], [LY], [BPS| and references
there in) to the systems we study. Our aim is to find formulas and upper bounds
for the dimension of ergodic measures for (Ayg, Ty), (Ay, fy) and ([—1,1]%, f3, 5,) in
terms of Lyapunov exponents, metric entropy and the dimension of the measures
13, .- In this section we do some preparations, namely we show the existence of
Lyapunov exponents and charts related to a measure iy on Ay and calculate the
exponents.

Lemma 5.1.1.

ThereA is a subset Qy C Aﬁ WhiCl} has full measure for a all 1y € M (]\19, ﬁg) such
that fy is a bijection on y and fy is differentiable for all x = (z,y, z) € Qy with

(B0 0 (B 00
Difs=1 0 2 0 if y>0 Dyfs=| 0 2 0| if y<o.
0 0 7 0 0 7m

Proof

Denote by S the singularity [—1,1] x {0} x [—1, 1] of the system and define the set
Qﬁ by

Qo= [ fr(~1,1\9).
By definition we have ﬁg(Qﬁ) = )y and since ]?19 is injective it is in fact a bijection
on €y. Moreover if x € y then x ¢ S and hence fy is differentiable and has

obviously the derivative that we stated in the lemma. We only have to show now
that py(2y) = 1. By elemental calculations we see that

Q= {(x,9,2) € Aoly # 1, y#-13U{(1,1,1), (=1, =1, =})\ E_j f(9).

Since [iy is invariant and the union in the expression above is disjoint it has zero
measure. [t remains to show that fy([—1,1] x {1} x [-1,1]) = ay({(1,1,1)} and
fo([—1,1] x {=1} x [-1,1]) = au({(=1,—1,—1)}. But this is obvious since fy is
just a contraction with fixed point (1,1,1) resp. (—1,—1,—1) on the sets [—1, 1] x
{1} x [-1,1] resp. [—1,1] x {1} x [-1,1] .
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Now define linear subspaces of IR? by

0 0 1
E'=<|1]|> E=<]01]|,]10]>
0 1 0
0 1
Flov—< | 0 |> EY=<|o0|>.
1 0

Given a Borel measure p on ¥ and 71,792 € (0,1) we set

=2 e = (o) log 71 + u([=1]o) log 7a.

V1,72

Proposition 5.1.2.
Given u € M(X,0) and ¥ = (B4, B2, 71, 72) € P4, we have for fig-almost all x € Ay.

1
lim —log||Dxfsv|| =log2 Vv e E*
n—o0 n,

1 Bl if ve Es\E
= = . i ol — B
If '_'gLﬁQ 2 “5177'2 ’ nh—r>noo 5 log HDXfﬂUH o { EZL; if v E Etauw
— — 1 n =r _if v e BS\Eb
If =55 <Ef . : lim - log || Dx fgv|| = { Egiﬂz § oe pbeta
Proof
By lemma 5.1.1. we have for fig-almost all x € Ay
0
log |[Dxf3(| v |l =nlog2+logy  Vn=>0.
0

This implies our claim about E*. Now we look at E®. By lemma 5.1.1. and
proposition 3.1.3. and 3.2.5. we have for fig-almost all x € Ay

T - - - ~
log|[Daf3 (| 0 Pl =log /(@ & g @2 4 (or B O)2 vy >
z
where s = (sp) = #;'(x) and f,(s) counts the number of entrys in the set
{s0,8-1,...,5_,} that are —1.
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We now have to determine the limit of this expression for u- almost all s € 3. By
Birkhoffs ergodic theorem (see 4.1.2. of [KH]) we have:

lim

Zf (07" (s)) /fdu [ — a.e.

for all L! functions f on ¥ with respect to u. Applying this to the functions

log, if sp=1

logrm, if sp=1
fbeta(§): lOgﬁQ if 80:—1 ftau(§>: ! 0

lOg T2 if So — -1
we obtain
nll_I)IlQleOg g fin(s) 5ﬁ = “51 B and nh_I)nOOEIOg ' fn(s) ﬁ (8) _ 51,72 [— a.e.

and from this by elemental calculus

n—tn(s)+1 ofin( n—tn(s)+1 Hn(s —
lim_*log y/ (287 OGO 4 (o POT RO ax(h 2} e ae.

n—aoo n
if x # 0 and y # 0. This implies our claims about the stable directions.

O

This proposition means that Lyapunov exponents exists almost everywhere for the
systems (Ay, fg, fly) if p is ergodic. E™ is the unstable direction with Lyapunov ex-
ponent log 2 and E? is the stable direction with exponent = B 4, or Zf _ depending
on which quantity is blgger Accordingly E'™ or E¥' is the strong stable direction
with Lyapunov exponent =/ _ resp. Eglm.

In order to guarantee the existence of Lyapunov charts associated with the Lya-
punov exponents we have to show that the set of points that does not approach
the singularity S := [—1,1] x {0} x [—1, 1] with exponential rate has full measure.
Precisely we have:

Lemma 5.1.3.
Given p € M(X,0) and ¥ = (81, B2, 71, T2) € P2, we have for all € > 0

fy({x € Ag|3>0Vn >0 d(f"(x),S) > (1/1)e™"}) =1,
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Proof

Fix € > 0. First note that it is sufficient if we show
fio({x € Ag|F(ni) ey — 00 VE > 0 d(f™(x),S5) < e }) =0

because if we have for a point x that Ingvn > ny d(f"(x),S) > =" then there
exists { > 0 such that d(f"(x),S) > (1/l)e=" ¥Vn > 0.

By 3.1.3. and the definition of the measure jiy this assertion is equivalent to the
following statement about the symbolic system (3,071, u):

(N) = 0 where N = {s € %[I(np)rew — 00 ¥k > 0 d(07"(s),S) < e}

and S ={s € ¥|s_; =1 and s, = —1 Yk < —1}. We will now prove this.
If s € N we have d(o0~"™(s), S) < e~*VEk > 0 By the definition of the metric d this
implies

O'_nk(§) S [—1, —-1,...,—1, 1]_(,36”“_1 Vk >0

[ceng]

where the constant ¢ is independent of €, n;, and s. This gives us:
o'(s) € 1] o i=mng...,np+[ceny] =1 Yk >0,
Thus we have:
N C {s|3(np)rew — 00 VE >0 : o'(s) € [1]_o i=ny,...,ngp + [ceny] — 1.

Applying lemma 7.1. of [ST2] for the ergodic system (X, 0, u) (with Y = [1]_5) we
obtain u(N) = 0.

O

By this lemma the systems (Ay, fy, fig) fall into the class of generalized hyperbolic
attractors in the sense of Schmeling and Troubetzkoy [ST1,2.1.]. From [ST1,3] it
follows that our systems have appropriate Lyapunov charts almost everywhere with
respect to the exponents given in 5.1.2. . For the definition and the constructed of
these Lyapunov charts we reefer to [KS].

5.2. Exact dimensionality and Ledrappier Young formula

Usually the general theory for the dimension of ergodic measures is stated in the
context of C?-diffeomorphisms in order to guarantee the existence of Lyapunov ex-
ponents and charts. But invertibility and the existence of Lyapunov exponents and
charts almost everywhere is enough to apply this theory. We refer to section 4 of
[ST1] for this fact. This is of great importance for us. For the systems (Ag, fo, fiy)
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we have shown invertibility and the existence of Lyapunov exponents and charts
almost everywhere in last section. We are thus allowed to apply the general results
found in [BPS], [LY] and [YO] in our context.

To this end first define partitions W#* and W* of [—1,1]* in the stable and in the
unstable directions of ﬁg by the partition elements

We(x) = [=1, 1] x {y} x [-1,1]  W*(x) = {z} x [-1,1] x {z}

where x = (2,y,2) € Ay. Given iy € M(Ay, f) we have conditional measures
f5(x) on W* and fi5(x) on W*. These measures are unique fig-almost everywhere
fulfilling the relations:

io(B) = [ (0B OW*(x))dfin(x) resp. fio(B) = [ jis(x)(B 0 W*(x))dfio(x)

for all Borel sets B in [—1,1]*. We refer to [LY] and [RO] for informations about
conditional measures on measurable partitions.

Let us define balls in the elements of the partitions by

Bi((z,y,2)) ={(z,9,2)|[y = y and (z, 2) € B,(z,2)},

B((z,y,2)) ={(Z,9,2)[t =2 Z=zand j € B,(y)}.
Now applying the results of Barreira, Schmeling and Pesin [BPS] to the system
(Ay, f9, fr9) we obtain:
Proposition 5.2.1.

Let p € M(X,0), 9 = (081,02, 71,72) € Py and let ji5(x) be conditional measures
on W* and fi4(x) conditional measures on W* with respect to fiy. We have:

_ - 1 S Bs
d*(x, f1(x)) := lim,__, 08 /15 (X)(B; (x)) = const. = dim i, fi9 — a.e.
logr
s _ 1 ) B
d (%, fug(x)) := lim, 08 i (%) (B (x)) = const. = dim iy 19 — a.e.
log r
—  logfly(x)(Br(x))

d(x, fig) = lim, = dim fiy + dim g =: dim iy fiy9 — a.e.

log r
An introduction to the local dimension, which is used here, can be found in appendix
A. The proposition means that the measure [iy is exact dimensional and that the
dimension is given by the sum of the unstable and stable dimension resp. the local

dimension of conditional measures on partitions in stable and unstable directions,
which is almost everywhere constant.
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Now we want to have some information about the quantities dim fijj and dim /5.
This is easy for the unstable dimension, because this direction is one dimensional.
The next proposition follows from Ledrappier and Young [LY] or from the work of
Young [YO]:

Proposition 5.2.2.
Under the assumptions of 5.2.1. we have dim ji§j = hﬂﬁ(ﬁg)/ log 2.

An analysis of dim i is more difficult because we have two unstable directions

with different expansion rates. If Zf , > Z¥  we have a partition W** in the

strong stable direction given by the partition elements
W (x) ={z} x {y} x [-1,1] where x = (z,y,2) € Ay.

Given fig € M(Ay, fs) we have conditional measures /i5(x) on W*. These measures
are unique jig-almost everywhere fulfilling the relation:

o(B) = [ i (<) (B OW™ (x))djia ()

for all Borel sets B in [—1,1]3. From the uniqueness of the conditional measures we
have for fig-almost all x = (z,y, 2)

B = [ 15 (2,y,2)(B OW* (@, 2))dprx iy (%) (@)

for all Borel sets B in W?*(x). This statement means that the transversal measures
in the sense of [LY] of the nested partitions W* and W** are in our context given

by prx f15(x).
Now let:

B ((z,y,2)) ={(Z,9,2)ly=vy, =2 and Z € B,(2)} and
B (2, 2)) = {(#,5,0)| 7 = v and § € B,(y)}.

Applying the results of [LY] about the local dimensions of conditional measures in
the context of dynamical systems we obtain:

Proposition 5.2.3.
Let € M(X,0) and O = (B, 82,71, 72) € Py with Zf 5 > ¢ . Let [i5(x) be

=TT
conditional measures on W* and /5’ (x) conditional measures on W** with respect

to fiy. We have

log fiyy* (%) (B} (%))
logr

d(x, g (%)) = lim, o = const. =: dim 1y’ fiy — a.e.
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log prx fiyy (%) (B, (x))
log r

M(XupTXﬁ’f?(X)) _h 1m0

trans

=dim gy — dim py’ = dlmu fly — a.e.

ha, (f, =
dlm [}Jg = Miifﬁ) + (1 _ /31 B2 ) dlm Ag’ans

7,72 =T17T2

The last equitation is known in dimension theory of dynamical systems as
Ledrappier-Young formula.

5.3. Some consequences

We will find here some interesting consequences of the general results of the last
section. First we have an upper bound on the dimension of the measures fiy.

Proposition 5.3.1.

Let p € M(X,0), 9 = (81,52, 71,72) € Pi; and let d the unique positive number
satisfying 5178 + B = 1. We have:

hu(o)

dim /iy < +d+1.
log 2
Proof
Combining 5.2.1. and 5.2.2. with 3.2.6. we have:
. h,(o) .
dim fiy = 12@ + dim jiy

Since fig is a measure on Ay the measures i5(x,y, z) are by definition concentrated
on the set {(7,9,2)ly =9y (x,2) € Ay}. Hence we have

dimg 15(x,y, 2) < dimg Ay < dimp Ay VY(z,y,z2) € Ay.

Using theorem A2 we now get dim /ij; < dimp Ay . But from 4.1. we know dimp Ay =
d + 1, which competes the proof.

O

It is well known in the theory of dynamical systems that the equal weighted Bernoulli
measure is the unique ergodic Borel measure of maximal entropy log 2 for the system
(3,0); see 8.9. of [WA]. Thus the last proposition shows that the only ergodic
measures for the attractor (Ay, fﬂ) that can have full box-counting dimension is the
equal weighted Bernoulli measure by.

We now present an other upper bound on the dimension of fiy, which is in terms of
the dimension of the measures (prtu)g g, where prt as usual denotes the projection
from ¥ onto 3T,
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Proposition 5.3.2.

Under the assumption of proposition 5.2.3. we have:

h.(o)  hu(o) =5 _
1# 9 + é,u + (1 - ﬁl L ) dlmH(pr+,u)ﬂ1ﬂ2'
0og T—T1,T2 =T, T2

Proof

The result follows immediately combining 5.2.1. with 5.2.2. and 5.2.3. if we show
the inequality
dim /:L%mns < dimH(pT+M)ﬂ1ﬂ2'

To see this choose a Borel set B in the line with (prtp)s, s,(B) = 1. Because we
know from 3.2.3. that prxvy = vg, 5, Vv € M(X1,0) we have (p?hr,u) (Bx[-1,1]) =

1. From 3.2.5. we know prxzfiy = (pryp)g. Hence we get fiy(B x[—1,1] x[—1,1]) =

1. By the definition of the conditional measures [if(x) we get 15(x, y, 2)(B x {y} X
[—1,1]) = 1 fig-almost everywhere. This implies prxi5(z,y, 2)(B x {y}) = 1 and
hence dimpy prx i (z, y, 2) < dimy B fiy-almost everywhere. With 5.2.3. and A2 we
now get dim /15" < dimy B. This implies the desired inequality since B was an
arbitrary Borel set with (prtu)g s, (B) = 1.

