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Aristotle  and Modern Mathematical Theories  of the Continuum *

A G J  Newstead

1 Introduction: Mathematical and Physical  Continua

The  mathematical  structure  of the  continuum,  in  the  guise  of the  
domain  of  continuous,  differentiable  functions,  has  proved  im-
mensely  useful  in the  study  of nature.  However,  we  have  learned  
to be sceptical  of any  claim  to the  effect that  our  current  favourite  
mathematical  theory  necessarily  describes  the  actual  structure  of 
the  physical  universe.  The  continuous  manifold  of  space-time 
may  be  no  more  than  a  helpful  idealisation,  when  in  fact  space-
time  has  a  minutely  grainy  or  quantised  structure.  Nonetheless,  
the  question  of  whether  the  classical  continuum  is  an  accurate  
representation  of the structure  of space-time is a separate  question  
from the one which  we have  to answer  today.  We are interested  in  
the mathematical  concept  of the continuum  itself.

In  saying  that  we  may  develop  a  mathematical  theory  of the 
continuum  regardless  of whether  such  a continuum  is actually  to 
be found  in the  universe,  we  are  relying  on the  premise  that  there  
is  such  a  thing  as  pure mathematics, a  body  of knowledge  whose  
evidential  basis  rests  on  something  other  than  observation  of the 
physical  world.  Consider,  for  example,  the  proposition  that  the 
tangent  to a point  P on a circle’s circumference  is perpendicular  to 
the  radius  connecting  P and  the  centre  of the  circle. As a proposi -
tion  of pure  mathematics,  this  proposition  is  true  independently  
of whether  there  really  are entities  in the physical  world  that  meet  
the  mathematical  definition  of a circle, namely,  that  of a figure  all 
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of whose  points  are  equidistant  from  a given  point.  Similarly,  the 
proposition  that  the  continuum  is infinitely  divisible  is  true  as  a 
proposition  about  the  purely  mathematical  continuum  regardless  
of whether  there  are  continua  perfectly  instantiated  in the  physic-
al world.

This way  of dividing  mathematics  into  pure  and  applied,  with  
its  concomitant  separation  of  the  subject  matter  of  mathematics  
from  physics,  is quite  foreign  to Aristotle’s way  of thinking  about  
mathematics.1 In  his  view,  the  mathematician  and  the  physicist, 
are  both  interested  in  the  properties  of natural  bodies  (τα φυσικa 
σώματα),  but  they  differ  in  their  emphasis.  The  mathematician  
studies  the  properties  of natural  bodies,  which  include  their  sur -
faces and  volumes,  lines, and  points  (Phys. 193b 23-5, Waterfield).2 

The  mathematician  is  not  interested  in  ‘the  properties  of natural  
bodies  as  the  properties  of  natural  bodies,’  as  the  physicist  is 
(Phys. 193b33-4, Waterfield).  Instead,  the  mathematician  is  inter -
ested  in  the  properties  of  natural  bodies  that  are  ‘separable  in 
thought  from  the world  of change’ (χωριστα γaρ τη νοήσει κινήσεώς 
εστι) (Phys. 193b33, Waterfield).  But, Aristotle  assures  us,  the  pro -
cedure  of separating  these  properties  in  thought  from  the  world  
of change  does  not  make  any  difference  or result  in any  falsehood  
(Phys.193a36).  Aristotle’s  philosophy  of  mathematics  is  rightly  
classified  as  abstractionist,  because  abstraction  (separation  in 
thought)  is the  process  whereby  Aristotle’s mathematician  comes  
up  with  his  subject  matter,  having  started  with  bodies  and  their  
properties  in the natural  world. 3

An  apparent implication  of Aristotle’s  description  of mathem -
atical  properties  at  Physics 193b34-5 as those  that  are  separable  in 
thought  from  motion  is  that  the  mathematician  cannot  study  
properties  pertaining  to  the  motion  of bodies.  But  motion  is con-
tinuous,  and  continuity  would  seem  to  be  an  inextricably  math -
ematical  notion  insofar  as it involves  the  idea  of the  infinite  divis -
ibility  of magnitude.  So the  implication  cannot  be  what  Aristotle  
intended.  Rather,  then,  it must  be the  case that  both  the  physicist  
and  mathematician  study  continuity,  the  one  as  it  pertains  to  the 
actual  movements  of  particular  bodies,  and  the  other  insofar  as 
the  general  property  can  be  abstracted  from  the  trajectories  of 
moving  bodies.  The continuity  of a trajectory  in space  can be con -
sidered  independently  of the  body  that  traces  out  that  trajectory,  
since any  other  body  of the  same  size moving  continuously  along  
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the  same  path  would  exemplify  the  same  mathematical  property. 4 

A further  level  of abstraction  occurs  if we  take  the  body  to  be  a 
point-mass,  and  disregard  the  width  of  its  path  entirely.  
Moreover,  when  studying  the  continuum,  it really  doesn’t  matter  
if you  take the continuous,  regular  motion  of one body  or another:  
the  mathematical  property  of continuity  is the  same  everywhere  
and  always.  That  is why  Aristotle  is fond  of saying  that  mathem -
atical  items  are  not  at  all  like  the  notion  of snub-nosedness,  since  
unlike  the  latter  notion,  they  can be  conceived  of apart  from  the 
particular  material  substances  in  which  they  happen  to  inhere  
(e.g. Phys. 194a6; Meta. 1025b30-1026a1).

An advantage  of reading  Aristotle  as an  abstractionist  is that  it 
encourages  us  to  look  to Aristotle’s remarks  on  physical  continua  
in  order  to  recover  his  mathematical  theory  of continuity.  An  in-
vestigation  respecting  this  principle  of  interpretation  has  been  
given  by  Michael  White  in  his  excellent  article,  “On  Continuity: 
Aristotle  versus  Topology.” 5 I think  he  has  been  quite  persuasive  
in  showing  that  Aristotle  has  a  ‘proto-topological’  conception  of 
the  continuum  that  overlaps  to  a  considerable  extent  with  the  
classical modern  account.  In this essay,  I develop  this  claim in fur-
ther  detail  with  special  reference  to Georg  Cantor  (1845-1918), the  
creator  of set  theory,  transfinite  numbers,  and  point  set  topology.  
The  rationale  for  undertaking  such  a  comparison  stems  largely  
from  Cantor’s  numerous  references  to  Aristotle,  which  suggest  
that,  in Cantor’s view, Aristotle’s denial  of the  actual  infinite  posed  
the  single greatest  obstacle  towards  the  acceptance  of his  transfin -
ite  number  theory. 6 In  fact  the  relation  between  Aristotelianism  
and  modern  Cantorian  mathematics  is more  complicated,  and  this  
is particularly  evident  in the case of the continuum.