O

For the Bernoulli measures IA)f’9 and bf we get explicit dimension formulas in terms of
the dimension of the measures self-similar measures bgl B

Proposition 5.3.3.

For all ¥ = (84,0, 71,72) € P4 and p € (0,1) with plog; + (1 — p)log By >
plogm + (1 — p)log 7o we have:

—plogp — (1 — p) log(1 — p) n plogp + (1 —p)log(l —p)

dim 0, =
% log 2 plog T + (1 — p)log
plog B + (1 —p)log B, .
1— d bh
+ plong—l—(l—p)logTz) HH 95,6,
and
| 1—1p)log(l — | 1—p)1
dim i, — 7 ogp+ (1 —p)log(t—p) . plogh + (1 -p) ogﬁz)dimeg »
plog T + (1 — p)log plog T + (1 — p)log 1.2
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Proof

We know from 3.2.5. that the measure b} is the product of the measure % in
the (x,z)-plane with the measure ¢ on the y-axis. From this follows, that the
conditional measures (lgg)s(x) are given by the measure bl for bP-almost all x. Fur-
thermore the transversal measures pry (05)%(x) are given by bY, 5, because we have

from 3.2.3. prxbf = b, 3,- The dimension formulas are now just a consequence of
the propositions of section 5.2. and the following explicit formulas:

hyw (o) = —plogp — (1 — p) log(1 — p) and 2,7 = plogy + (1 — p)log 7.

For the first formula see for instance 12.4. of [DGS]. The second one is obvious.

O
We have the following upper bound on the Hausdorff dimension of the ergodic mea-
sure for the projected system ([—1,1]%, f3,.5,):
Proposition 5.3.4.
Let p € M(X,0) and (01, B2) € P3,,,- We have:

Proof
Fix (81, 82) € P3,,, and choose 7 € (0,0.5). Let ¥ = (61, 32,7, 7). Applying 5.3.2.

we have:
hu(o) | log(Bi + B2)
+ -
log 2 log 71

From proposition 3.2.5. we know prxyfly = fig, p,, which obviously implies
dimpg fig, g, > dimpy fiy. Hence

. - hu(o) | log(B1 + B2)
dim <k +
N [UB),8, > log 2 log 71

+1 Vre(0,05).

Letting 7 — 0 we get our result.

O

From this proposition and 3.2.4. it follows, that the only ergodic measures for the at-
tractor ([—1,1]?, fs,,3,) that can have full Hausdorff dimension is the equal weighted
Bernoulli measure bg, g,.

We like to include here an upper bound on the Hausdorff dimension of the mea-
sures fig, g,, which can be proved elementary without the results of 5.2. .
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Proposition 5.3.5.
Let p € M(X,0) and (31, 52) € P2,,,. We have dimy jig, 5, < dimy(prtp)s, s + 1

olapp*

Proof

Let B be a Borel set with (prtu)g s,(B) = 1. By 3.2.4. we have prxjig, g =
(prtp)s, .- Hence fig ,(B x [—1,1]) = 1. Thus dimpy fig, 3, < dimpy(B x [—1,1]

and by proposition A5 dimpy fig, g, < dimg(B)+ 1. Since B was an arbitrary Borel
set with full (pr*u)gs, s, measure we get our result.

O

Our results here show that the study of the measures v, g, and especially the self-
similar measures bgh 5, 1s essential for us. This discussion occupies the next chapter.
But before we state a result about the entropy of the measures fig, g,-

Proposition 5.3.6.
If p€ M(%,0) and (61, 02) € Plapp we have hy, o (fs,.8,) = hu(o).

This fact is not trivial because the system ([—1,1]%, f3, 5, [i5,.8,) 1S only a mea-

sure theoretical factor of (X,0, ). We know only a long and quite complicated

proof of this proposition using conditional measures and dimensions. Because we

do not need this proposition in the main line of our argumentation we think it is

enough if we give a sketch of our proof; the details can be found in [NE].

Sketch of proof

We first define a partition W* of [—1,1]? and a partition W of [—1,1]3 by
W*(z,y) = {z} x [-1,1] We(z,y, 2) = {z} x [-1,1]%

Given fig, 5, we have conditional measures [ 5,(7,y) on the elements of W and
given fiy we have conditional measures [i5"(z,y, 2) on the elements of W*"(z, z, z).
Using properties and uniqueness of conditional measures it is possible to show that
the following relations hold for fig-almost all (z,v, z) € Ay:

(1) prxyfiy' (T, y, 2) = [ig, 5,(T,y)

2) (e, y, 2)(BOW™ (2,y, 2)) = /ﬂﬁ(%:&,5)(BQW“(x,§75))dﬂfa“($,y, 2)(y,2).

From 5.2.1. and A2 it follows that dimpg fijj(7,y,2) = dim /i holds fig-almost ev-
erywhere. But this implies for fiy-almost all (z,y,2) € Ay

(3) dimy f1y(x, g, 2) = dim iy for 45 (x,y, z)-almost all (x,7, 2) € W*(z,y, 2).
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Let G be the set of all (z,y,z) such that (1),(2) and (3) hold. Fix (z,y,2) € G.
Let B be an arbitrary Borel set such that g s (v,y)({z} x B) = 1. With (1)
it follows that f5"(x,y,z)({x} x B x [-1,1]) = 1 and with (2) we get from this
au(x,y,2){z} x B x {z}) = 1 for g5"(z,y, 2) -almost all (z,7,2) € W (z,y, 2).
Hence dimy fi4(x, 9, 2) < dimyg B for f5*(z,y, z) -almost all (z,7,z) € W (x,y, 2)
and with (3) dim 4% < dimpy B. Since B was arbitrary, G has full [iy measure and
[y projects to fig, g, this shows:

dim ﬂg < dimpy ﬂgl,ﬁg (.’L‘, y) H3,,8,-8-€.

Now let us look at the entropy. On the one hand we know dim ij = h,(c)/log 2
from 5.2.2. . On the other hand it is by means of [MN] not difficult to see in rather
direct way that dimpy if, 5,(7,y) < hg, 4 (f5,8,)/10g2 holds fis s,-a.e. (see [NE]).
Hence h, (o) < hug, 5 (f51,6,)- For the opposite inequality see the remark after 3.2.6 .

O

It seems to be plausible that a more direct proof of the last proposition should be
possible only working with the entropy of conditional measures and without using
dimensions at all. But we have not elaborated this.
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6. Overlapping self-similar measures

6.1. Main results

In this section we begin to study the self-similar measure 0% _  defined in 3.2. for
1,72 € (0,1) and p € (0,1). If 43 + 72 < 1 the measure is concentrated on a Cantor
set and hence singular. We will discuss here the overlapping case and thus assume
71 + 72 = 1. The overlapping symmetric self-similar measures b2 are usually called
infinitely convolved Bernoulli measures. They raised great interest in the literature.
Using Fourier transformation techniques Winter [WI] showed in 1935 that b, is
absolutely continuous if v = %ﬁ with n > 0 and Erdos [ER2] showed in 1940 that
the measure is absolute continuous for almost all v in a small neighborhood of one.
Recently one mayor progress was achieved by Solomyak:

Theorem 6.1.1. [SO1]

The measure b, is absolutely continuous with square integrable density for almost
all v € (0.5,1).

We like to inform the reader here that there are parameter values v with special
number theoretical properties such that b, is singular. We will discuss this issue in
detail in chapter nine.

Peres and Solomyak [PS1] found a considerably simplified proof of theorem 6.1.1. .
Moreover they extended the technique used in this proof to the measures b%, which
have different weights. They proved:

Theorem 6.1.2. [PS2]

Let p € (0,1). The measures bY are absolutely continuous for almost all 7 €
(pP(1 — p)'77,0.649) and singular if v < pP(1 — p)*?. If p € [1/3,2/3] then the
bound 0.649 in this statement can be replaced by 1.

As far as we know the overlapping asymmetric self-similar measures 0% _  have not

been studied jet. This will be our task here. We will prove an analogon of 6.1.2. in
the asymmetric situation. Let us first define a subset of the parameters set

Po2lapp = {(717’72> S (07 1)2|71 + 72 > 1}

by
Pt%"ans = {(71772) € P()Qlapphﬁ S ga! S 0649}

Now we formulate our result:
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Theorem 6.1.3.

Let JURS <O71) and Pc?bs = {(/717/72) € Pt%ﬂans|(72p)p<71<1 _p>)1—p < 7172}' The
measures b7 are absolutely continuous for almost all (v1,72) € P2 in the sense

of two dimensional Lebesgue measure and singular if (2p)?(71(1 — p))' ™ > y179.

The first part of this theorem follows from corollary 6.2.2. of the next section
using the theorem of Fubini. The singularity assertion is stated in corollary 6.3.2.
and follows from a more general upper bound on the box-counting dimension of the
measures i, », we will prove in 6.3.1. .

We think that it is necessary to make a few remarks on our main result:

Remarks

(1) Fist note that by the symmetry of the measures in question the assumption of
Yo < 71 in the definition of P2 .. means no loss of generality.

(2) We have to say a few word about the bound 0.649 that appears in 6.1.3. (and
also in 6.1.2.). On the first sight this bound seems to be somewhat crude. In the
proof we will see that it is due to a certain transversality condition that we
need. In fact the bound is given by the infimum of all double zeros of power series
with absolute value of the coefficients less equal to one and first coefficient equal to
one. 0.649 is an approximation of this quantity. We refer to step 4 of the proof of
proposition 6.2.1. for this issue.

(3) Peres and Solomyak [PS2] used some additional arguments concerning Fourier
transformations to improve the bound to 1 in the symmetric situation if p €
[1/3,2/3]. These arguments do not work if p < 1/3. We have not been able to
improve the bound in the asymmetric situation but we do not believe that this
bound is really essential.

6.2. Absolute continuity

Let us first recall some definitions from chapter three. The measures b2r = are given
by (7%, )~ o bP. b is the Bernoulli measure on ¥* = {—1 , 1} o Wlth probablhty

distribution (p,1 —p) on {1, 1} and the map 7 _, is given by
k # s)+1
71772 Z s 7 *
The quantity f(s) counts how often —1 appears in {s, ..., s }. The measures t? _
are just the measures 02* scaled by the affine transformation that maps % to
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—1 and 11{/1 to 1. Now we state our result on absolute continuity and density of the

measures at hand.

Proposition 6.2.1.

Let p € (0,1), ¢ € (1,2] and ¢ € (0,1]. The density of the measures b% .. is in L7 for

almost all 7 € [70(c, ¢, p), 0.649] where yo(c, ¢, p) = (p* + ¢ ~4(1 — p)*) 7.

The technique we will use in the following proof is similar to argumentations that
have been developed in [PS 1/2].

Proof

Obviously it is enough if we show that the proposition holds for the unscaled mea-

%
sures bb'.. .

Fix p, ¢ and ¢ during the proof.
1. Step: An integral condition for the measures to have density in L4

We define the (lower) local density of a measure p on the real line by

L (B, (x))
Q(M? l’) - h—mr—>0T'

If we have
[ DG 2) () < o0

then p is absolute continuous and has density in L9. This follows from Mattila
[MA,2.12]. Thus it is sufficient for us to show that

,¢Y? 7Y

S(0) = [

il

0.649
/ (DO, 2)) = b (x) dy < o0

0

holds for all v > vo(c, q,p).

2. Step: Some estimates on the integral

By applying Fatou’s lemma then changing variables using the definition of the mea-

sures 02", and reversing the order of integration we obtain:

‘ 1 0.649 . o
S(00) <l sy A 0 [ 0B b @)y

q—1

0.649
—tim, oy [ [ (B () B (s)dy
(271)(1—1 "o o+ 7Y .Y
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~tim, g [ B () ),

0
Applying Hélder’s inequality, [ f* < Ci([ f)* where a € (0,1] and f > 0, we get

0.649
S(0) < Culim, g 5y o L B ) )
Now note that

0.649 . . 0.649 .
/Y byz,jcy(B’/‘(ﬂ-%C'y(i))) d’)/ = /Yo /1Br( 4 er(8)) ( ) db’ypcw( )d’Y

0.649
B /m /2+ Lit) 2 oo (9) =73 oo (0] <ry U7 (E)dy

= [, 647 € Do, 0.649]] [ 1, (5) = ;. ()] < 1) (1)

Thus (7) is bounded from above by

(2’/’;‘1_1 /§;+</ ({7 = [7070 649“ |7Tﬁ/ c’y( ) 707( )l < T}) dbp( ))q_ldbp(ﬁ)-

Cl lim,,,_,o

3. Step: Using the structure of the map =

For s = (sg) and ¢t = (tx) in X7 let |s A t| = min{k|sy # tr}. We have:

o

¢§,£(7) = vacv(ﬁ) - 77%07@) = Z(skzcﬁk@ - tkcﬁk@)VkH
k=0

o0
7\§A§|+1 Z(3k+|§/\§\cﬁk+‘§A£|(§) _ tk+|§/\§|cﬁk+|£/\£‘ (t)),yk:
k=0

Brtisael () Brt)sne) ()

— tht|snt|C
Bilsae (8) _ tls/\ﬂcmﬁm )

. Sp c
_ ,y\§/\£|+1 (S|§/\§|Cm§Azl(§) _ t|§/\ﬁcﬁ|§m (t))(l + +|sAt]
k=1 S|sat|C

7*)

=ak(s,t)
= 1/2(ssng) — tisng) (1 + )y Rensia(@)(1 4 Z ax(s, t)7").
k=1

For the last equitation we used the fact that fsay—1(s) = fsrg—1(t)". Now setting
9s:(7) = 14302 ap(s, £)v* and Co = 1/2(s)5ps — tisae) (1 4 ¢) we have the formula

¢§7£(7) _ C'ny|§/\§|+1cﬁ\§Ag—1(§)g§7§(7)_

'We use the convention that #,,(s) =0 if n <0
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Here the absolute value of C5 does not depend on s and t. We now claim that the
absolute value of the coefficients of the polynomials g, is less or equal to one:

lag(s, )| <1 Vk>0ands,teXt.
Since fisny—1(8) = fjsng/—1(t) we can write:

(o120 ()) o= @) — (glentl (), o= O

] =
(s, ) —

But we have
(012 (8))c”™ @ — (M (1)) O] < || 4 O] <1 e

by the definition of |s A t|, which proves our claim.

4. Step: The transversality condition

We say that the p-transversality condition holds for a C'! function ¢ on a closed
interval I if g(x) < p = ¢ (z) > p Vo € I. This means that the graph of the function
g crosses all horizontal lines that it meets below height A\ transversally with slope
at most —p. Obviously the transversality condition holds for some p on an interval
I if and only if g has no double zero on the interval I.

If we have the p-transversality condition for g on I then
Ha e I||g(x)| <r} <2rp™t Vr > 0.

This is easy to see. If r > p then the claim is obvious. If » < p then g is monotonous
decreasing with ¢ < —p on the set {z € I||g(z)| < r} by p-transversality. But this
immediately yields the assertion.

From lemma 2 of [PS2] we know that:

O := inf{z|z is a double zero of a power series f =1+ Y apz® with |a| < 1}
k=1

~ (0.649138.

It follows that there is a p such that the p-transversality condition holds for all
polynomials f = 1+ 322, apa® with |ax| < 1 on the Interval [0,0]. Especially p
transversality holds for all polynomials g, defined in the third step of our proof on
[0,0.649]. Thus we get:
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{7y € [70,0.649]] |pss(v)| < 7}
< 0{y € [0, 0.649]] |gsp(7)] < 7| Cof "ty M e 1)}
< 2p7 1| Gy g T e 8 = Gy BT @) with Oy = 297Gy 7

5. Step: Integrating
We put our estimates of step two and four together and obtain
300 < O [ ([ 7™ e B )t
st e+
where Cy = C,C¥ 1279, Now we integrate:

Jo 20 e () = SO (€ S s g =)
b

= 3 (1= g (s, (1/2 = p) 4 1/2)

Using the inequality (3 x;)* < > ¢ for a = ¢ — 1 < 1 we continue with:

S(00) < Cr Y- [ (g™ e i 1 s, (12 )+ 1/2)) ()
n=0

n

=y i o T (=) ™ (1)) Yo (T (1) ) T s € S (s) = k)

k=0

= Cy((1 = p)*p + (1 = p)) i A Dla-D zn: <Z> (1 — p)ict=1)kpan=h)

n=0 k=0
=C((1=p) " p+pT (1 —p Z y V(1 = pyieta 4 pyn,

The sum in the last expression converges exactly if 7o > yo(c, ¢, p) = (p? + 1 79(1 —
1
p)¥)aT. So I(y0) < oo holds for all 79 > vo(c, q, p) and our proof is complete.

Proposition 6.2.1. has the following corollary:

Corollary 6.2.2.

Let ¢ € (0,1] and p € (0,1). The measures b . are absolutely continuous for almost
all e [70(67 p)? 0649] where 70(67p> pp((l - )/C)l_p‘
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Proof

One only has to show that lim, 1 vo(c, ¢, p) = Yo(c,p). But this is easy to see by
taking logarithm and using the rule of I’'Hospital.

O

6.3. An upper bound the on dimension

We will prove here an general upper bound on the box-counting dimension of the
measures /i, -, defined in 3.2. where v;,7, € (0,1) are arbitrary and g is a shift
ergodic measures. Applying this general upper bound to the overlapping self-similar
measures b - implies the singularity assertion of our main theorem 6.1.3. . Recall

that = = p([1)o) log v + p([—1]o) log 7.

Proposition 6.3.1.
If pe M(X%,0) and 71,7, € (0,1) we have:

hu(o)

dimppiy, 5, < min{l, —;—}.
=072

Proof

Fix 71,72 and p. First note that it is trivial that the box-counting dimension of the
measure in question is less or equal to one since it is defined on the real line. We
now define a metric 6772 on X1 by

(571’72 <§, t) — fy|1§/\§|7ﬁ|§/\ﬁ71(§)’y§|§/\§\71(§).

We first claim that

l 371772 h
A2 ( s, bp) -— lim 98 D <§) = ﬁ l(f) p-almost everywhere.
e—0 log e —=71,72

Here d"2 is the local dimension of the measure b” with respect to metric §772
and accordingly B2 is a ball of radius e with respect to this metric. Applying
Birkhoffs ergodic theorem (see 4.1.2. of [KH]) to (X%, 0, 1) with the function

- logy, if sgp=1
his) =1 logye if s9=—1

we see that:

1 1 n+1
lim . log diam., ~, ([So, - - -, Snjo) = lim > h(c"(s)) = /h du(s) = =F

n—>oon_|_ n—>oon+1k20

44



p-almost everywhere. By Shannon-McMillan-Breiman theorem (see [DGS] 13.4.)
we have:

lim — ] log 1i([so, - - -, snlo) = hu(o) p-almost everywhere.
n—aoo n
Thus we see:
lim log B2 (s) ~ lim .log w([s0s - -5 8nlo) _ hﬁ;(tg)
e—0  loge n—oc diam,, ,,([So, ..., Snlo)  —ZHi

Of course we can define the box-counting dimension of the measure p with respect
to the metric 772 on X in exactly the same way as we define the box-counting
dimension of a measure on IR? in appendix A. Furthermore it is not difficult to see
that an analogon of A2 holds for Borel probability measures on the metric space
(3F,8772). Thus we have
dim}} ™ = hul(ta)
—Y1,72

where the box-counting dimension dim}’" has to be calculated using §772.

Now we claim that the map 7* _ is Lipschitz with respect to the metric §772:

1,72

* k )+1 s k— +1
751 (8) = 5, ()] < lZ BT By k041 B O)
k=|sAt

At =tsag—1(8) Hisar—1(8)
=N Y2

ket (1271 1_t(ol= (s k—t (01N () +1 (o137 (¢
Z|8k+|sm:w i ( @)+ fi(o (_))_tk+\§AzW1 N

2
1 — max{y1,72}

But the map 7, ,, is just 7% _ scaled on [~1,1] and hence Lipschitz with respect
0772 as well. Since applying a Lipschitz map to the measures u does obvious not
increase its box-counting dimension, the proof is complete.

< 671,’72 (S t)

O

Let us remark that it is well known that the Hausdorff and box-counting dimension
of of jiy, ,, equals —h,(0)/Z8 _ in the case that 71 + 72 < 1; see for instance 13.1.
of [PE2]. In our work we are more interested in the overlapping case 71 + 72 > 1.

From 6.3.1. we get the following corollary about the self-similar measures 0%, _ :
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Corollary 6.3.2.
Let 71,792, p € (0,1). We have

plogp + (1 —p)log(l —p)
plogvyi + (1 — p)log s

dimpgb?

71,71 S mln{ 1’

Moreover b? _ is singular if (7yop)?(y1(1 — p))"" > m72.

Proof
To see the upper bound just recall that hy(0) = —plogp — (1 — p)log(1l — p) and

Z1y2(0P) = plogy1 + (1 — p) log y2. From the upper bound we have dimpb? . <1

if (72p)?(71(1 — p))'~P > 4199, which clearly implies our singularity assertion.
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7. Generic dimensional theoretical properties of
the systems

We will now formulate our main generic results about the dimensional theoretical
properties of the class of repellers (Ay, Ty) and the class of attractors (Ag, ﬁg). The
term "generic” has to be understood in a special sense referring to the Lebesgue
measure on certain subspaces of the parameter space P;. The restrictions of our
generic results depend on the transversality condition; see chapter six. Recall from
this chapter that

P2 os = {(B1,32)|B1 + B2 > 1 and 0 < 5 < By < 0.649}.

Theorem 7.1.

General case
For all p € (0,1) and almost all (8, 3;) € P?

trans

and log 5 log p/ 31 = log 11 log(1 — p)/P2 we have:

and all 71,7 > 0 with 71 +» < 1

1
dimH bp = dll’IlH Aqg = dlIIlB Aﬁ = o8 p/ﬁl and
log 71
A A 1
dlmH Aﬂ = dlmB Aqg = ng/ﬁl
log 7

where ¥ = (f31, B2, 71, T2). Moreover if p = 0.5 then bp has full dimension on Ay and
if p # 0.5 then the variational principle for Hausdorff dimension does not hold for

(A, fs).

Special case 31 = 6, = (3

For p € (0,1) set I = (0.5,1) if p € (1/3,2/3) and I = (0.5,0.649) if not. We
have for almost all 5 € I and all 71,75 > 0 with ;3 + 7 < 1 and logm logp/5 =
log 7 log(1 — p)/f:

1 o . 1
o8 p/ﬁ‘i‘l and dlIIlH Aﬁ = dlmB Aﬂ = o8 p/ﬁ
log 7 log 7

dimgy b5 = dimy Ay = dimp Ay =

where ¥ = (3, 3,71, 72). Moreover if p # 0.5 (which means 7; # 73) then the varia-
tional principle for Hausdorff dimension does not hold for (Aﬁ, fqg)

Special case 7y =1, =T
For almost all (81, 3,) € P2

trans

and all 7 € (0,0.5) we have:

log(B1 + B32)

1
log 71 +
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log(B1 + B32)

log 71

where O = (81, B2, 7,7) and p = 31/(B1 + B2). Moreover if 3; # (3 then the varia-
tional principle for Hausdorff dimension does not hold for (Ay, fy).

and dimy Ay = dimp Ay = +9

Special case my = =7 and 31 = 3y =3
For almost all 3 € [0,5,1] and all 7 € (0,0.5) we have

log 23
log 71

log 23
log 71

+1 and

dlmH bg5 = dln’lH Alg = dlmB Ag =

dimy b3° = dimy Ay = dimp Ay = +2

where ¥ = (3, 5,7, 7).

We include a corollary, which states the main general result of the last theorem
in a weaker but more straightforward way. Recall that:

Ptians = {(6176277—177-2) € Pcilll‘(ﬁbﬁQ) € PtQTans}'

Corollary 7.2.

For almost all ¥ € P%  we have:

trans
dimy b8, = dimy Ay = dimg Ay = d + 1 and dimy Ay = dimg Ay = d + 2

where ¥ = (81, 32, 71, T2) and d is the solution of 317 + 37% =1 and p = 3,7

Let us discuss our results:

Remarks

(1) Corollary 7.2. shows that on the set of parameters P,. . we have generically the
identity of Hausdorff and box-counting dimension for the repellers (Ay, Ty) and the

attractors (Ay, fy).

(2) The existence of a measure of full dimension is only a generic property of the
repellers. Not even the variational principle for Hausdorff dimension holds gener-
ically with respect to the Lebesgue measure on PZ_ . for the attractors. It holds
for (Ay, fg) only if we have log, log(23,) = log, (262). In the proof we will see
that this phenomenon is due to the fact that one can not maximize the stable and
the unstable dimension (resp. the dimension of the corresponding conditional mea-

sures) at the same time. In the context of Axiom A diffeomorphisms exactly this
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was observed by Manning and McCluskey [MM]. It allowed them to show that the
variational principle is not generic for Axiom A systems in the topological sense; it
only holds on a nowhere dense set of Axiom A systems.

(3) Now we comment on the special case §; = 2 and 77 = 75. The condition
on 3 we need to get the identity for Hausdorff and box-counting dimension in this
case is dimpy bg = 1. By Solomyak’s theorem (6.1.1.) this condition holds almost
everywhere in (0,5,1). Pollicott and Weiss used the number theoretical condition
that (3 is a Garsia-Erdos number to get this identity (see 2.1.3.). The property to be
a Garsia-Erdos number can been shown to be equivalent to the absolute continuity
of bg with uniformly bounded density (see 2.1.3. and 5. of [PW]). This condition
seems to be stronger than dimbg = 1. But in fact we do not know if there are
numbers such that dimbs = 1 and (3 is not Garsia-Erdos.

We will now formulate our result about the generic dimensional theoretical properties
of the projected systems ([—1,1]%, f5, 5,) including the Fat Baker’s transformations

fs.

Theorem 7.3.

General case

For almost all (81, 82) € P2,,, with 3135 > 0.25 the measure bg, 5, = bg, 5, X { is a
measure full dimension for ([—1,1]2, f3, 3,). But if 5106, < 0.25 then the variational
principle for Hausdorff dimension does not hold for the system ([—1,1]?, f5, 5,)-

Special case (3, = 3, )
For almost all 3 € (0.5,1) bg = bg x £ is a measure full dimension for ([—1, 1], f3)

The claim about the Fat Baker’s transformation fg in 7.3. is in fact just a simple
consequence of Solomyak’s theorem [SO1] and the work of Alexander and Yorke
[AY].

Before we begin with the proofs we remark that we have number theoretical ex-

ceptions to our generic results in the symmetric situation 3; = 5. These results are
formulated in chapter ten. Let us now go into the proofs.

Proof of 7.1.