There  are  significant  dangers  in  comparing  the  views  of 
thinkers  from  such  different  time periods,  and  so in section  II, as a 
guard  against  anachronism,  I sketch  some of the  major  differences  
between  the  state  of mathematics,  particularly  in  the  conception  
of real  quantities,  in  ancient  and  modern  times.  In  section  III, to 
further  motivate  the  comparison  between  Aristotle  and  Cantor,  I 
present  some  evidence,  primarily  from  Cantor’s  letters,  which  re-
veals  Cantor’s  attitude  towards  Aristotle’s  theory  of  the  con-
tinuum.  In section  IV, I argue  that  of the three  features  that  Cantor  
uses  to  define  the  continuum  (density,  connectedness  and  
closure),  Aristotle  makes  wide  use  of first  two  in  his  general  the-
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ory  of  the  continuum,  and  includes  the  third  when  discussing  
time  and  change.  In  Section  V,  I  give  a  reconstruction  of  Aris-
totle’s argument  against  constituting  the  continuum  out  of points,  
claiming  that  this  conclusion  can be derived  from  intuitions  about  
the  impossibility  of giving  a rule  for ordering  the  densely  arrayed  
points  of  a  continuum.  Although  this  ‘reconstruction’  is  broadly  
Aristotelian  in  spirit,  I do  not  claim,  however,  that  it  represents  
what  Aristotle  actually  thought  about  this  matter:  it is a reconcep -
tion  of  the  Aristotelian  argument  from  a  modern  (and  un -
abashedly  classical  realist)  perspective.  Finally,  I  leave  it  to  the  
reader  to judge  whether  such  agreement  as can be found  between  
such  opposed  thinkers  as  Cantor  and  Aristotle  lends  some  sup -
port  to  a crucial  premise  from  Aristotle’s philosophy  of mathem -
atics: the  claim  that  mathematical  structures  begin  as abstractions  
from the behaviour  and  properties  of physical objects.

2 An Apology  to Historians

The demands  of good  history  and  creative  philosophical  thinking  
are  not  always  in  harmony.  While  some  philosophers  are  happy  
to  suppose  that  there  is  a  logical  space  of  eternal  philosophical  
problems,  and  delight  in  tracing  the  development  of ‘a unit  idea’ 
through  successive  periods,  many  historians  and  historically  sens -
itive  philosophers  would  reject  such  a  method  as  anachronistic.7 

As  a  guard  against  such  anachronism,  before  proceeding  to  a 
comparison  of  the  similarities  between  their  views  in  section  III 
and  IV, I shall  outline  a few  of the  significant  differences  between  
Aristotle’s  and  Cantor’s  views  of  mathematics.  I  am  aware,  
however,  of not  being  able to do  justice to the  intricacies  of such  a 
discussion.

The first  major  obstacle  to carrying  out  a comparison  between  
Aristotle  and  Cantor  is that  Aristotle  does  not  have  a concept  of a 
real  number  per se, a  concept  central  to  the  modern  arithmetical  
account  of the  continuum.  It is easy  to  overestimate  this  obstacle  
in light  of the fact that  the extension  of Aristotle’s concept  of num -
ber  (αριθμος) is unambiguously  restricted  to the  domain  of whole  
numbers.  Aristotle  speaks  of  number  as  a  multitude  of  indivis -
ibles  (πληθος αδιαιρετων) (Meta. 1085b22), and  as several  ones  ( να 
πλείω) (Phys. 207b5-9). It is clear  that,  as the  one  is indivisible  (τ ν 
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στιν διαίρετον) (Phys.  207b6)  these  two  descriptions  are  co-ex-
tensive.  It is clear,  moreover,  from  Categories 4b25ff. that  Aristotle  
views  the  division  between  number  and  magnitude  to map  neatly  
onto  an  exclusive  division  between  the  discrete  and  the  continu -
ous.  Number  is said  to  be discrete,  because  its  parts  do  not  share  
any  boundary,  whereas  sharing  a  boundary  is  one  of Aristotle’s 
criteria  for  the  continuity  of one  item  with  another  (see also  Phys. 
227a7ff.).  Lines  are  continuous,  in  contrast,  because  each  point  
may  be regarded  as a boundary  shared  between  segments.  Given  
this  conception  of number  as  discrete,  and  given  the  notion  that  
the  parts  of  number  are  ‘ones,’ it  would  be  natural  to  conclude  
that  Aristotle  thinks  of numbers  as  whole  numbers  that  are  com-
posed  of  a  certain  number  of  ones.  The  interpretation  of  these  
‘ones’ is a  matter  of some  dispute.  Aristotle’s  remarks  at  Physics 
224a2ff,  however,  suggest  very  much  that  he  conceives  of  num -
bers  as  concrete  collections,  since  he  claims  that  although  ten  
sheep  and  ten  dogs  are  equinumerous,  these  collections  do  not  
constitute  the  very  same  (number)  ten.  If this  view  is representat -
ive,  then  Aristotelian  ones  must  be  concrete  individuals  of a  cer -
tain  kind.  Assuming  the  kind  of  individuals  that  may  serves  as 
‘ones’ exclude  individual  lengths  or  magnitudes,  then  it  follows  
that  any  collection  of ‘ones’ must  be a whole  number  (or  positive  
natural  number).  So fractions  as  well  as  irrational  quantities  are  
not  numbers  for  Aristotle.  Confirmation  that  irrationals  are  not  
numbers  for  Aristotle  is found  in  his  remark  that  “the  relation  of 
that  which  exceeds  to that  which  is exceeded  is numerically  quite  
indefinite;  for  number  is  always  commensurable;  and  number  is 
not  said  of the non-commensurable”  (Meta. 1021a5, Ross).

Such  remarks  aside,  Aristotle  is perfectly  aware  that  there  are 
magnitudes  which  cannot  be expressed  as the ratio of whole  num -
bers,  these  are  λογοι μέγεθοι,  or  incommensurable  magnitudes  
( συμμετροί μέγεθοι) which  he  mentions  numerous  times  in  vari -
ous  works,  (see  especially  Meta.  983a13-20;  An.  Pr.  41a29),  and  
which  he  would  have  been  aware  of  from  discussions  at  the  
Academy. 8 Almost  without  exception,  Aristotle  gives  as  an  ex-
ample  of  an  incommensurable  magnitude,  the  length  d  of  a 
square’s  diagonal,  which  is incommensurable  with  the  length  l of 
one  of its  sides  precisely  in  the  sense  that  there  is no  whole  num -
ber  n such  that  n times  l is exactly equal  to m times  d.
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The  reader  should  not  be  given  the  impression  that  the  irra -
tionals  were  somehow  intractable  entities  for  the  ancient  Greeks.  
In  Book 5 of Euclid’s  Elements, there  is a  completely  general  the-
ory  of proportions  between  magnitudes,  applicable  to incommen -
surable  and  commensurable  magnitudes  alike. Eudoxus  of Cnidos  
(ca. 408 BC -ca. 347 BC) is credited  with  developing  this  theory  of 
proportion,  and  I shall  follow  the  general  practice  by  referring  to 
it  as  the  Eudoxean  theory. 9 The  core  of  the  Eudoxean  theory  is 
found  in  definitions  4  and  5.  According  to  definition  4,  ‘Mag-
nitudes  are  said  to  have  a  ratio  towards  one  another  which  are  
capable,  when  multiplied  of  exceeding  each  other.’10 So a  and  b 
have  a  ratio  just  in  case  there  are  whole  numbers  n,  m  such  that  
an > b and  bm >a.

Since n  and  m  are  finite,  this  definition  rules  out  the  possibil-
ity that  a or  b might  be infinitesimal  or  infinite,  since  multiplying  
either  type  of  quantity  by  a  finite  number  does  not  increase  its 
size. However,  the  definition  does  not  exclude  the  possibility  that  
a  or  b  might  be  incommensurables.  Definition  5 gives  the  condi -
tion  for  when  magnitudes  are  said  to  be  in  the  same  ratio. 11 In 
modern  notation,  definition  5 states  that  for  any  magnitudes  a, b, 
c,  and  d,  the  two  ratios  a:b  and  c:d  are  equal  if  for  any  whole  
numbers  n and  m, one of the following  cases obtains:

(1) if na < mb, then  nc < md

(2) if na=mb,  then  nc=md,

(3) if na > mb, then  nc > md.