General case:

Fix p € (0.5,1). We first claim that for almost all (31, 32) € P2, and 71,75 € (0,1)
with 71 + 75 < 1 and log 72 log p/ 31 = log 71 log(1 — p)/ B, the identity dim b} 5 =1
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holds.
If we are given (By,0:) € P2, . and there exists 7 + 7 < 1 with 28281 —

log 71
log(1-p)/B2
log T2

(PB)P((1 = p)B2) P = (BLfBar)P (51 Bar) P = BiforiPry ) < 1o

Now we see that our claim follows from theorem 6.1.3. with the help of A3.
Fix 9 = (1, B2, 71, T2) with the properties of our claim and let d be defined as above.
We have:

=: d we have:

log p/B1 (1=p)B2

i+ Bors = himy ™ ey P =p+(1—p)=1.
From 4.1. we thus get:

dlmBAﬂzd—i‘l and dlmBAg:d+2

Moreover from 5.3.3. we get:

: ~ plogp+ (1 —p)log(1l —p) plog 81 + (1 — p)log B,
dimgy b = _
plogm + (1 —p)logm plogm + (1 —p)logm
1y Biritlog fir + Bty log Pory — (Br7ilog 1 + (275 log (2)

Bi7ilog T + Bord log T

_ B log 7 + B4 log 78
Birilog T + g log T
Just by definition we have dimgy b5 < dimy Ay < dimp Ay. Thus we get

=d+1.

and with the help of A5
dimy Ay = dimg Ay = d + 2.

Our first statement in the general situation is proved.
Consider the special case p = 0.5. We get from 5.3.3.

hy(0)
log 2

dim by = +d+1=d+2.

This means that 1319 is a measure of full dimension.

Now consider the opposite case p # 0.5. Assume that the variational principle
for Hausdorff dimension holds for (Ay, fy). Then by 3.2.5. there is a sequence of
measures [, € M(X,0), such that
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Recall that the equal-weighted Bernoulli measure b is the unique measure in M (X, o)
which maximizes the metric entropy with h,(0) = log 2 and that the metric entropy
is upper-semi-continuous on M (3, ). By this facts and 5.3.1. we necessarily have

tn, — b.

From 5.3.2. we have the inequality

h h + =4
dimp f1g <1+ u(o) — (o )u bul
log 2 271,72

for all 4 € M(X,0). With the help of upper semi-continuity of h, (o) we thus get:

log2 + 0.5log 31 + 0.5log (3,
0.5log 11 4+ 0.51log 7 .

We have:
_log2+0.5log 81 +0.5log By~ 2log2 +logp — dlog 7 +log(l — p) — dlogmy

0.5log 11 + 0.5log 7o log 71 + log 75

2log 2 + log p + log(1 — p)

—d—
log 71 + log 7o

<d,

which implies Tim,, o dimp (fin)9 < d + 2. This is a contradiction and the varia-
tional principle for Hausdorff dimension does not hold for (Ay, fy).

Special case 1 = B, = (:

One proves the result by exactly the same arguments that we used in the general
situation. The only difference is that one uses the theorem of Peres and Solomyak
(6.1.2) for the symmetric self-similar measures instead of theorem 6.1.3. for the
asymmetric ones.

Special case 71 = 1 = T:

Setting p = —— in 6.2.2. we have for all ¢ € (0,1] dimy b;/c;% = 1 for almost
all B € [ e, ,() 649] Using the theorem of Fubini we get from this dimg bj, 5, =1
with p = & + 5, for almost all (81, ) € P2, ..

Now from 4.1. and 5.3.3. the dimension formula for the (Ay, Ty) and with help A5
the dimension formula for f\g follows.

If 81 # [ our result about the variational principle can be proved by the same
arguments that we used in the general situation if p # 0.5.
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Special case 1 = o =fF and 71 = 7o = T:

The statement is just an obvious consequence of 4.1., Solomyak’s theorem 6.1.1.
and the dimension formula in 5.3.3. .

Proof of 7.2.

It follows directly from the general case in 7.1. that for all p € (0, 1) there exists a
set A(p) C P2, with (2(A(p)) = (*(P?2,,,,) such that for all (31, 32) € A(p) and all

trans trans

71,72 > 0 with 7 + 75 < 1 and log 75 log p/ 31 = log T log(1 — p)/f2 our statement
about the dimensions holds. Let G(71) be given by the following union:

U {(B1, P, 72)|(B1, B2) € A(p) , m+72 < 1, logmlogp/p = logm log(1—p)/Fa}.

p€(0,1)

It is easy to see that the union

U {81, B2, 2)|(B1, B2) € Plrgns » i+72 < 1, logalogp/B1 = log 71 log(1—p)/Ba}

p€(0,1)

equals the set {(31, B2, 72)|(B1, 32) € P2,,., 71 + 72 < 1}. By the theorem of Fubini
we thus have (3(G(1)) = 3{(B1, B2, 72)|(B1, B2) € Plans » T1 + T2 < 1}. Now let

G= | {(B1, 52,11, 72)|(B1, P2, 72) € G(1)}.

7—16(071)

Note that we have G C P} . and (*(G) = ¢*(P},..). But by definition our dimen-

sion formulas hold for all ¥ € G. This competes the proof.

Proof of 7.3.

General case:

First recall from 3.2.4. that bg, 5, = bs, 5, X £ is an ergodic measure for the system
([-1,1]2, f3,.3,)- Tt follows directly from 6.1.3. that the measure bg, s, is absolutely
continuous for almost all (81, 32) € P2, with 3132 > 0.25. For these (8, 32) the
measure bg, g, X £ is absolutely continuous as well and thus has dimension two (see

A3). This proves our first statement.

If $18, < 0.25 then we have hy(o) < —Ej 5. By upper semi continuity of
the metric entropy there is a weak®™ neighborhood U of b in M (X", o) such that
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—~hu(0)/Ef, 5, < e1 < 1 holds for all u € U. Now note that we have from 5.3.5. and
6.3.1.
—hpr+ (o)

:PT+H
—p1,82

dimy jig, g, < 1+ dimp (prtp)s, g <1+

From these facts we get dimpy fig 5, < ¢+ 1 < 2 for all u € U = (prt)~'(U).
Obviously U is a neighborhood of b in M (X, o). Furthermore we have by 5.3.4.

hu(o)

1.
log 2 -

dimpy fig, g, <

Again by upper semi continuity of metric entropy it follows that dimpy fig g, <
co+1 < 2forall pe M(X,0)\U. Putting these facts together we get:

dimy fig, 5, < max{ci,ca} +1 < 2 = dim[-1,1]? Yue M(X,0).
This proves our second statement.
Special case (1 = [s:

Recall from 3.2.4. that bg_y,«¢ is an ergodic measure for the system ([—1,1]?, f3).
From 6.1.1. we know that the measure bg is absolutely continuous for almost all
B € (0.5,1). For these § we know that bz x ¢ is absolutely continuous and thus has
dimension two (see A3).
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8. Extension of some results to Markov chains

This chapter forms a kind of supplement to last four chapters. We will extend some
of our main general and generic results to invariant sets for the maps T and fy that
correspond to special Markov chains.

Let A = ( aal’l aafl’l ) be a (2,2)-matrix with entrys a;; in {0,1}. By X4
-1 G—1-1

(resp. X7}) we denote the subset of X (resp. XF) given by {(sk)|ass,., = 1}. These

sets are obviously invariant under the shift map o (resp. ¢=!). The systems (X7, o)

and (X4, 07!) are called (1-step) Markov chains (see [KH]). Now we define subsets

A% and AY of [-1,1]% by
A =mg(S%)  and  AY = 7g(Ta)

for v € P4, By 3.1.1. the set AY is invariant under the map T and by 3.1.3. the
set AY is invariant under the map fy.

If the matrix A is not in {( i (1) ) , ( (1] 1 )} then the sets X4 (resp. X}) and

consequently the sets A§ (resp. Aj) are at most countable. Dimensional theoretical

properties are trivial in this case. By symmetry we may restrict our attention to the

case A = ( 1 (1) ) Fix this matrix for the rest of this chapter. We remark that

the dynamical system (37, 0) is known as goldenshift (see [SV]).

For p € (0,1) define Markov measures on X4 (resp. X7}) in the following way:

Consider the stochastic matrix P = P11 P11 = p 1 and the
P1,-1 P-1,-1 I-p 0

stochastic vector (p1,p_1) = (1/(2 —p),(1 —p)/(2 — p)). Define a measure on the
cylinder sets in Y4 (resp. ) by

u—1

mp([t07 tl o 7tu]v) — pto H ptiti_»,_y
=0

Now extend this measure to a Borel probability measure m? on ¥4 (resp. ¥7). It

is well known that m,, is ergodic with respect to the shift map (see [DGS]). Define
measures mk and mf by

1 ~—1

ml =mPomy and b =mPomy".

By 3.2.3. m} is an ergodic measure for the system (A%, Ty) and by 3.2.5. 1P is an
ergodic measure for the systems (A3, fg).
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Our main result in this chapter is nothing but an extension of 4.1. and 7.1.2.
to the invariant sets A4 and Ay. Let

Pfx = {(51;52,7'1,7'2”51 +51B2 > 1,1+ 1 < 1}
and P irans = 1(B1, B2, 1, T2) € P4|B1 < B2 < 0.649}.

Theorem 8.1.1.
(1) For all ¥ = (B4, B, 71, T2) € P4 we have

log((v5 +1)/2)
log 2

dimp A} =d+1 and dimgAj) =d+1+

where d is unique positive number satisfying 817 + 31 32(1172)¢ = 1.

(2) For almost all ¥ = (81, B2, T1,72) € P4 ,.uns (in the sense of four dimensional
Lebesgue measure) we have

dimg mf, = dimy A4 = dimp A} and dimp Aﬁ = dimp Ag
where p = 817 and d is as in (1).
Remarks

(1) The condition 3y + (102 > 1 is necessary. It means that the projection of

AY onto the first component has positive length. This fact is essential for our proof
A g

(see also remark (3) in chapter four).

2) Note that we can write our dimension formula in the symmetric situation
¥ = (8,08, 7,7) € P} using the topological entropy hip(0js,):

10g B + fuop(913:,)

and
log T

dimp Af =1+

dimp [\g 14 log B + htop(05,) I log 3 + hiop(0s,)

log T log 2
(3) Of course the reader will ask the question if there are generalizations of 8.1.1. to
n-step Markov chains (see [KH] for definition). Let us first discuss the box-counting
dimension. We were not able to prove an analogon of 8.1.1.(1) for all n-step Markov
chains. But under certain assumption such a generalization is in fact possible using

our methods. Let us discuss this in detail. We say that a Markov chain X /q4rk00
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(resp. X3 urmey) has block form if there is a set of finite sequences B={by, ..., b},
where b; have entrys in {1, —1}, such that each element of X 1arr00 (T€SD. X3 arkon)
can be written as a sequence of elements in B. If ¥)/4100 has block form and in
addition prxmy(Xararker) has positive length we get

htop (O" EMa/rkm) )

dimB Wﬂ(E_AZarkov) =d +1 and dlmB ﬁﬁ(ZMarkov> =d + 1+ ] 9
0g

Here d is the solution of

b;) _#-1(b; b; —1(bi)\x
ZTfl( )7.5 1( )(ﬁgl( )B§ 1( )) -1
=0

where f; counts the number of entrys that are 1 and §_; counts the number of entrys
that are —1 in an element b of B and htop(0|2 vareen) denotes the topological entropy
of the Markov chain. The proof of this statement differs from the proof of 8.1.1.(1)
only in technical respects; no new idea is needed. We have thus decided not to write
down the proof of this assertion.

We remark that some but not all Markov chains have block form. For instance the
blocks (1) and (—1,1,1) induces a 2-step Markov chain. But the 2-step Markov
chain which is is given by excluding only the block (2,1,2) does not have block
form.

(4) A generalization of 8.1.1.(2) fails because we need the transversality condition
to treat the Hausdorff dimension (see chapter six). To see this again consider the
Markov chain induced by the blocks (1) and (—1,1,1). The condition for overlap-
ping projections is ) + (283, > 1, which implies 8, > 0.65 or 3 > 0.65. This
contradicts the transversality condition 5; < fy < 0.649.

Now we want to give a comprehensive proof of 8.1.1., only elaborating the details
that are different from what was done in the last chapters.

Proof of 8.1.1.
Fix ¥ = (01, B2, 71, T2) € P41 and the number d.

1. Step: Calculation of box-counting dimension

Let 3 = 7y and (B3 = (12. Given r > 0 we define a set of finite sequences
by

Xy =A{(s1,...,sp)| min{m, m}r < 75,75, ... 75, <7 where s; € {1,3} Vj=1...k}.
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Let
Cr = {my([k(s1),.-.,6(sK)]o)|(51,---,sK) € X;}
where k(1) = 1 and k(3) = (—1,1). Since {[k(s1),...,k(sk)]o)|(51,---,5%) € X, } is
a cover of ¥ we have that C, is a cover of A4. An element of C, is a rectangle
parallel to the axis with z-length 25, 3,, . . . 55, and y-length 27, 7,, ... 75,. We cover
each of this rectangles by squares parallel to the axis of side length 27, 7,, ... 7;,.
We choose the squares in a row such that they only intersect in their boundary. In
this way we obtain a new cover C, of A%, which consists of squares with length in
(2min{m, 73}, 2r]. By exactly the same arguments we used in the proof of 4.1. we
see that we have the following estimates for the number of elements N, in the cover
C,:
1 <IN (r) < 2min{m, 75} @Y,

Now we want to analyze the sets A4 N R where R is a rectangle in C,. First note
that the projection of Aj onto the z-axis is given by the set I fulfilling the relation
I = Ly(I) ULy o Ly(I) where Ly(x) = f1z + (1 — 51) and Lo(z) = fox + (1 — Ba).
Using the fact that 6, 4+ (6102 > 1 a direct calculation shows that I is the interval
[% 1]. Let [ be the length of this interval. We now see that £(prxA%) = 1.
But this implies {(prx(RNA%)) = I(prx(R)). Thus the number of those squares in
C, that have nonempty intersection with A4 is bigger than IN (r). One square with
side length 27 parallel to the axis can not intersect more than 9 min{7,, 73}~ squares
in C, because the squares in C.. have side length bigger than 2m1n{7'1,73}7" and
intersect, if at all, only in the boundary. Thus if we have a cover of A with square
of side length 2r parallel to the axis, this cover has at least 1/9 mln{ﬁ, 3 }2IN (1)
elements. Let N(7) be the minimal cardinality of an cover of A4 with square of side
length 2r parallel to the axis. Putting our estimates together we obtain

1/9min{ry, 73} < 1/9min{r, mPIN(r)rt*h < N(r)r"t < min{ry, 7},

This shows dimp A% = d + 1. It remains to deduce the dimension formula for AZ.
By the product structure of the map 7y we get:

Af = {(2,9,2)|(x,2) € Ay and y € F}

where F' = ((pr=(X4)). Here ¢ is defined in 3.1. and pr— is the projection from >
onto X~. Define z by

k-1
((sk)remy) Z Sk27

It is easy to see that F' = 7(X%). But this set is well known in dimension theory and
we get from [FU]

heplO15)  oa((V5 +1)/2)

dimy F' = dimg F = =
i B log 2 log 2
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Using the definition of the box-counting dimension with J-mesh cubes (see 3.1. of
[FA]) we see dimp Ag‘ = dimp A + dimp F. This gives us the dimension formula
for A4. Now the first part of theorem 8.1.1. is proved. 2. Step: The dimension of
the Markov measures mf)

If we assume = < 237, we get from the Ledrappier-Young formula (see 5.2.3.
7’1 T 81,82
and 5.3.3.) the following formula for the Markov measures mf:
B, (0 Ear ,
dimml = _pn(%) +(1- _fép@)dlmmghﬁl.
‘—'Tl T2 —T1,T2

Here the measure mj 5 is given by mj 5 =mP o ngl, 5y

Just by definition we have

:g";v& =3 iplogﬁl + :zlog52 and =77 = 5 ip log T + ; :plong.
Furthermore we know from 4.4. of [KH],
o () = (2 —logp + ; log(1 — p)).
This gives us the formula:
dim m?, = P108P+ (1 —p)log(l—p) (1- bt (1-p) log 5 dimmi,

logm + (1 — p)log 7 logm + (1 —p)logm
3. Step: Absolute continuity of the measures mj, g,

We claim that an analogon of proposition 6.2.1. holds for the Markov measures
mp, 5, on the real line:

Claim: Let p € (0,1) and ¢ € (0, 1]. The measures mj, 5 are absolutely continuous
with density in L? for almost all 3 € [0, 0.649] with pz/ﬁ +(1—=p)?/(cf?) < 1.

Using the arguments of the first four steps in the proof of 6.2.1. we see that it
is enough if we show

() = [, [, B et D (1) dm? () < o

for all 3y with p?/5y+ (1 —p)?/(c42) < 1. Here all notations are the same as in the
proof of 6.2.1. . We integrate:

_ Aol @O (e S| s A t] = n)YdmP(s
o+ 0
n=0 n=0
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< max{p,1 —p} Z / Z o eI & mP (s, . L sp_1]o)dmP(s)

= max{p, 1 — p}ﬁal Z Z ﬁg”cfﬂ"‘l@)mp([so, o sn,1]0)2.

n=1se{-1,1}n

For t € {1,(—1,1)}" we denote by #;(¢) the number of entrys in ¢ that are 1 and by
f_11(¢) the number of entrys that are (—1,1). With this notations we have

%(ﬁo) < maX{pa p}ﬂo Z Z 7—ﬁ1(£)—2ﬁ—1,1(t) —f1,1(t )pzﬁl(t)<1 p)Qﬁ_M@)
n=1te{1,(-1,1)}"

_maX{p, p}ﬁ Z ]il(t (1— p)Q)u_l,l(;)

Cﬁo
B max{p, p} (1—p)?.,
B ﬁﬁo nzl( T R '

Now we see that our claim holds.
4. Step: Conclusion of the proof
We will prove the following statement:

Claim: For all p € (0,1) and almost all (31, 32) € {(B1, 32) € P2l + BB < 1}

and all 71,7 with 71 +75 < 1 and 520 — osCop)/af)) e have

dimy mf) = dimy A} = dimp A} and  dimy A4 = dimp A
where ¥ = (1, B2, T1, T2).

Using the argumentations in the proof of 7.1.2. this claim implies the second part
of our theorem. Therefore we now gone prove this claim:

With the help of Fubini’s theorem we get from our claim in the third step of this
proof:

For all pE (07 1) and almost all (ﬁhﬂQ) < Ptzroms with pQ/BI + (1 - p)Q/(6162> <1
the identity dimmfj, 5 = 1 holds .

If we are given p € (0,1) and (B1,02) € {(B1,02) € Plonslfi + 12 < 1} and

7,72 with 71 + 7 < 1 and g2 — ls(=p)/(Bifa) _. g then we have p = (172,

log 71 log(T172)
(1 - p) = 6152(717'2)d and

P61+ (L—p)?/(B132) = Biri? + B1Ba(rime)* < 1.
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Hence for all p € (0,1) and almost all (31, 3s) € {(81,52) € P2,,..|51 + 152 < 1}
and all 7,7 with 7 + 7 < 1 and logp/By _ los(-p)/(B1f2) e have dim mgl,m =1
and with the help of the dimension formula from the second step of our proof:

log 11 log(m172)

dimm? — P1ogp + (1 — p)log(l — p) log 81 + (1 — p)log s
mmy = 11—
logm + (1 —p)log logm + (1 —p)logm

— 14 ﬁlﬁd log ﬁ152(7'17'2)d + 5152(7'17'2)d 10%(5152(7'172)‘1 — log 3 — 51@(717'2)“08; 2
log 71 + B152(1172)% log 7

log 78 + 31 Ba(7172) % log 7

N log 71 + B152(1172) log 7

We know from the first step of the proof that dimp A} = d 4+ 1. Hence we get:

=d+1.

: P _ 3 A _ 3 A
dimmy = dimy Aj = dimp Aj.

Moreover we know from the first step of the proof that dimpg [\g‘ = dimp AJ+dimp F.
On the other hand by the product formula of Falconer [FA1, 7.4.] we have dimy A} =
dimy Aﬁ + dimg F'. Thus dimg A;;‘ = dimp ]\g‘ holds. This completes the proof of
our claim.
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9. Erdos measures

9.1. Singularity

In this chapter we usually assume that § € (0,5,1) is the reciprocal Pisot-
Vijayarghavan number (short: PV number). We refer to appendix B for def-
inition, examples and properties of these algebraic integers. Erdos [ER1] showed in
1939 that the equal-weighted infinitely convolved Bernoulli measure bg is singular
if 3 € (0,5,1) is the reciprocal PV number. Furthermore it follows from a work
of Alexander and Yorke [AY] that dimy bz < 1 in case that § is the reciprocal PV
number. This was observed by Przytycki and Urbanski [PU] who also gave their
own proof of this fact. It is not known (and perhaps a difficult problem) whether
there are other parameters § than reciprocals of PV numbers such that infinitely
convolved measures Bernoulli bz measure is singular. Some information how big
the set of exceptions can be maximal follows from a very resent result of Peres and
Schlag [PSch]. They have shown the relation dimy{s € (0.5,1)|dimybg < 1} < 1
for infinitely convolved measures Bernoulli bg.

Our objects here are all symmetric overlapping measures pug where 5 € (0,5,1)
is the reciprocal PV number and p € M(XT,0). We call such a measure pg an
Erdos measures.

Our main theorem extends the results mentioned above:

Theorem 9.1.1.

Let 8 € (0,5,1) be the reciprocal PV number and p € M(X7,0). dimgpg < 1
holds if and only if us is singular. Moreover the set {u € M (X1, 0)|ug is singular}
is open in the weak™ topology on M (X", o) and contains all Bernoulli measures.

This theorem will follow from several different propositions we prove in this chapter
(see the end of 9.3.). In view of 7.1. it is natural to ask whether there are measures
p € M(XT, o) with dimpg g = 1 at all. We will answer this question in 9.4. . We
remark that the technique, we will develop here, can not be extended to the asym-
metric measures (g, 3,. We will see where the problems come from.

We first state the generalization of Erdds result to all infinitely convolved Bernoulli

measures. The proof we give is nothing but an obvious extension of Erdos original
argument.
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Proposition 9.1.2.

If € (0,5,1) is the reciprocal PV number then the measures bg are singular for all
€ (0,1).

Proof

By [JW] we know that the Fourier transformation of a convolution is the product of
the Fourier transformation of the convolved measures. Consequently by 3.2.1. the
Fourier transformation ¢ of b is given by:

o) = L1 (cos((1 — A7) + (2 — )sin((1 — H)F"w)).
We see that: .
6(05,9)] = IT lfcos((1-9)3") + 2o~ Dsin((1-8)3")] = T Jeost(1-8)37)]
Now let wy i27rﬁ—’“ /(1 — B). We have:
000001 > T Jeosams™ ) = 1T | coszm ] I] Jcos(or )

k
=C H | cos(2m37")|
n=0

where C'is a constant independent of k£ and not zero. Now let 3 be the reciprocal of
a PV number. From proposition B1 of appendix B we know that there is a constant
0 < 6 < 1 such that: ||[57"||z < 0" Vn > 0 where ||.||z denotes the distance to the
nearest integer. This implies [¢(bj, wy)| > C' > 0 for all k > 0. Thus we have that
|¢(b3, w)| does not tend to zero with w — oo. Hence by Riemann-Lebesgue lemma
bg can not be absolutely continuous if 3 is the reciprocal of a PV number. But
it follows from the theory of infinity convolutions developed by Jessen and Winter
[JW] that b is either absolutely continuous or singular. This completes the proof.

O

We remark that we have no nice product formula for the Fourier transformation of
the bgj,ﬁz in the asymmetric situation. In fact we have:

« : vty (s o(8) TT spwgin(® gin(®
qﬁ(b’élﬂz,w) — lim Z p f# (_)<1 _p)ti () H eSnwhy 8"

V—
se{-1,1}v n=1

and the Fourier transformation of bj 5 is just this function scaled on [—1,1]. We
have not been able to apply the 1dea used in the proof of 9.1.2. to this Fourier
transformation and have thus not been able to find 8; # (5 with 8; + B2 > 1 such
that bf 5, is singular.
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2. Garcia entropy

Garcia [G1/G2] introduced a kind of entropy related to the equal weighted infinitely
convolved Bernoulli measures. We will generalize his account here. In contrast to
Garsia we will work on the hole shift space ¥* and consider all measures pg for

p e MET o).
Let ~, 3 be the equivalence relation on X* given by
n—1 n—1
i~ joe DBt = > s
k=0 k=0

and define a partition II,, 53 of ¥ by II, 3 = ¥*/ ~, 5. Recall that entropy of a
partition IT with respect to a Borel probability measure p on X7 is

— > pu(P)log u(P).

Pell

We denote the join of two partitions II; and II, by II; V II;. This is the partition
consisting of all sections AN B for A € II; and B € Il,.

The following lemma is easy to proof but essential for us.

Lemma 9.2.1.

The partition II,, g V 0~ "(Il,, ) is finer than the partition II,,,, g and the sequence
H, (11, ) is sub-additive for a shift invariant measure p on .

Proof

We have that 0~ "(Il,, 3) = £7/ =,,» where =, ,, is given by

n+m—1 n+m—1

s > s = > sk
k=n k=n

and hence II,, 53 V 0 "(Il,,, 3) = X7/ &, ;m Where

|
(
.

—~n,m

n+m—1 n+m—1

n—1
i R § e Y B = Z]kﬁk and Z Wt =Y st
k=0 k=n

Now obviously i ~pnm J = & ~nymp j. Thus I, gV o7 "(Il,, 3) is finer than the
partition II,, 4, 3.
Now let u € M(X*,0). By well known properties of H,, (see 10.13. of [DGS]) we
have:

Hy(Wnm,p) < Hy(Mpg Vo™ (I )

< HM(Hn,ﬁ> + Hu(gin(nm,ﬁ)) = Hﬂ(Hnﬁ) + Hu(Hmﬁ)
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We can now define the Garsia entropy G(u) for a shift invariant Borel probability
measure j, on YT:
H, (1L, . H, (1T,
Gp(p) == lim A, (I.5) = me.
n—->00 n n n

The limit in the definition exists and equals the infimum because the sequence
H,(IL, 5) is sub-additive. If we have a ¢ invariant measure p on the full shift space
¥ ={-1,1}#, we define the Garsia entropy of u as Gs(u) := Gg(pry ), where pr,
is the projection of ¥ onto X*. Gg(pryp) is well defined because prp is o invariant
if p is o invariant.

Let us think a moment about the asymmetric case. We could define partitions
of ¥T in the same way as in the symmetric case. But an analogon of Lemma 9.2.1.
does not hold and the limit in the definition of the Garsia entropy does not have to
exist.

The Garsia entropy Gg(p) is less equal to the usual metric entropy h,(o) for a
o invariant measure pu, since the partition of ¥ into cylinder sets of length n is
finer than II, 3. If 3 is not the solution of an algebraic equation with coefficients
in {—1,0,1}, these partitions are identical and Gg(p) = h,(o) holds. Also the
partitions II, 3 are not in general generated by a transformation we can show that
the Garsia entropy G, interpreted as a function on the space of ¢ invariant Borel
probability measures on X1, has typical properties of an entropy.

Proposition 9.2.2.

The function p —— Gp(p) is upper-semi-continuous and affine on the space of o
invariant Borel probability measures on XT.

Proof

We first prove that the function is upper-semi-continuous. Let wu, 1, be ¢ invariant
Borel probability measures with p, — p. Fix e > 0.
From the definition of the Garsia entropy we know there exists an k such that,

H (Hk,B) €
> TRVIRPS 2
Gslp) =2 —— 5

The elements of the partition IIj s are finite unions of cylinder sets in £* and hence

open and closed. Thus we know that, lim,_. 11,(P) = p(P) VP € I} 5.

Hence there exists an ng such that for all n > nyg
1

E|Hu(nk,ﬁ> — H,, (Il 5)| <

DO

64



Using both inequalitys and 9.2.1. we have:

1

Gpp) 2 4 Hy, (Wkp) — € 2 Golhn) — .

This proves upper-semi-continuity.