In case (2), a /b  =m/n,  and  since m and  n are whole  numbers,  a /b  
is commensurable.  Cases  (1) and  (3) provide  for  the  situations  in 
which  a/b  < m/n  and  a/b  > m/n.  If m  and  n  range  over  all  the  
whole  numbers,  this  means  that  a /b  is incommensurable,  that  is, 
there  are no whole  numbers  m and  n such  that  a /b=m /n.

Many  modern  authors  have  been  struck  by  the  resemblance  
between  Eudoxus’  theory  and  the  notion  of  a  Dedekind  cut.  A 
Dedekind  cut  partitions  the  rational  numbers  into  two  (mutually  
exclusive,  non-empty)  classes A and  B, such  that  every  member  of 
A precedes  every  member  of B, and  such  that  the  union  of A and  
B is  equal  to  the  set  of  all  rational  numbers.  Dedekind  showed  
that,  in  the  case  where  A has  no  greatest  member  and  B has  no  
least  member,  there  will be a gap  in the rational  numbers.  An irra -
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tional  number  may  therefore  be posited  to correspond  to this  gap.  
Eudoxus’  theory  is similar,  except  that  instead  of partitioning  ra -
tional  numbers  into  two  classes,  he  partitions  ratios  of  mag -
nitudes  into  three  classes, with  the  second  class encompassing  the 
case  where  the  ratio  is commensurable.  If we  let  A stand  for  the 
ratio  of any  given  quantities  a:b, and  let  m  and  n  be whole  num -
bers  as  before,  then  we  have  three  classes  of  quantities,  corres-
ponding  to the cases where  A < m/n,  A=m/n,  and  A> m/n.  In or -
der  to make  this move,  however,  we have  to treat  the ratio a:b as a 
single  item,  and  it  is therefore  natural  (for  us)  to  conceptualise  it 
as  a  number.  It  is not  clear,  however,  whether  Euclid  (and  so  far  
as  we  can  tell  Eudoxus)  would  have  considered  such  ratios  as  
numbers,  however,  since the theory  of proportions  is stated  twice, 
once  for  magnitudes  (Book 5, definition  5) and  once  for  numbers  
(Book 7, definition  20). But one might  say that  the ratios  are impli-
citly treated  like (real) numbers  insofar  as many  quasi-arithmetic -
al operations  are  performed  on  them  (e.g. inversion,  composition,  
separation,  and  conversion,  Book 5, definitions,  13-16).12

Commentators  disagree  about  significance  of  the  Eudoxean  
theory  of ratios  in  answering  the  question  of whether  the  ancient  
Greeks  can  be  said  to  have  anything  like  the  modern  theory  of 
real  numbers.  Heath  shows  the  equivalence  of claims  of sameness  
of  Eudoxean  ratio  with  sameness  of real  numbers  as  defined  by 
Dedekind  cuts.13 Bostock  (1979) shows  that  if we  introduce  arith -
metical  operations  on  Eudoxean  ratios,  we  can  derive  the  same  
results  in  geometry  that  we  would  now  state  using  real  numbers.  
Finally,  Stein  (1995) shows  that  there  is a  one  to  one  mapping  of 
Eudoxean  ratios  onto  the  set  of positive  real  numbers  as  defined  
by  Dedekind  cuts.  In  light  of  these  results  it  seems  undeniable  
that  the  the  Eudoxean  theory  of ratios  can  act  as  a  surrogate  for 
the  theory  of real  numbers,  but  it does  not  follow,  in my  opinion,  
that  the  ancient  Greeks  had  the  theory  of real  numbers.  The reas-
on why  is broadly  Fregean: the  fact that  one theory  T is co-extens -
ive with  some other  theory  T,’ does  not  suffice to show  that  T and  
T’ are  conceptually  equivalent.  Indeed,  the  Eudoxean  theory  and  
the  modern  theory  could  not  possibly  be  conceptually  the  same,  
since  it  is  clear  that  statements  involving  magnitudes  have  a  dif-
ferent  sense  from  statements  involving  numbers.  Statements  
about  lengths  of  a  square  do  not  have  the  same  sense  as  state -
ments  about  real  numbers.  Statements  stated  in  terms  of ratios  of 
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lengths  and  their  ratios  have  a  different  sense  from  statements  
stated  in terms  of real  numbers.  The multiplication  of two  lengths  
would  have  immediately  called  to  mind  in  the  Greek  geometer  a 
rectangle  with  a  certain  area,  whereas  the  multiplication  of  two  
real numbers  (for us) simply  results  in another  real number. 14

Since Eudoxus  spent  time  at Plato’s Academy,  it would  not  be  
implausible  to  suppose  that  his  ideas  reached  Aristotle  through  
the  teachings  of  the  Academy. 15 In  a  remarkable  passage  in  the  
Posterior Analytics, Aristotle  says  that  whereas  the  demonstration  
that  proportionals  alternate  used  to be carried  out  separately  with  
respect  to  magnitudes  and  with  respect  to  number,  ‘now  it  is 
proved  universally’  (An.  Post.  74a18-25).  Aristotle  seems  on  the  
cusp  of recognising  that  the  Eudoxean  theory  of ratios  might  ap -
ply  to numbers  as well  as magnitudes,  but  ultimately  must  disap -
point  modern  readers  in  insisting  on  a  strict  separation  between  
the subject matter  of geometry  and  arithmetic. He  fleetingly  enter -
tains  the  proposition  that  magnitudes  might  be  numbers  (An.  
Post. 75b5), but  only  in the context  of a contrary  to fact hypothetic -
al.  He  uses  the  possibility  that  magnitudes  might  be  numbers  to 
rebut  the  idea  that  one  could  give  a purely  arithmetical  proof  of a 
geometric  proposition.  It  is  clear  from  the  proceeding  remarks  
(An.  Pos.t 75a38),  that  Aristotle  does  not  think  one  can  give  a 
purely  arithmetical  proof  of  a  geometrical  proposition.  Such  a 
proof  would  violate  his  principle  of the  homogeneity  of explana -
tion:  the  premises  of a proof,  its axioms,  and  its conclusion,  must  
refer  only  to  things  which  belong  to  the  same  genus.  So, if these  
remarks  are  right,  then  Aristotle  is  sceptical  for  methodological  
reasons  about  the  very  possibility  of  arithmetising  the  theory  of 
continuous  quantities.  A different  attitude  towards  the  arithmet -
isation  of  mathematics,  then,  constitutes  a  significant  difference  
between  Aristotle and  Cantor.

Cantor’s  definition  of the  irrationals  as  equivalence  sequents  
of  convergent  sequences  of  rational  numbers  (in  Cantor  (1872)) 
was  part  of a push  to arithmetise  analysis, a goal  which  he shared  
with  his contemporaries  Dedekind  and  Weierstrass. 16 The goal be-
hind  arithmetisation  was  to increase  the  rigour  of mathematics  by 
eliminating,  if possible, the reliance  on geometrical  intuition.  Geo-
metrical intuition  had  shown  itself to be fallible and  even  mislead -
ing;  it  carried  with  it  prejudices  that  prevented  mathematicians  
from  seeing  certain  possibilities,  such  as: the  existence  of continu -



Aristotle and Modern Mathematical Theories of the 
Continuum* 9
ous  but  nowhere  differentiable  functions,  the  equinumerosity  of 
the points  on a line with  those  in a plane,  and  the possibility  of al-
ternative,  non-Euclidean  geometries. 17 Not  surprisingly,  then,  
both  Dedekind  and  Cantor  reversed  the  priority  of geometry  and  
arithmetic,  preferring  to  account  for  the  continuity  of  a  line  in  
terms  of  properties  of  the  real  numbers  corresponding  to  the 
points  on  the  line.  Such  a  perspective  transformed  the  notion  of 
the  continuity  of a line  from  an  empirical  postulate  into  a stipula -
tion  about  a mathematical  space.