Now let pq, 1o be o invariant and p = puy + (1 — p)ue with p € (0,1). For all
partitions II the inequality

0 < —pH,, (1) — (1 — p)H,, (I1) + H,(I1) < log2

holds (see proposition 10.13. of [DGS]). Thus by the definition of the Garsia entropy
we have Gg(p) = pGa() + (1 — p)Gp(p2). But this means that G is affine.

O

The next proposition shows the significants of the Garsia entropy in our discussion.

Proposition 9.2.3.

Let 8 € (0.5,1) be the reciprocal of a PV number and p be a shift invariant Borel

probability measure on XT. We have Gz(u) < log 37'. Moreover if us is singular
then Gs(u) < log 57! holds.

Garsia sketched in [GA1] a proof of the inequality G4(b) < log 3! using a slightly
different notion of Garsia entropy. We will adopt some of his ideas in our proof.
Proof

Fix 3. Define 7, from ¥ to [—1,1] by m,((sx)) = Sr—s sx(1 — B)B* and let
ftn = pom, . Let #(n) be the number of distinct points of the form Y725 £(1— 3)3*
and w(n) be the minimal distance between two of those points. Furthermore denote
the points by z* i = 1...4(n) and let m? be the p measure of the corresponding
elements in II,, 3, which means m}' = u,(z}).

We first state a property of PV numbers we will have to use here, see proposition
B2 of appendix B:

B71is PV number = 3 ¢:w(n) > 6™
Since (f(n) — Nw(n) < 2 we get #(n) < 4dw(n)™! < ™™ with ¢ := 4.

From this we have that H,(II,5) < logf(n) < logc + nlog3~' and hence
Gp(p) <log 3.
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Now we assume that pp is singular. It follows that there exists a constant C' such
that:
Ve > 0 3 disjoint intervals (a1, b)), ..., (ay,b,) with

u

Y (h—a) <e and pg(0) > C where O :=J(a,b).

=1 =0

With out loss of generality we may assume pg(a;) = pg(b) =0for i =1... u. It
is obvious that the discreet distribution p, converges weakly to pz. Thus we have:
Inyi(e) Yn > mnq(e) : wu,(O) > C. We now expand the intervals a little bit, so that
their length is a multiple of w(n).

kin :=max{k | kw(n) < @} ain:= k,w(n)

ki i=min{k | b < kw(n)} b, = kw(n)

Since w(n) — 0 we have:
dna(€) > ny(€) VYn > no(e) 1 (apn, byy,) disjunct for [ =1...u and

> (bin — @) <€ and pn(O) > C  where O = U (ain, bin).
1=0

=1

Let #(n) be the number of distinct points 7 in O. Since in one interval (g, by,,)
there are at most k;,, — k;,, points 27 we have w(n)i(n) < e and hence f(n) < ec3™".
For all n > ny(€e) we can now estimate:

fi(n)
H,(Il,5) = = > mi'logm} = — Y mllogm — > mlogm]

i=1 z7el z}¢0
< 41 (0) log ui((%)) + (1 = 1 (0)) log %

< 1in(0)log 3(n) + (1 — 11 (0)) log #(n) + log 2
< pn(0)log e 4 (1 — 1, (0)) log ¢f~" + log 2

< nlogB '+ Cloge + logc + log 2.

If € is small enough we have H,(Il, 3)/n < log~" for all n > na(e). With the
sub-additivity of H,(Il, g) the desired result follows.

O

In the special case that (3 is the golden ratio there exists an explicit formula for the
Garsia entropy of the equal-weighted Bernoulli measure found by Alexander and
Zagier:
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Theorem 9.2.4. [AZ]

> Ky 2
1 :1 2_7 l . 14...
G 5., (b) = log 18Z4n ( g\/g_l) 0.9957

2

where k.= > (p+q)log(p+q)
ay,...,a EIN
al+...+ag=n
p/q=(ay,.,at)
and (ay,...,a;) denotes the continuous fraction.

This theorem was also proved by Sidorov and Vershik [SV]. One needs quit deli-
cate combinatorial considerations to find this formula and it seems to be very hard
to prove a formula for other reciprocals of PV numbers. We do not want to include
the prove of 9.2.4. here but we like to present a very nice interpretation of the Garsia
entropy of Bernoulli measures in the light of the articles [AZ] and [SV].

If § is the reciprocal of a PV number we define an infinite binary graph associated
with 3. We label the edges of the graph with —1 each left and +1 each right. The
vertices at the n th level of the graph are supposed to correspond to the points x of
the form x = Y77 s,8" with s, € {—1,1} and paths are the sequences (so, . .. $,_1)
treated as the representations of these points. If § = ‘/_2 L this graph is called the
Fibonacci graph.

Now we may think of a random walk on such a graph where we go left with proba-
bility (1 —p) and right with the probability p. The probability to reach a vertex z at
the n-level of the graph is in our notation just b,(P) where P is the element of the
partition II, 3 corresponding to x. The entropy of the random walk, we described,
is the Garsia entropy Gg(bP).

What has been done in [AZ] and [SV] is (in some sense) to count the number
of paths in the Fibonacci graph that reach a vertex x at the n’th level of the graph.
This allows to calculate b(P) for P € II | o1 and hence the Garsia entropy G V1 (b)

resp. the entropy of the random walk w1th transition probabilities (1/2,1/2) on the
Fibonacci graph.
We remark that this approach is not strong enough to calculate G 5, (b°) if p # 0.5.

2
One would have to know not only how many paths reach a vertex, but also how many
of them have a given number of steps, say, to the right. It seems awkward to count
these quantities.
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Figure 5: The Fibonacci graph

We end these section with a conjecture about Gz(b”) as a function in p.

Conjecture 9.2.5.

G(bP) is a continuous unimodal function in p with maximum at p = 0.5.

In the case that g = % we have some (vague) numerical evidence for this conjec-
ture. Moreover we think that it gets intuitive plausible, if we look at symmetries of
the Fibonacci graph.

9.3. An upper bound on the dimension of Erdos measures

We will here prove an upper bound on Hausdorff dimension of all measures jg in
terms of the Garsia entropy. In view of our result about the Garsia entropy in 9.2.3.,
if 3 is the reciprocal of a PV number, this bound is of special interest if we consider
Erdos measures.
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Because we will operate with Rényi dimension dimpg (see appendix A) we are inter-
ested in an upper bound on the quantity

h,(e) = inf{H,(II)|II a partition with diamlII < €}

by the entropy of the partitions II,, 5 of 3. The following lemma plays the crucial
role in our argumentation.

Lemma 9.3.1.

hyus (26") < H,(T1,, )

Proof

Fix 5 € (0.5,1), 7 € (0,0.5), a measure p on X+ and n € IN.
We define a partition of Ag, by @, = ms,(Il, 3). By definition we have

HM<Hnﬂ) = Hug;(@n)-

We should say something about the structure of g,,. The image of a cylinder set
[igy - .y in—1]o in X7 under mg, is the part of Ag, lying in the rectangle T; ,o...o0
T;,(Q) of z-length 24™. It is not difficult to check that two cylinder sets lie in the
same element of I, g if and only if the corresponding rectangles lie above each other.
So the projection of an element in @, onto the x-axis has length 23™.

The projection onto the z-axis of two elements in @, may overlap. Starting with
©n, we want to construct inductively a partition @, of Ag, with non-overlapping
projections, in a way that does neither increase length of the projections nor entropy.
Let N(p) be the number of pairs of elements in a partition p that do have overlapping
projections onto the z-axis. We now construct a finite sequence pﬁ of partitions.
First let 9 = p,. Now let pF be constructed and N(pF) > 0.

Let P, and P, be two elements of pF with overlapping projections. Without loss of
generality we may assume pg - (P1) > pg.(P) and define:

P =P U(PN (pryP x [-1,1])) Py = P\(prx P, x [—1,1]).

We have PLUP, = PLUP,, P C P and P, C Ps. )
Thus we know: pg,(P) + pg.(P) = ,uﬁ,T(Pl) + pp-(Ps) and

- (P) > ps-(P) > ps-(Pa) > ps-(Pa).
Since the function —x logx is concave, this implies:

_<:U’B,T(p1) IOg H,B,T(Pl) + M,B,T(p2> log N,B,T(p2)) S
—(upr(Pr)log pg-(Pr) + ppr(FP2)log pg - (F2)).
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k+1
n

Hence if we substitute 151, ]52 for Py, P,, we get a partition p
increased entropy.

From the definition of P, and P, we see that er]f’l =prx P, erPQ C prx P, and
that the projections of P, and P, onto the z-axis do not overlap. So the length
of the projections are obviously not increased. Furthermore we observe that there
cannot be any new overlaps of the projections of P, or P, with the projections
of other elements in E*, that do not appear, when we consider P, or P,. Hence
N(gpptt) < N(pp).

So after a finite number of steps we get a partition @, with

of Ag, with non-

Hl‘*ﬂ,-r (pn) 2 H)U’B,T (ﬁn)’

non-overlapping projections onto the x-axis and diam prx @, < 26".
prx@n is a partition of the interval [—1, 1] and we have

Hug (pTX@n) = H/w,f(@n)7

since the measure g is the projection of g, onto the z-axis. Now the proof is
complete:

g (26") < Hyy(prxcon) = Hyu,, (90) < Hy, (9n) = Hy(I5).
O

The idea of cutting up overlaps we used here appeared in an other form in the
work of Alexander and Yorke [AY]. From our lemma it is easy for us to deduce the
following proposition:

Proposition 9.3.2.

If u is a shift ergodic Borel probability measure on X1 we have:
dimyr p15 < G(p)/log 57"

Proof

First we estimate the Rényi dimension:

M) g, B0 g P25
loge—! log 0.55—™ nlog /1

n—oo nlog 6~ log !

dimppug = lim, oo

Using part (2) of theorem A2 from appendix A we get:
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Vo > 0 3X with ug(X) > 0 and d(z, ug) < Gg(p)/log3 1+ Vz e X.

But the measure pg is exact dimensional, because it is the transversal measure in
the context of the ergodic dynamical system (Ag g+, 155+, 4,5.-+). This fact was
observed by Ledrappier and Porzio, see [LP]. So our estimate must hold ug-almost
everywhere and by part (3) of theorem A2 we get dimpy pug < Gg(p)/log 371+ for
all 9 > 0. This proves the proposition.

O

Let us here again remark that Alexander and Yorke [AY] have proved the identity
dimpg bg = Gg(b)/log 37! for the equal-weighted infinitely convolved Bernoulli mea-
sure bg. In their proof they used the self-similarity of this measure. Our proof of
9.3.2. shows that appealing to self-similarity is not necessary for the upper bound.

At the beginning of this section we have formulated our main result in theorem
9.1.1. . We are now able to give the proof of this result.

Proof of 9.1.1.
Let § € (0,5, 1) be the reciprocal of a PV number. We have for all u € M(X*,0):

g is singular =923 Gs(p) < log 371 =32 dimy tp < 1 = g is singular.

These implications prove the first statement of our theorem. Now choose an Erdos
measure £z with dim&g < 1. We have G3(§) < log 3~!. By upper-semi-continuity
of G (9.2.2.) Gps(p) < logB~! and hence dimpuz < 1 holds for all g in a hole
weak™ neighborhood of ¢ in M (X", o). Thus the set {u € M(X, 0)|us is singular}
is open in the weak™ topology on M (X, o). The set contains the Bernoulli measure
by proposition 9.1.2. .

9.4. Construction of an Erdos measure with full dimension

Let 37! be a PV number as usual. We will construct here a measure m € M(X*, o)
(depending on 3) such that the Erdds measure mg has Hausdorff dimension one.
From the proof of our main theorem 9.1.1. we know that it is sufficient to find a
m € M(X*,0) of full Garsia entropy, which means Gg(m) = log~!. In ergodic
theory there is a quite natural construction of an invariant measure with maximal
metric entropy, see 4.5. of [KH] or 18 of [DGS]. We will use a similar construction
for the Garsia entropy.

71



Proposition 9.4.1.

Let 8 € (0.5,1) be the reciprocal of PV number. There exists a measure m €
M (X", o), such that Gg(m) = log 37! and hence dimpy mg = 1.

Proof

In this prove we will omit the subscript 3. We first construct a shift invariant mea-
sure m with Gg(m) = log 37! and afterwards prove the existence of an ergodic one.

Recall that #5(n) denotes the number of elements of the partition Il5,,. Now choose
measures m,, € M(X1) such that

mn(P) = 1/83(n) VP e llg,

and let m be a weak™ accumulation point of the sequence

1 n—1 )
My = —Zmnoa_l.
" izo

By this construction we immediately have that m is invariant under o.

Given two partitions g; and gy on X1 we write @; =< (o if gy is finer than ;.
Note that o1 < g2 = 0 %(p1) = 07 F(p2) and o7 % (1 V p2) =X 07"(p1) V 07" (p2)
where V denotes the join as usual. Recall that we know from lemma 9.2.1.
M, m =1L, Vo(IL,). From these facts we get by induction I,, < /¢ o~"(P,).
Let |x] be the integer part of z. Given n and g and k with 0 < ¢ <nand 0 < k < ¢
we set a(k) = | (n—k)/q] and write n — k in the form a(k)q+r with 0 < r < q. We
get
Sn 20 (S0 k) VIR 20 (Sayg) Vo @BTR(S ) v vy
a(k)—1
=< \/ O_—z‘q—i-r(zq) v/ O_—(a(k)q—l—k)(zr) vV Y,
i=0

and hence

a(k)—1
Hy(S0) < D7 Hyn, (07 ()) + Ho, (07 “WT(8,)) + Hi, (24
1=0

a(k)—1
< Y Hp,(079(E,)) + 2qlog 2.
i=0

The last inequality follows from the fact, that the partitions ¥, and X, have less
than 29 elements. Now summing over k gives

g—1a(k)—1
Yo Y Hu (07 H(S,)) + 207 log 2 < nHp, (5) + 24 log 2.

[
3
3
\
N
IN
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This implies

H, (2, H; (X2
n q n
By the definition of the measures m,, we have H,,,(¥,) = log(n) and from propo-
sition B2 of appendix B we know #(n) > C3~". This gives us:

log 37 +

logC  Hp, (E
ogC< a q)+210g22.
n n

By the definition of m we thus have log 7! < H,,(%,)/q, which implies log 57! <
G(m). The opposite inequality has been proved in 9.2.3. .

We have shown up to this point that the set M := {u|p o-invariant and G(u) =
log 371} of Borel measures on ¥ is not empty. We know from 9.2.2. that G is up-
per semi-continuous and affine, which implies that M is compact and convex with
respect to the weak” topology. By Krein-Milman theorem there exist an extremal
point m of M.

We show that m is extremal in the space of ¢ invariant Borel probability measure
and hence o ergodic.

If this is not the case we have m = pu; + (1 — p)us for two distinct o invariant
measures i1 and pe and p € (0,1). Since p is extremal in M we have that u; or pe
is not in M. From 9.2.3. it follows that G(u;) < log 8~ or G(us) < log8~!. This
implies G(m) < log 37! because G is affine. This is a contradiction to m € M.

O

We remark here that we do not know if the measure of full dimension in the last
proposition is unique. The construction describe is not unique. Obviously one can
choose the measures m,, in different ways. But it is not clear, if this induces different
Erdos measures of full dimension.
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10. Number theoretical peculiarities

10.1. Ergodic Measures

Now we study the ergodic measures for the systems (Ayg,Ty), (Ay,fy) and
([-1,1]2, f3) in the case that ¥ = (3,3,7,7) € P, and (3 a reciprocal of a PV
number. We concentrate on the variational principle for Hausdorff dimension.

Theorem 10.1.1.

If 3 is the reciprocal for a PV number we have:

(1) The variational principle for Hausdorff dimension does not hold for the Fat
Baker’s transformation ([—1,1]?, f3).

(2) The variational principle for Hausdorff dimension does not hold for the attrac-
tors (&g, fﬁ) where ¥ = (3,3, 7,7) and 7 is sufficient small.

(3) For the repellers (Ay, Ty) with ¥ = (5,3, 7,7) and 7 sufficient small Bernoulli
measures do not have full Hausdorff dimension.

Remark

This theorem compared with our results in chapter seven shows that the dimensional
theoretical properties of a dynamical systems can considerably change because of
number theoretical peculiarities. Particular looking at the attractors (Ag, ﬁg) for 7
small and on the systems ([—1,1]2, f3) we see that in situations, where the varia-
tional principle for Hausdorff dimension generically holds, it does not have to hold
generally because of such peculiarities. Looking at the repellers (Ay, Ty) for 7 small,
we see that generically a Bernoulli measure of full dimension is available but if the
parameters have special number theoretical properties then such a measure does not
exist. This provides substantial difficulties. We can not decide with our technique
whether there exists a measure full dimension for (Ay, Ty) if 5 is the reciprocal of a
PV number .

Now we want to proof theorem 10.1.1.
Proof of 10.1.1.
(1) Let p € M(X,0). By 5.3.5. and 9.3.2. we have:
dimpg fig < 1+ dimg(prp)s <1+ Ga(prtu)/log 3.

By 9.2.2. and 9.2.3. Gg(prtu)/logB3™' < ¢; < 1 holds for all p in hole weak”
neighborhood U of b in M (X, ). Hence dimpy fig < ¢; +1 < 2 holds for all 1 in U.
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On the other hand we have by the properties of the metric entropy h,(c)/log2 <
¢z < 1 on the complement of U. With 5.3.4. it follows that dimpy fig < ¢y +1 < 2
holds for all € M (X%, 0)\U. Putting these facts together we obtain:

dimpg fig < max{ey,co} + 1 < 2 = dim[-1, 1]? Vue M(E,0).

But by 3.2.4. all ergodic measures for the system ([—1,1]?, f3) are of the form jig
for some p € M (3, 0). So the proof is complete.

(2) Let p € M(X,0). By 5.3.2. we have:
< hu(o) — hu(o) - log 3

dim /i di ).
o ps = log2  log7—1! logT) i (pre)s
This implies
h log 2
dim jiy < 14 1l?) | Jog20
log2  log7~!

and combined with 9.3.2.

Ga(prtp) | log2p
log 2 log7—t

By the same arguments we used in (1) we now see

log 23
log 71

dimy fig < max{cy, 2} + 1+ Vu e M(X, o)

where the constants ¢y, co are the same as in (1). If 7 is sufficient small we get
dimy fi3 < ¢ < 2 < dimp Ay

for all € M(Z,0). But by 3.2.5. all ergodic measures for the system (Ay, fy) are
of the form fig for some p € M(X, o). This completes the proof.

(3) From 5.3.3. we know

—pl — (1 —p)log(1l —
dimyy 1, — —P1o8P ( z?) og(1 —p) +a
log 71

log 3
log T

From 9.1.1. we have dimy bj; < ¢ < 1 for all p € (0,1). This implies

log2 + clog 3

di bh <
mpg by < c+ log 71

Vp € (0,1).

If 7 is sufficient small, we get our result:
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10.2. Invariant Sets

We prove here upper bounds on the Hausdorff dimension of the repellers Ay and

attractors Ay in the symmetric situation ¥ = (3, 3,7, 7) € P4, under the assumption,

that 47! is a PV number. An important consequence of this upper bound is the
following theorem:

Theorem 10.2.1.
If 3 is the reciprocal for a PV number, 7 € (0,0.5) and ¢ = (3, 3, 7, 7) we have:

dimg Ay < dimgAy and  dimpg Ay < dimp Ay.

Remark

If we compare this result with 7.1. we learn that dimensional theoretical properties
of invariant sets of a dynamical system can considerably change because of number
theoretical peculiarities of parameter values. For our classes of attractors and re-
pellers we generically have the identity for Hausdorff dimension and box-counting
dimension, but for parameter values with special number theoretical properties this
identity does not hold.

To get 10.2.1. we prove now explicit upper bounds on the Hausdorff dimension

of Ag.

Proposition 10.2.2.
If 3 is the reciprocal for a PV number, 7 € (0,0.5) and ¢ = (3, 3,7, 7) we have:

log B

log(ZPeHnﬁ (gP)mes)
nlog f—1

where II,, 5 is the partition of X% defined in 9.2. and §P denotes the number of
cylinder sets of length n contained in an element of this partition.

Proof

Fix a reciprocal of a PV number 3, 7 € (0,0.5) and ¢ = (3,3, 7,7). Let n > 1 and

set
log 8

 log(Xpem, ,(P) =)
" nlog B—1
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Consider the set of cylinders in X% given by C,, = {[5152... 8]0 | i € {—1,1}" i =

1...m}. Define a set function n on C,, by

ﬁp(g)logﬂ/logr
1P(38)

where §, 31, ... 5, are elements of {—1,1}" and P(3) denotes the element of the par-
tition II, 5 containing the cylinder [5]o.

n([5]o) =

g and ([8182 - .. Smlo) = n([51]o) - n([52]o) - - - - - N([Smlo)

Note the facts that C, is a basis of the metric topology of Y and that
Ysef—1,13n 1([8Jo) = 1 by the definition of u,. Thus we can extend 7 to a Borel
probability measure on X7,

Now recall that the map my = 73 5, given by

ma(s) = <§i;si<1 - ﬁ)ﬁi,isi(l o))

is a homeomorphism from %+ onto Ay. Thus s, :=nom," defines a Borel proba-
bility measure on Ay.

Given m > 1 we set ¢(m) = [m(log(/logT)]. Given a sequence §; € {—1,1}"
for i = 1...m we define a subset of Ay by

R§1..‘§n - {(Z Sl(]- - ﬁ)ﬁla th<]‘ - T)Ti> | Siati € {_17 1}
i=0 i=0

(S(i,l)n,...,sm_l) = 52 1=1...m and (t(ifl)na“-ytin—l) = .§7, 1= 1q(m)}
We see that Rz, is "almost” a square in Ay of side length 3™". We have:

/" < diamRg 5, < ™ (1)

where the constants ci, ¢y are independent of the choice of §;.

Now let as examine the ng, measure of the sets Rz, ..

Assume that ; ~n.p 8 for i = g(m) +1...m where ~, 3 is the equivalence relation
introduced in 9.2. . The rectangles my([5; ... §q(m)fq(m)+1 ... tm]o) are all disjoint and
lie above each other in the set R; ;. . Hence we have

N+ (R .5,) > 1( U To([S1- - Sgemptamy+1 - - - tmlo) =

ti~n,38; i=q(m)+1..m

- Z (51 Sqm)tq(m)+1 - - tm]o).-

fiNn,ﬁgi i:q(m)—‘rl...m



Using the fact § ~, 3 = §P(3) = tP(t) = n([3]o) = n([t]o) this equals

m . m )log B/ log T —
[T7n((50) > H &) g > 1=
1=1 Eiwn’ﬁgi i:q(m)+1...m 1=1 t~z"\‘n,ﬁ§i i:q(m)+1...m
H;nl IjP( )bgﬂ/logTﬁmnun _ (¢~ _ ﬁnun)m
e P(5) o
where

[T, 2P(3,)/ 50 08T
1 1P (3,)

Now fix an € > 0 We use the sets Rg 3, to construct a good cover of Ay in the
sense for Hausdorff dimension. To this end set

Ry, :={Rs, 5,05 5, > 0"}

We have an upper bound on the cardinality of R,,. If R € R,, then ng.(R) >
gmnlunte) and since N, 1s a probability measure we see:

¢§1...§m = (

card(R,,) < g=mnunte (2).

Now let R(M) = U,u>n Rim. We want to prove that R(M) is a cover of Ay for all
M>1.

For s = (sx) € ¥ we define the function ¢, by ¢,,(s) = bs,..5,.,_,- In addition we
need two auxiliary functions on X7:

H;i(] JjP<(S(i—l)n7 D) Sin—l))l/m
I EP(((-1yms -« -5 Sim2)) /50

fm(ﬁ) =

Y

q(m)
= ( H ﬁp((s(i_l)m o ’Smﬂ)))l/Q(m)(logBlogffq(m)/m)_

Since 1 < #P(8) < 2" we have 1 < gp(s) < 2r(esB/logr=a(m)/m) = Thys by the
definition of q(m) we have g¢,,(s) — 1. Moreover we have lim,, . fm(s) > 1
because [T'_g 4P ((si_1m, ..., Sin_1))/t > 1 ¥Vt > 1.
A simple calculation shows ¢y, (s) = (fin(s))°8%/1%67 g, (s). The properties of f and
g thus imply:

lim,, ooPm(s) > 1 VseXxt.

This will help us to show that R(M) is a cover of Ay. For all s = (s) € 3T there is
an m > M such that ¢,,(s) > (" and thus my(s) € Ry, € R(M). Since my

77777 Smn—1
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is onto Ay we see that R(M) is indeed a cover of Ay.

We are now able to complete the proof. For every ¢ > 0 and every M € IN we

have:
d (diamR)* ™= > 3" (diamR)*t*
RER(M) m>M RER,
S(l) Z Z (C2ﬁmn)un+2e — Z Card(Rm)(czﬂm")U“He
m>M RERm, m>M
<( ) CQQLTL+26 Z ﬁmne'
m>M

The last expression goes to zero with M —— 0. By the definition for Hausdorff
dimension we thus get dimy Ay < u,,+2¢ and since € is arbitrary, we have dimyg Ay <
U,

O

Some ideas we have used here are to due the prove of McMullen’s theorem (2.1.2.)
by Pesin in [PE2].

Now we use strategies developed in the proof of 9.2.3. to get:

Proposition 10.2.3.
If ( is the reciprocal for a PV number, 7 € (0,0.5) and 9 = (8, 3, 7, 7) we have:

log 8

log(Xpem, ,(4P) 7)) log(28/7)
nlog 31 log(1/7)

AN Vn>N

Proof

Fix a reciprocal of a PV number (. Consider the proof of 9.2.3. for the equal
weighted Bernoulli measure b. Recall that we denote by z' i = 1...f(n) the dis-
tinct points of the form >}~ é +(1— 3)p* and by m? the b measure of corresponding
element P! from the partition II,, 5.

By the singularity of bg we have more than we used in 9.2.3. :
VC € (0,1) Ve > 0 3 disjoint intervals (aq,b1), ..., (ay,b,) with

Y (h—a) <e and bg(O) > C where O := | J(a,by).
=1

=0
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By the same arguments we used in the proof of 9.2.3., we conclude:
Jde>0VC € (0,1) Ve >0 3IN = N(e,C) Vn > N:

> m!>C and £(n) == card{z? € O} < ecf™.

xr €0

Since mj = b(P,) = §P; /2", where £P denotes the number of cylinder sets of length
n contamed in P, it follows that there is a subset II,, 4 of I, 3 with #(n) elements
such that

> tp>C2"

PEﬁn,g

Now we estimate:

Z (hP)logﬁ/logfr: Z (hp)logﬁ/logr+ Z (ﬂp)logﬁ/logr

Pelly, g Pefl,, 5 Pelly g\Pin,p

ﬁ(n)lflog,@/logf( Z ﬂP)IOgﬁ/IOgT(tKn)_a(n»lflogﬁ/log‘r_'_( Z 1jp)logﬁ/lOgT

Peﬁnﬂ PEHn,B\Pin,B

IN

< (Ecﬁ—n)l—logﬁ/logTinogB/logT + (Cﬁ—n)l—logﬁ/logr((l . 0)2)nlog,@/log7—
_ ﬁn(logﬂ/10g7—1)2nlogﬂ/10g‘r((60)1—10g5/10g7 + Cl—logﬂ/log—r(l . C>10g5/10g7)‘

Now choose € and C such that ((ec)!™1088/1oe7 4 cl-logf/logT(] _ (O)logf/logT) < 1,
For all n > N(¢,C') we have:

log 8
log(ZPEHn’@(JjP) log‘r) 10g<26/7_> log((ec)l—logﬁ/logr + Cl—log,@/log'f(l o C)logﬂ/logT)

nlog 51 log(1/7) nlog 51

The last term in this sum is negative and hence our proof is complete.