Cantor  went  so  far  as  to  proclaim  the  hypothesis  of the  con -
tinuity  of  space  to  be  none  other  than  an  arbitrary, conventional  
assumption  of a complete  one to one  correspondence  between  the 
three  dimensional  purely  arithmetical  continuum  consisting  of the 
ordered  triples  (x,y,z) of real  numbers  and  the  space  of the  world  
of appearances  (Erscheinungswelt).18 He  offered  a mathematical  ar-
gument  for the  independence  of the  mathematical  structure  of the  
continuum  from  that  of space which  consisted  of a proof  that  con-
tinuous  motion  is  possible  through  a  discontinuous  (not  every -
where  connected)  space.  He  did  this  by  showing  that,  even  if  a 
countably  infinite  dense  subset  M is removed  from  a  continuous  
space  A of two  or  more  dimensions,  it  is possible  to  draw  a con-
tinuous  path  connecting  any  two  points  in  A,  without  crossing  
over  any  gaps  in A.19

The argument  by Cantor  to the  effect that  there  can  be no  dir -
ect inference  from  the appearance  of motion  to the structure  of the  
underlying  space  would  seem  to undermine  Aristotle’s claim  that  
“Magnitude,  time,  and  movement  are  all  liable  to  the  same  reas-
oning.  Either  they  all consist  of indivisible  components  and  are di -
visible  into  indivisibles,  or  none  of them  does”  (Phys. 232a23ff.). 
Since a continuum  is “that  which  is divisible  into  parts  which  are  
always  further  divisible”  (Phys. 232b25), Aristotle  is claiming  that  
either  space,  time,  and  motion  are  all continuous  or none  of them  
are.  Following  Fred  Miller’s  terminology,  we  may  call  this  claim  
‘the  isomorphism  thesis,’  since  it  asserts  that  the  structures  of 
space, time, and  motion  are isomorphic.20 In Cantor’s example,  we 
have  continuous  motion  in a not-everywhere  continuous  space, so 
that  not  all spaces  and  motions  are isomorphic.  Nonetheless,  it re-
mains  true  for  Cantor  as for  Aristotle,  that  any  segment  of a con -
tinuum  is isomorphic  to any  other.  This claim is true  in a technical 
sense  for  Cantor,  since  it  is  possible  to  map,  in  an  order  pre -
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serving  fashion,  any  segment  of the  reals  onto  any  other  segment.  
For Aristotle,  the  claim  is true  in  the  non-technical  sense  that  any  
part  of a  continuum  is a  continuum.  A further  philosophical  dif-
ference is that  Cantor  does  not  take claims about  the mathematical  
structure  of the continuum  to follow  from  the apprehension  of the  
physically  extended  world.  That  is  why  Cantor  could  view  the  
thesis  that  space  is  continuous  as  arbitrary.  But  a  philosopher  
sensitive  to  contemporary  physics  could  not  possibly  view  the  
claim  as arbitrary.  As noted  at  the  outset,  our  best  physical  theor -
ies do assume  that  space and  time are continuous. 21

In  departing  from  Aristotle’s  view  that  mathematical  struc -
tures  are  merely  abstracted  aspects  of  physical  processes  and  
things,  Cantor  freed  himself  from  the  constraint  that  the  mathem -
atical structure  of space must  mirror  that  of the space in which  we 
live and  move.  As Cantor  was  well  aware,  Aristotle  drew  his  con-
clusions  about  the  nature  of the  (mathematical) continuum  from  a 
consideration  of physical  continua. 22 This  imposed  a considerable  
constraint  on the freedom  of the mathematician.  If the abstraction -
ist  interpretation  of Aristotle’s  philosophy  of mathematics  is cor-
rect,  then  for Aristotle  there  could  be no  such  thing  as a mathem -
atical  continuum  with  peculiar  mathematical features  not  already  
found  in  the  physical  continuum.  The  isomorphism  thesis,  then,  
would  follow  from  Aristotle’s  philosophy  of  mathematics.  Al-
though  it would  also be consistent  with  the isomorphism  thesis  to  
claim  that  space, time,  and  motion  are  all discontinuous,  Aristotle  
does  not  do  so,  because  he  takes  the  continuity  of  motion  as  a  
datum  of perception. 23 Despite  the  wealth  of evidence  suggesting  
that  Aristotle  was  concerned  with  the  physical  continuum,  it 
would  be  a  mistake,  given  either  interpretation  of  Aristotle’s 
philosophy  of mathematics,  to  suppose  that  he  is concerned  with  
the  physical  continuum  to  the  exclusion  of  the  mathematical.24 

The exhaustive  opposition  between  the  physical  and  the  mathem -
atical  simply  has  no  place  in  Aristotle’s anti-Platonist  philosophy  
of mathematics.

3 Cantor as a Critic of Aristotle

Most  of what  Cantor  has  to say about  philosophers  who  reject his 
actually  infinite  numbers  is negative,  and  in this  respect,  Aristotle  
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is no  exception.  In  the  Grundlagen, Cantor  locates  Aristotle  at  the 
head  of a tradition  against  the  actual  infinite  based  on what  he re-
gards  as  a  mistaken  assumption,  the  assumption  that  only  finite 
numbers  can  be  counted.  In  contrast,  Cantor  thinks  that  by 
providing  a hierarchy  of transfinite  numbers  ordered  according  to 
size,  he  has  shown  that  there  are  infinities  that  can  be counted  in  
the  extended  sense  of  coming  in  a  certain  order  in  a  sequence. 25 

Even  as a metaphysical  argument,  Cantor  does  not  find  Aristotle’s 
rejection  of the actual,  determinate  infinite  compelling:

The reasons  of the  Stagirite  prove  nothing,  however,  other  
than  that  the  arguments  which  the  ancient  natural  philo -
sophers  put  forward  for  the  necessary  existence  of  a  α
πειρον φωρισμένον [determinate  infinite]  are  not  compel -
ling;  he  does  not  prove,  the  impossibility  of an  existing  α
πειρον φωρισμένον; in other  words,  he does  not  prove,  that  
the  latter  concept,  when  one  conceives  of it  as  a  Transfin-
itum ,  is  self-contradictory,  and  it  would  be  difficult  for 
him,  or  more  correctly  said,  impossible  for  him  to  have  
done  so.26

Given  his  fundamental  disagreement  with  Aristotle  on  the  issue  
of whether  there  can  be  actually  infinite  magnitudes,  it  is  a  curi -
ous  fact  that  Cantor  was  sympathetic  to  certain  features  of Aris-
totle’s theory  of the  continuum.  In his  letter  to  Paul  Tannery  of 5 
October  1888, Cantor  wrote:

You are right  to point  out  that,  I so to speak,  renew  the Py-
thagorean  view,  insofar  as I teach  that  the geometrical  con-
tinuum  is a real  compound  of separate  points,  geometrical  
individuals,  just  as  a  forest  is  composed  out  of trees,  but  
because  the  Pythagoreans  understood  the  continuum  as  a 
sum  of  points,  [a  view]  which  is  powerless  against  the 
demonstrations  [Beweise] of  Zeno  of  Elea,  I take  the  con-
tinuum  to  be  a  point  set  (ensemble  of  points)  of  a  more  
definite, precisely  specified  nature.

My grasp  of the geometrical  (and  temporal)  continuum  
is  one  which  harmoniously  combines  the  advantages  of 
the  Aristotelian  view  with  what  is true  in the  Pythagorean  
way  of understanding  [Auffasungsweise], so  that  there  will 
be no Zeno  waiting  for me who  will demonstrate  any  kind  
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of  contradiction  whatsoever  in  my  most  well-considered  
[wohlerwogenen] concept  of the continuum. 27

Aside  from  the  historically  interesting  fact  that  Cantor  accepted  
Tannery’s  now  discredited  claim  that  the  target  of  Zeno’s  para -
doxes  was  atomism,  this  passage  also suggests  that  Cantor  credits  
the  Aristotelian  view  as having  certain  advantages  which  allow  it 
to  elude  Zeno’s  paradoxes,  advantages  that  he  wishes  to  pre -
serve.28 The features  of Aristotle’s account  that  I think  Cantor  ad -
mired  were  Aristotle’s  emphasis  on  the  connectedness  of  each  
segment  of a continuum  with  the next, and  his insight  that  there  is 
a line between  any  two  points,  so that  no that  no point  is immedi -
ately  next  to another  point.  We shall  see in more  detail  where  the  
agreement  between  Aristotle and  Cantor  lies in the next section.

4 Criteria for Continuity

Cantor  and  modern  topologists  consider  the continuum  to be con-
stituted  out  of points,  a claim which  Aristotle  tirelessly  combats  at 
Physics 231a21-37 and  De Generatione et Corruptione 316a1-317b30. 
In  the  first  argument  for  this  claim,  Aristotle  argues  on  the  basis  
of  his  definitions  of  contiguity,  succession,  and  contact,  that  no 
point  can  be contiguous  to another,  and  so not  continuous.  In the  
second  argument,  Aristotle  argues  that  nothing  which  has  mag -
nitude  can  be composed  of points  which  lack  magnitude.  Cantor  
thought  that  despite  his point-set  ontology,  he could  still preserve  
the  basic  Aristotelian  insight  into  the  connectedness  of  the  con-
tinuum.  As we shall see in this section  and  the next, Cantor  would  
agree  with  the  first  argument  to the  extent  that  he also thinks  that  
it is not  obvious  that  the points  on a continuum  cannot  be ordered  
consecutively.  As  White  has  argued,  Cantor’s  response  to  the  
second  argument  is to reject the assumption  altogether  and  substi -
tute  in  its  place  a  conception  of continuity  as  an  emergent,  non-
additive  property.  In  this  way,  a  point  set  can  have  magnitude  
even  though  none  of its points  do.29

In modern  mathematics,  the  continuum  is defined  as any  col-
lection  of points  (or  a  point-set)  possessing  a  certain  structure,  a  
structure  that  is  exemplified  by,  e.g.  the  collection  of  real  num -
bers,  or  the  collection  of points  on  a  line.  According  to  Cantor’s  
famous  definition,  a  continuum  is a  point  set  that  is both  perfect  
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(dense  in  itself  and  closed)  and  well-connected.  He  considers  
these  predicates  to  jointly  constitute  the  necessary  and  sufficient  
conditions  for being  a continuum. 30

Those not  familiar  with  topology,  as well as those unacqainted  
with  Cantor’s  writings,  might  want  to  know  Cantor’s  definitions.  
For both  Cantor  and  modern  topologists,  a limit point x of a set S is 
a point  around  which  in  any  neighbourhood  of x, no  matter  how  
small,  there  are  points  other  than  x which  belong  to  S. A neigh -
bourhood  around  a point  p  is defined  as the  set  of all points  with  
some  distance  less  than  some  arbitrary  real  number  ε from  point  
p.  In  one  dimension,  the  neighbourhood  of p  is the  interval  [p-ε, 
p+ε], while  in two  dimensions,  it is the  set of points  in the  circular  
disk  with  centre  p  and  with  radius  ε, and  in three  dimensions,  the  
set  of points  in the  sphere  with  centre  p  and  radius  ε. An  open  set 
is a set all of whose  points  are  interior  points,  where  p  is an  interi-
or  point  of S just  in  case  there  is some  ε > 0 such  that  if the  dis -
tance between  p and  p’ is less than  ε, then  p’ is also in S.

A set  S is everywhere  dense  (überall dicht) in  an  interval  (a, b) 
if  every  sub-interval  of  (a,  b),  no  matter  how  small,  contains  
points  of S. Cantor  calls the set of limit  points  of a set S its derived  
set, which  is denoted  by S.’ A set S is dense  in itself (in sich dicht) if 
every  member  of it is a limit  point,  i.e. S ⊆S.’ A set  S is said  to  be 
closed  (abgeschlossen) if all of its  limit  points  are  members  of it, S’ 
⊆ S. Cantor  defines  a  perfect  (perfekt)  set  as  one  which  is  both  
dense  in itself and  closed.  Finally, Cantor  defines  a set T to be con -
nected  (zusammenhängend) if for any  two  members  of the  set  t and  
t,’ and  for  any  arbitrarily  small  number  ε, there  is always  a finite 
number  of points  t, t1, …tn,t’ of T such  that  the  distances  t-t1, t1-
t2, t2-t3 … tn-t’ are  all less than  ε. This  definition  differs  from  the  
now  standard  definition  of connectedness,  according  to  which  a 
set  is connected  just  in  case it cannot  be represented  as the  union  
of two non-empty  non-overlapping  sets.

Cantor  considers  previous  attempts  to  define  the  continuum  
to be lacking  in their  failure  to include  one or another  of his criter -
ia.31 This  criticism  applies  to  Aristotle’s  attempt,  too,  since  Aris -
totle  emphasises  the  connectedness  of  the  continuum  without  
considering  its perfection.  However,  judged  according  to Cantor’s 
criteria,  Aristotle  does  not  fare poorly,  anticipating  in a clear  fash-
ion  two  out  of the  three  properties  Cantor  deems  essential  to con -
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tinua.  Aristotle  has  the  concepts  of density  and  connectedness,  at  
least  in a non-technical  sense.  It is less clear  whether  Aristotle  has 
the  concept  of closure.  As  we  shall  see,  he  seems  to  differentiate  
between  open  and  closed  intervals  of time,  but  cannot  be  said  to 
have  the  concept  of  closure  in  a  general  sense,  nor  to  have  the  
concept  of a closed  interval  of space.

Density

The thesis  that  the  points  of the  continuum  are  densely  packed  is 
implicit  in  Aristotle’s  claim  that  there  is a  line  between  any  two  
points  and  a  stretch  of  time  between  any  two  ‘nows’  (Phys.  
231b6). For each line is indefinitely  divisible into  points,  so if there  
is  a  line  between  two  points,  there  are  indefinitely  many  points  
between  the two  points.  Aristotle  defines  two  things  X and  Y to be 
successive  ( φεξ ς) just  in case X comes  after  Y, where  X and  Y are  
of the same  type,  and  there  is nothing  of the same  type  as X and  Y 
between  X and  Y (Phys.226b35-227a9).  It  follows  that  entities, 
which  are  densely  arranged,  e.g.  points,  cannot  be  successive  to 
one  another.  It  may  be  objected  that  it  cannot  be  said  that  there  
are  points  between  any  two  points  for Aristotle,  since points  only  
come into  (actual)  existence  for Aristotle  when  a division  is made  
between  two  line  segments.  However,  such  an  objection  must  ex-
plain  what  Aristotle  says  at  Phys. 231b9:  there  is  always  a  line 
between  two  points.  Of course,  for Aristotle,  a line is not  a collec-
tion  of points,  so strictly  speaking  the  claim  at  231b9 does  not  im-
ply  the  points  themselves are  densely  packed.  Nonetheless,  there  is 
a  potential  infinity  of  points  between  any  two  points,  since  one 
can  always  make  a bisection  of a line  and  take  the  midpoint.  This 
potential  infinity  of points  is dense  in the requisite  sense.