O
Now the proof of our theorem is obvious:
Proof of 10.2.1.
From 4.1. we know that the box-counting dimension of Ay is given by

log(28/7)/log(1/7) in the situation we study here. Thus 10.2.2. and 10.2.3. imme-
diately imply dimy Ay < dimpg Ay. The inequality dimg Ay < dimpg Ay follows from
this with the help of proposition A5.
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We end this work with three problems concerning number theoretical peculiarities
that we were not able to solve.

Open problems

(1) What is the Hausdorff dimension of Ay if [ is the reciprocal of a PV number,
7€ (0,0.5) and & = (B, 5,7,7)7

(2) Does the variational principle for Hausdorff dimension hold for the systems
(Ay, Ty) in this situation?

(3) Are there number theoretical peculiarities for the systems (Ay, Tj), (Ayg, fy) and
([=1,1], f3,.5,) in the asymmetric situation, ¥ = (3y, B2, 71, T2) € Py with 8 # (357
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Appendix A: General facts in dimension theory

We will here first define the most important quantities in dimension theory and then
collect some basic facts. We refer to the book of Falconer [FA1l] and the book of
Pesin [PE2| for a more detailed discussion of dimension theory.

Let Z C IR?. We define the s-dimensional Hausdorff measure H*(Z) of Z by

H*(Z) = /\limo inf{} "(diam0;)°*|Z C | J U; and diam(U;) < A}.
— icl icl
The Hausdorff dimension dimy Z of Z is given by
dimy Z = sup{s|H*(Z) = oo} = inf{s|H*(Z) = 0}.

Let N.(Z) be the minimal number of balls of radius € that are needed to cover Z.
We define

the upper box-counting dimension dimp resp. lower box-counting dimen-
sion dimp of Z by

log N.(Z)

log N.(Z)
—loge '

dimgZ = lim._ 1
—loge

dlmBZ - h_me_,o
We remark that these quantities are not changed if we replace N.(Z) by the min-
imal number of squares parallel to the axis with side length e that are needed to
cover Z. Furthermore we note that limit in the definition exists, if it exists for some
exponential decreasing sequence.

Now let © be a Borel probability measure on /R?. We define the dimensional theo-
retical quantities for u by

dimpy p = inf{dimy Z|u(Z) =1}

and
dimpu = limO inf{dimzZ|u(2) > 1 — p}.
p—)

We introduce one more notion of dimension for a measure p. Let h,(e) =
inf{H,(I1)|IT a partition with diamll < e} where H,(II) is the usual entropy of IL.
We define the upper Rényi dimension dimp resp. lower Rényi dimension dimg
of Z by

- — h h
dlmRZ = hme_@”ie Ch_rI”%Z - h_m6—>0 H(E) .
—loge —loge

The upper local dimension d(x, ) resp. lower local dimension d(z, ) of the
measure 4 in a point z is defined by

p(Be(x))

(Be(z))
log € ’

d(z, ) = Mme o=

a(fL’, :LL) = me—@
Basic relations of the dimensions defined here are stated in the following proposition
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Proposition Al

(1) dimy Z < dimpZ < dimpZ holds for all Z C IR,
(2) dimy p < dimgu < dimpp holds for all Borel probability measures p on IR,
(3) dimpu < dimpp holds for all Borel probability measures p on IRY.

The first two inequalities are obvious and third one is proved in [YO]. The rela-
tions between the local dimension and the other notion of dimension of measures
are described in the following theorem:

Theorem A2

(1) d(z,pn) < c-ae. = dimgu<c.

(2) d(x,p) > c-ae. = dimpyp > cand dimpp > c.
(3) d(x,p) < c-ae. = dimpu <ec.
(4) d(x,p) = d(x,p) =c ae. = dimgp=dimpu = dimgpu = c.

A proof of this theorem is contained in the work of Young [YO]. If the condition in
part (4) of the last theorem holds, the measure p is called exact dimensional and
the common value of the dimensions is denoted by dim p. In particular absolute
continuous measures are exact dimensional:

Proposition A3
If i is an absolutely continuous Borel probability measure on IR? then d(z,u) =

d(z,p) =q p-ae. .

One basic fact we have to mention is that dimensional theoretical quantities are
not increased by Lipschitz maps and are hence bi-Lipschitz invariants.

Proposition A4

Let f be a Lipschitz map from IR? into itself then we have:

(1) dimp,y f(Z) < dimp,y Z for all Z C IR1.

(2) dimp/g po f~! < dimp, g p for all Borel probability measures p on IR?.
Here dimpg can be both upper and lower box-counting dimension.

The proof of this proposition is obvious from the definitions. FEspecially we see
that a projection on a linear subspace of IR? does not increase Hausdorff and box-

counting dimension of a set or a measure.

There is one other elemental fact we use in our work:
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Proposition A5

If Z C IR? and [ is an interval then dimpy,p(Z x I) = dimp/p +1, where dimp can
be both upper and lower box-counting dimension.

The statement for Hausdorff dimension follows from proposition 7.4. of [FA1] and
the statement for box-counting dimension is easy to see using 3.1. of [FA1].

At the end of this appendix we like to remark that the terminology in dimension
theory is not unique. What we called box-counting dimension is also known as
Minkowsky dimension or as capacity. The Rényi dimension is often called informa-
tion dimension.
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Appendix B: Pisot-Vijayarghavan numbers

A Pisot-Vijayarghavan number (short: PV number) is by definition the root of
an algebraic equitation whose conjugates lie all inside the unit circle in the complex
plane. Salem [SA] showed that the set of PV numbers is a closed subset of the reals
and that 1 is an isolated element.

In our context we are interested in numbers 3 € (0.5,1) such that 87! is a PV num-
ber. We list some examples including all reciprocals of PV numbers with minimal
polynomial of degree two and three and a sequence of such numbers decreasing to

0.5.

2+ —1 (vV5-1)/2
r+ri+ar—1 0.5436898. ..
A | 0.754877 . ..
x>+ x—1 0.6823278. ..

3 — 2420 -1 0.5698403. ..
-3 -1 0.7244918. ..
a4+ +x—1] r,— 05

Table 1: Reciprocals of PV numbers

An important property of PV numbers is that their powers are near integers. More
precise:

Proposition B1

If @ is a PV number then there is a constant 0 < 6 < 1 such that ||a"||z < 0"
Vn > 0 where ||.|| denotes the distance to the nearest integer.

This statement can be found in [ER1]. There is an another property of PV numbers
that is of great importance for us. For § € (0,1) we denote by #3(n) the number of
distinct points of the for 725 +4* and by ws(n) the minimal distance between two
of those points.

Proposition B2

If 3 € (0.5,1) is the reciprocal of a PV number then there are positive constants
¢> 0 and C > 0 such that wg(n) > 6™ and £5(n) > CB~! holds for all n > 0.

For the first inequality we refer to [GA2] lemma 1.6. and for the second inequality
see (15) of [PU]. Finally we like to mention that there is a whole book about Pisot
and Salem numbers [BDGPS]. Certainly the reader will find much more information
about the role of these numbers in algebraic number theory in this book than we
provided here for our purposes.
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General notations

N denotes the set of natural numbers {1,2,3,4,5,...}

N = INU{0}

Z denotes the set of integers {...,—2,—-1,0,1,2,...}

Z~ denotes the set of negative integers {—1, -2, -3, —4,...}
Z = Z~ U{0}

R denotes the set of real numbers

sup(A) denotes the supremum of a set A C IR

inf(A) denotes the infimum of a set A C IR

lim denotes the limes superior

lim denotes the limes inferior

[x] denotes the smallest integer bigger then x € IR

|x] denotes the biggest integer smaller then z € IR

|| denotes the absolute value of x € IR

d(z,y) denotes the distance between two points z and y in a metric space
B(x) denotes the open ball of radius € around = in a metric space

diam(A) denotes the diameter of a subset A of a metric space

=sup{d(z,y)lr € A ye€ A}
card(A)  denotes the cardinality of a set A
closure(A) denotes the closure of the set A with respect to a given topology
prx(A) denotes the projection of A C IR? onto the first component

pry(A) denotes the projection of A C IR? onto the second component
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prz(A) denotes the projection of A C IR? onto the third component
prxy(A) denotes the projection of A C IR? onto the first two components
prxz(A)  denotes the projection of A C IR? onto the first and the third component

pryz(A)  denotes the projection of A C IR? onto the second and the third component

Y ={-1,1}%

) = S\{(sk)|FkoVk < ko:sp=1})U{(1)}

¥t = {—1,1}"

YA denotes a Markov chain in ¥ ; see chapter eight

> denotes a Markov chain in X7 ; see chapter eight

prt denotes the projection from Y onto X*

o denotes the shift map; o((sx)) = (Sg+1)

bP denotes the Bernoulli measure on X resp. X" which is the product of the
discrete measure giving 1 the probability p and —1 the probability (1 — p)

b = V0

14 denotes the normalized Lebesgue measure on the interval [—1, 1]

mP denotes a Markov measure; see chapter eight

hiop(T') denotes the topological entropy of a continuous transformation
on a topological space; see [KH] for definition

h,(T) denotes the metric entropy of a transformation T' with respect to an
invariant measure y; see [KH]| for definition

dimp denotes the box-counting dimension; see appendix A

dimg denotes the Hausdorff dimension; see appendix A
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dimR

d(x, 1)

denotes the Renyi dimension; see appendix A

Some notations and basic relations in our work

denotes the local dimension of a measure y in a point x; see appendix A

system (Ay, f9) (Mg, Ty) (=L 1% fp.8,)
type attractor repeller endomorphism
parameters v € Py, ¥ e P, (B, B2) € P, 02lapp
projections prxy © fﬁ = J51.6:
prxzho = Ay
see page 14 page 9 page 12
coding system (2,071 (X1, 0) (2,071
coding map Ty Ty 61,62
projections prxz ofyg =mgoprt | prx omy = mg, g, Prx O Mgy 6, =
Prxy © Ty = T, 6, 61,6, O DT
see page 17 page 16 page 18
ergodic measures flo Hoo e
projections Prxy fly = jy Prxply = [, By | PTXHB 8, = (pTJrH)ﬁhﬁz
see page 23 page 21 page 21
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Zusammenfassung der Ergebnisse

In dieser Dissertation werden dimensionstheoretische Eigenschaften einiger Klassen
affiner dynamischer System behandelt. Wir untersuchen eine Klasse von selbst-
affinen Repellern und eine Klasse von Attraktoren stiickweise affiner Abbildungen,
die jeweils von vier Parametern abhangen. Dariiber hinaus betrachten wir verall-
gemeinerte Baker’s Transformationen, ein Klasse von Endomorphismen abhéngig
von zwei Parametern. Bei unserer dimensionstheoretischen Analyse leiten uns
im wesentlichen zwei Fragestellungen. FErstens fragen wir, ob die Hausdorff Di-
mension der betrachteten invarianten Mengen mit deren Box-Counting Dimension
iibereinstimmt. Zweitens fragen wir, ob auf den betrachteten invarianten Mengen ein
ergodisches Maf} voller Hausdorff Dimension existiert bzw. ob das Variationsprinzip
der Hausdorff Dimension gilt, was bedeutete, dafi sich die Dimension der betra-
chteten Menge durch die Dimension ergodischer Mafle auf der Menge approximieren
lasst. Im Rahmen dieser Arbeit konnten wir ein ganze Reihe neuer Ergebnisse
erzielen, die interessante Phanomene im Bereich der Dimensionstheorie dynamis-
cher Systeme, anhand der von uns gewéhlten Beispiele, aufzeigen. Wir denken,
daf} unsere Ergebnisse und Methoden auch bei der Entwicklung einer allgemeinen
Theorie relevant sein konnten. Wir werden nun unsere Hauptergebnisse zusammen-
fassend darstellen. Die Berechnung der Box-Counting Dimension der Attraktoren
und Repellern, die wir betrachten, ist mit elementaren Uberdeckungs Argumenten
moglich und wir erhalten eine allgemein giiltige Formel. Weiterhin zeigen wir,
daB die Box-Counting Dimension der Repeller und Attraktoren generisch (im Sinne
des Lebesgue Mafies auf Teilen des Parameterraums) mit deren Hausdorff Dimension
iibereinstimmt. Fiir die Repeller finden wir generisch ergodische Mafle voller Haus-
dorff Dimension. Auf der anderen Seite zeigen wir, dafl das Variationsprinzip fiir die
Attraktoren nicht generisch gilt. Fiir die verallgemeinerte Baker’s Transformation
gibt es Parameterbereich in denen generisch ein ergodisches Maf3 voller Hausdorff
Dimension existiert und Bereiche in denen das Variationsprinzip nicht gilt. Die
Beweise dieser generischen Resultate basieren zum einen auf einer geeigneten An-
wendung der allgemeinen Dimensionstheorie ergodischer Masse und zum anderen
auf einem Studium bestimmter selbst- dhnlicher Male. Weitere Hauptergebnisse
unserer Arbeit beziehen sich auf zahlentheoretische Ausnahmen zu unseren gener-
ischen Resultaten in einer symmetrischen Situation. Wir zeigen, dafl die Identitat
zwischen Hausdorff und Box-Counting Dimension der Attraktoren und der Repeller
nicht gilt, wenn die Parameter bestimmte zahlentheoretische Eigenschaften besitzen.
Weiterhin zeigen wir, daf fiir die symmetrische Attraktoren sowie fiir die Fat Baker’s
Transformationen das Variationsprinzip der Hausdorff Dimension unter bestimmten
zahlentheoretischen Bedingungen nicht gilt, obwohl es in diesem symmetrischen Fall
generisch gilt. Fir die Reppeller konnten wir unter diesen Bedingungen nur zeigen,
daBl kein Bernoulli Maf} voller Dimension existieren kann.
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