The kind  of density  Aristotle  recognises  in the  continuum  cor-
responds  to  Cantor’s  notion  of  a  point  set  being  überall  dicht 
(everywhere  dense)  in  an  interval.  This  is  not  quite  the  same  as 
the density  of a perfect  set, which  Cantor  says is insichdicht (dense  
in  itself), a  density  which  a  point  set  possesses  just  in  case  every  
point  in the  set  is a limit  point.  The predicate  ‘insichdicht’ pertains  
to  the  set,  while  the  predicate  ‘überall dicht’ denotes  a property  of 
the  set  relative  to the  space in which  it is embedded.  Although  re-
lated  the two concepts  are clearly  not  co-extensive.  32
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Connectedness

An  essential  aspect  of  any  theory  of  the  continuum  is  the  claim  
that  its parts  are  connected.  Intuitively,  a set is connected  if it con-
tains  no  gaps.  Recall  that  Cantor  defined  a  point  set  T to  be  con-
nected,  if whenever  for  any  two  points  t and  t,’ and  for  any  ε, no  
matter  how  small,  there  is always  a finite  number  points  t1, t2, …
tk of T, such  that  each  of the  successive  distances  t-t1, t1-t2, t2-t3, 
…tk-t’ is less  than  ε.33 So a connected  set  in  this  sense  can  always  
be divided  up  into  a number  of segments,  the end-points  of which  
all belong  to the set and  can never  be very  far apart  from each oth -
er.

To understand  why  a continuum  must  be connected,  consider  
the  pathological  case  of  Cantor’s  disconnected  semi-continuum,  
also known  as the  Cantor  set. The Cantor  set  is formed  by remov -
ing  successive  middle  thirds  from  an  interval,  starting  with  [0,1]. 
The first  few steps  in generating  the set are pictured  below:

stage 1: 0                                                                                 __  1

stage 2: 0                                       1/3   2/3                      __  1

stage 3: 0         1/9 2/9       1/3  2/3      7/9  8/9 ___1

The  procedure  is  ‘performed’  ad infinitum  (a  countably  infinite  
number  of times!). The Cantor  set is the union  of all the  points  that  
remain  when  this  operation  is ‘done.’ A moment’s  reflection  will 
show  that,  since  we  always  remove  the  middle  thirds,  the  points  
remaining  in  the  Cantor  set  will  include  points  like 1/3,  2/3,  1/9,  
2/9,  7/9,  8/9,  1/27,  2/27  and  so  on.  So in  ternary  notation,  the 
points  in  the  Cantor  set  will  include  only  those  points  expressed  
by  0.n1n2n3… where  the  n’s are  2’s or  0’s, but  never  1’s. (A tern -
ary  fraction  is an  expression  of form  0.n1n2n3… where  n1 repres -
ents  the  number  of thirds,  n2 the  number  of ninths,  n3 the  number  

of  twenty-sevenths,  and  in  general  nk  the  number  of  (1/3
k

)ths.) 
Cantor  gave  the equation  for the series  of all the  points  in the Can -

tor  set  as: C= c1/3  + c2/9  +…cn/3 n +…, where  the  co-efficients  ci 
can take on the value  of 0 or 2, and  n ranges  from 0 to ∞.34

It is easy  to see pictorially  that  the  Cantor  set  will contain  isol-
ated  islands  of points.  But we can also show  arithmetically that  the 
Cantor  set  doesn’t  contain  any  line  segments  at  all,  because  the 
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sum  of  the  lengths  of  all  of  the  removed  intervals  (1/3+  
2/9+4/27+…) equals  1. The measure  of the  Cantor  set, like that  of 
any  collection  of disconnected  points,  is 0. How  then  can it be that  
there  is still something  remaining?  The continuum  is uncountably  
infinite,  but  in  removing  segments,  we  have  also  removed  un -
countably  many  points.  Yet  the  Cantor  set,  like  the  continuum  
[0,1], is uncountably  infinite.  If we  wrote  an  expression  in  ternary  
notation  for  each  point  in  the  Cantor  set,  such  as.222000222, we 
could  show  that  for each  expression,  there  is a unique  decimal  ex-
pression  of  a  number  in  the  interval  [0,1].35 So the  Cantor  set  is 
equipotent  with  the set of points  in the continuum  [0,1].

So clearly  uncountable  magnitude  does  not  suffice for  being  a 
continuum.  Nor  can  being  perfect  be enough,  since the  Cantor  set 
is perfect.  Every  point  in  C is a limit  point  of C, since  around  any  
point  in C there  are other  points  belonging  to C. Yet the Cantor  set  
fails to be a continuum  because  it is not  connected  and  not  every -
where  dense  in the interval  [0,1]. It is not  connected,  obviously,  be-
cause  there  are huge  gaps  between  consecutive  segments  in the in-
terval,  between  1/3  and  2/3  for example.  For the  same  reason  it is 
not  everywhere  dense  in the interval.

The  fractal  pioneer  Benoit  Mandelbrot  called  the  Cantor  set  
‘the dust  set’ in his book  The Fractal Geometry of Nature.36 It is inter -
esting  to  note  that  Aristotle,  too,  imagines  a  magnitude  that  is di-
vided  through  and  through  (ad  infinitum)  to resemble  saw  dust:

But  suppose  that  as  the  body  is being  divided,  something  
like sawdust  [ πρισμα] is produced,  and  that  in this  sense  
a  body  comes  away  from  the  magnitude,  even  then  the  
same  argument  applies…[that]  it is absurd  that  magnitude  
should  consist  of  things  which  are  not  magnitudes  
(Joachim, GC 316b1-5).

Aristotle  even  goes  some  way  towards  explaining  why  a dust  set  
is  not  a  continuum.  For  he  realises  that  there  can  be  no  contact  
between  two  points,  since  the  points  being  indivisible,  lack  ex-
tremities:  “And  every  contact  is  always  a  contact  of  two 
somethings,  i.e.  there  is always  something  besides  the  contact  or 
division  or  the  point  (GC 316a6).”37 So it would  not  be wholly  in-
accurate  to say that  Aristotle’s insight  is shared  by Cantor  and  in-
stituted  in the latter’s requirement  that  a continuum  be connected.
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According  to Aristotle  the  parts  of a continuum  must  be such  
that  their  extremities  are not  only touching  but  identical:

…things  are  called  continuous  (συνεχ ) when  the  touching  
limits  of  each  become  one  and  the  same  and  are,  as  the  
word  implies, contained  in each  other  (συνέχηται): continu -
ity is impossible  if the  extremeties  are  two.  This definition  
makes  it plain  that  continuity  belongs  to things  that  natur -
ally in virtue  of their  mutual  contact  (σύναψιν) form  a unity  
(Phys., 227a10ff.).

Whereas  for  connectedness  Cantor  requires  that  we  be able  to di -
vide  up  the  continuum  into  a finite  number  of segments  such  that  
the  distance  between  adjacent  segments  approaches  0,  Aristotle  
requires  that  the  distance  between  two  ‘consecutive’  parts  of  a 
continuum  be  zero.  A  line  with  its  midpoint  removed  could  not  
be continous  for Aristotle, but  it does  count  as connected  for Can -
tor.  However,  it  is  not  a  continuum  for  Cantor,  since  it  is  not  
closed  and  dense  in itself.

To be  sure,  Aristotle  has  already  established  that  consecutive  
parts  of the continuum  cannot  be points,  because  points  are  dense  
in  the  continuum.  Aristotle’s  requirement  creates  a  problem  for 
the  point-set  concept  of the  continuum.  Since  points  are  indivis -
ible  and  of zero  magnitude,  they  have  no  extremities  and  there -
fore it is not  possible  for them  to be distinct  if their  extremities  are  
one.  Hence,  the  attempt  to  string  together  points  in  such  a  way  
that  their  limits  are  one  will  have  the  absurd  consequence  that  all 
of the  points  will  coincide  with  one  another,  and  a  single  exten-
sionless  point  will be left. This sort  of consideration  may  underlie  
Aristotle’s claim  that  any  attempt  to construct  a continuum  out  of 
points  will  amount  to  nothing  (GC  316a30-5).  The  lesson  to  be 
learned  from  the  Cantor  set, and  from  Aristotle’s ‘sawdust’  is that  
it  is not  enough  to  have  a collection  of uncountably  many  points  
to  form  a  continuum.  In  addition,  the  set  must  have  a  certain  
structure:  it must  be connected,  dense  and  closed.

Closure

So far  we  have  seen  that  Aristotle’s criteria  for  continuity  include  
both  density  and  connectedness.  This leaves  closure,  the  other  as-
pect  of  perfection.  Without  this  concept,  we  cannot  distinguish  
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between  the  rational  numbers  which  are  dense,  but  not  closed,  
and  the  reals, which  are closed.  Does Aristotle  have  the topologic-
al  concept  of an  open  as  opposed  to  closed  interval?  Some  Aris-
totelian  scholars,  such  as Michael  White,  think  that  Aristotle  lacks 
this  distinction  and  that  the  lack  of this  distinction  prevents  him  
from  offering  a  satisfactory  (i.e.  mathematically  acceptable)  ac-
count  of the  continuum.  Other  Aristotelian  scholars,  notably  Dav-
id  Bostock,  argue  that  Aristotle  does  distinguish  between  open  
and  closed  intervals,  at  least  sometimes.  It  seems  to  me  that  the  
preponderance  of evidence  supports  Bostock’s conclusion.

First,  the  evidence  in  favour  of  the  hypothesis  that  Aristotle  
lacks  the  distinction  between  closed  and  open  intervals.  White  
cites Aristotle’s explanation  of why  time, though  potentially  divis-
ible  into  infinitely  many  nows,  can  nonetheless  elapse  at  Physics  
263a23ff.  A  key  feature  of  the  explanation  is  that  we  must  not  
think  of a movement  as divided  into infinitely  many  actual  points,  
rather  than  as potentially  divisible ad infinitum . According  to Aris-
totle,

… anyone  who  divides  a continuous  line into two halves  is 
treating  the  single  point  at  which  the  division  occurs  as 
two  points,  because  he  is  making  it  both  a  starting  point  
and  an  ending  point;  and  counting  out  halves  is no  differ -
ent  from  dividing  into  halves.  But to make  these  divisions  
is  to  destroy  the  continuity  of  movement  as  well  as  the  
line,  because  continuous  movement  is  movement  over  a 
continuum,  and  although  there  are  infinitely  many  halves  
in  any  continuum,  these  are  potential,  not  actual.  Any  ac-
tual  division  puts  an  end  to  continuous  movement  and  
creates  a  standstill  (Phys.  263a23ff.,  Waterfield,  emphasis  
mine).

According  to  White  (1992),  the  explanation  for  why  Aristotle 
thinks  it  is  obvious  that  dividing  a  line  into  two  segments  in-
volves  treating  one  point  as  two,  is  that  he  cannot  imagine  that  
the point  could  be assigned  to one interval  only, with  the other  in-
terval  being  left  open.  Since  Aristotle  tends  to  think  in  terms  of 
magnitude,  White  argues,  there  would  be  no  reason  for  him  to  
distinguish  between  [0,1)  and  [0,1].  As  Aristotle  knew,  a  point  
does  not  have  magnitude,  so subtracting  a point  from  an  interval  
does  not  alter  its magnitude. 38 In fact Aristotle  makes  the  stronger  
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claim  elsewhere  that  any  mere  (disconnected)  collection  of points  
cannot  add  up  to a positive  magnitude  (GC 316a30.).

Now  for  the  evidence  against  the  hypothesis.  The evidence  in  
favour  of  the  hypothesis  is  drawn  entirely  from  Aristotle’s  re-
marks  on  movement  and  spatial  extension  it  seems.  But  Aris -
totle’s remarks  on temporal  extension  in the  context  of his  discus -
sion  of change  may  suggest  that  he  does  take  into  account  open  
intervals.39 For  Aristotle  thinks  that  there  is  no  first  moment  of 
change,  but  there  is a time by which  the change  is completed.  So if 
the  stretch  of time  it takes  for a change  to occur  is conceived  of as  
an  interval,  it will be open  on  one  end  and  closed  on  the  other.  In  
his  article,  ‘Aristotle  on  Continuity  in  Physics  VI,’ David  Bostock 
notes  that

One  might  claim  that  Aristotle  himself  may  be  said  to  re-
cognize  the  existence  of such  things  as  half-open  intervals  
at Phys. VIII.8 263b9-264a6, where  he perceptively  remarks  
that  an interval  without  its end-point  is no shorter  than  the  
interval  with  its end-point  (264a4-6).

Following  up  this  clue  does  indeed  suggest  that  Aristotle  distin -
guishes  between  open  and  closed  intervals  in  time.  Aristotle  dis -
cusses  the  case  of an  object  D changing  from  white  to  non-white  
during  the  time  interval  ACD.  During  the  entire  interval  of time  
from  A to C, the  object is white,  and  during  the  interval  from  C to  
D  it  is  not  white.  In  order  to  avoid  the  paradox  that  D  is  both  
white  and  non-white  at C, Aristotle  says

The  solution  is  not  to  grant  that  it  is  white  for  the  whole  
stretch  of  time,  but  to  say  that  it  is  white  for  the  whole  
stretch  of  time  except  the  final  now,  namely  C,  which  is 
already  part  of the later  stretch  of time. (Phys. 263b20).

Here  we have  the half open  interval  [A, C). Moreover,

..it  is  clear  that  if  time  A  as  a  whole  is  the  time  during  
which  it was  becoming  white,  the  time  in which  it was  be-
coming  white  and  became  white  [A,C] is no  greater  than  
all  the  time  in  which  it  was  becoming  white  [A,C). (Phys. 
264a5).
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So here  Aristotle  recognises  that  the  magnitude  of the  half-open  
interval  [A,  C)  is  no  greater  than  that  of  the  closed  interval  [A, 
C].40

But Aristotle  appears  to only  talk  of open-intervals  with  refer -
ence to stretches  of time, not  stretches  of space. This introduces  an 
asymmetry  into  the  account  of space  and  time.  So we  should  not  
take  Miller’s  isomorphism  thesis  to  imply  that  intervals  of space  
and  time  are  exactly  alike.  The  isomorphism  thesis  will  still  be 
valid  insofar  as both  space and  time  are continua  for Aristotle, but  
it will  no  longer  be true  that  stretches  of space  and  time  have  the  
same  topological structure.

Well-Ordering and the Continuum

In  an  eminently  sensible  passage,  Aristotle  argues  that  a  con-
tinuum  cannot  be constituted  out  of points,  since a continuum  has 
magnitude,  whereas  points  (as  ultimate  indivisibles)  lack  mag-
nitude.  Aristotle’s analysis of the problem  is worth  quoting  in full:

For,  since  no  point  is  contiguous  to  another  point,  mag -
nitudes  are  divisible  through  and  through  in  one  sense,  
and  yet  not  in another.  When,  however,  it is admitted  that  
a magnitude  is divisible through  and  through  in one sense, 
it  is  thought  that  there  is  a  point  not  only  anywhere,  but  
also  everywhere,  in  it: hence  it  follows  that  the  magnitude  
must  be  divided  away  into  nothing.  For  there  is  a  point  
everywhere  within  it,  so  that  it  consists  either  of contacts 
or points.  But it is only  in one sense that  magnitude  is divis -
ible through  and  through;  viz. insofar  as there  is one  point  
anywhere  within  it  and  all  of  its  points  are  everywhere  
within  it  if you  take  them  singly.  But  there  are  not  more  
points  than  one  anywhere within  it,  for  the  points  are  not  
consecutive; hence, it is not  divisible through  and  through.  
For  if it  were,  then,….if it  be  divisible  at  its  centre,  it  will  
be  divisible  also  at  a  contiguous  point.  But  it  is not  so  di -
visible; for position  is not  contiguous  to position,  nor  point  
to point  (GC 317a2-10, Joachim  translation).

In  this  section,  I will  suggest  a  novel  and  somewhat  speculative  
reconstruction  of  this  argument.  I should  note,  before  doing  so, 
however,  that  Aristotle’s  argument  is  rejected  by  Cantor,  who  
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does  think  that  some  collections  of points  can  be continua.  A ma-
jor difference  between  the  Aristotelian  and  Cantorian  conceptions  
here,  is that,  for Cantor  the  measure  of a set  may  be non-additive,  
‘emergent  property,’  whereas  for  Aristotle  the  sum  of the  whole  
must  equal  the  sum  of each  of its  parts. 41 I suggest  that  the  tech-
nical  reason  why  Aristotle  could  not  have  conceived  of  a  con-
tinuum  as  being  constituted  out  of points  was  that  he  lacked  the  
sophisticated  apparatus  of  point  set  theory.  Aristotle  was,  of 
course,  philosophically  opposed  to the  idea  of an  infinite  number.  
But given  his respect  for the  use  of mathematics  in laying  the con-
ceptual  foundations  of scientific theory,  we  cannot  help  but  won -
der  what  Aristotle would  have  made  of transfinite  numbers.  What  
follows is just such  an imaginative  exercise.

For  Aristotle,  all  numbers  are  determinate  and  countable. 
Consequently  the  idea  of an  uncountably  infinite  number  would  
have  struck  him  as an  oxymoron.  However,  since Cantor,  modern  
mathematicians  take  a different  view  of countability.  Countability  
is  only  a  feature  of  one  portion  of  the  universe  of  numbers,  the  
natural  numbers.  The more  basic fact is that  sets  that  are  compar -
able with  regard  to cardinality  can be well-ordered.  A set A can be 
well  ordered  if it  is  possible  to  define  a  relation  R on  the  set  A 
such  that  R constitutes  a linear  ordering  of the  set  A and  for every  
member  of  a  non-empty  subset  of  A,  there  is  an  R minimal  ele-
ment,  a first  element  to bear  R to something  else. Cantor  drew  at -
tention  to  the  well-ordering  principle  in  his  Grundlagen, calling  it 
‘a basic law of thought.’42

Is  there  any  sense  in  which  we  can  say  that  Aristotle  recog-
nised  that  the  continuum  was  uncountably  infinite?  To  say  that  
the  continuum  is  uncountably  infinite for  Aristotle  (or  a  modern  
Aristotelian)  would  be  to  allude  to  the  fact  that  it  is always  pos -
sible  to  make  an  additional  division  in  a  continuum.  Any  point  
can be numbered,  but  there  are  countlessly  many  potential  points  
on  the  continuum.  At  no  time  will  all of the  points  be numbered.  
For  modern  mathematicians,  to  call  a  set  ‘uncountable’  is just  to 
say  that  its members  cannot  be put  in  one  to  one  correspondence  
with  the  natural  numbers.  If we  consider  the  act of counting  to be 
like that  of making  a division,  then  the two  notions  of countability  
might  seem  analogous.  However,  an  Aristotelian  notion  of  un -
countability  is  meant  to  connote  the  indeterminate  number  of 
points  that  lie ready  to be made  in a continuum.  The mathematic -
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al notion  of uncountability  carries  with  it  no  such  connotation  of 
indeterminacy.  Cantor  did  recognise  a  kind  of uncountability  in  
the extended sense of not  being  well-orderable.  Counting  depends  
on  the  possibility  of arranging  things  in order.  So it might  be said  
that  there  is  an  analogy  between  uncountability  in  the  extended  
sense  and  uncountability  in  the  Aristotelian  sense  of being  inde-
terminately,  or potentially, infinite. Such an analogy  proves  useful  
in interpreting  Aristotle’s argument  for the  impossibility  of divid -
ing a continuum  through  and  through  at GC 316a24-34.

A  good  basic  analysis  of  the  passage  is  given  by  William  
Charlton  in ‘Aristotle’s Potential  Infinites.’43 Charlton’s  analysis  is 
that  Aristotle  is drawing  a distinction  of scope  in a universal  mod -
al  claim.  Thus  Aristotle  is affirming  the  proposition  (1) For  all  x, 
it’s possible  to  divide  body  b  at  point  x, while  denying  the  pro -
position  (2) It’s possible  that  a body  is divided  at every  point  x for 
all  x.  This  interpretation  makes  good  sense  of  Aristotle’s  claim  
that  ‘it is only  in one sense  that  the  magnitude  is divisible  through  
and  through,  viz.  only  insofar  as  there  is  one  point  anywhere  
within  it.’ It  also  explains  why  each  point  can  be actualised  indi -
vidually,  even  though  the  infinite  collection  cannot  be  actualised  
at once, en masse.

However,  this  interpretation  neglects  the  other  aspect  of Aris-
totle’s explanation,  i.e. his mention  of the non-contiguity  of points  
in the  continuum,  and  subsequent  inference  that  this  prevents  the  
continuum  from  being  divided  through  and  through.  At 317a9-10, 
Aristotle  recognises  the  need  for an  ordering  procedure  for count -
ing  or  dividing  things.  We know  from  Phys.  262a21 that  a  point  
on  a line  is not  considered  to be actual  for Aristotle  unless  an  ob-
ject comes  to  rest  there,  dividing  the  path  of its  journey  into  two. 
We might  also  suppose  that  counting  is another  way  to  actualise  
something.  This hypothesis  yields  the desired  result  that  there  can 
be no actually  infinite  number  for Aristotle,  since then  the  infinite  
would  be  countable,  and  what  is more,  actual.  In  the  case  of the  
continuum  where  no  point  is  immediately  next  to  another  given  
point,  there  is  no  constructive  means  for  ordering  the  points.  
Hence, the points  are uncountable  in the extended  sense and  there  
is thus  no way  in which  the  process  of division  can deliver  the  to-
tality  of  points  produced  by  each  possible  division,  rendering  
them  uncountable  in the sense we defined  for Aristotle.
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There  is, of course,  a  non-constructive  means  of imposing  or-
der  on  the  continuum:  by  applying  the  Axiom  of Choice,  we  can  
arbitrarily  select  a  first  element  from  every  non-empty  subset  of 
the  continuum. 44 But the  Axiom  is unjustified  from  the  construct -
ive point  of view,  because  it  does  not  give  a  rule for  selecting  the  
chosen  elements.  Moreover,  it is especially  disturbing  to a finitist, 
because  it  licenses  the  inference  that  we  can  perform  these  infin -
itely many  choices simultaneously.

For Aristotle,  it is non-sensical  to conjure  up  an  actually  infin -
ite set  out  of nothing,  out  of a mere  collection  of points.  In this  re-
spect,  Aristotle  is closer  to  Brouwer  than  Cantor.  The  continuum  
as a whole  exists,  but  the  termini  of intervals  within  it, the  points,  
are only  realised  in time as the thinker  or mathematician  performs  
a  certain  act,  such  as  counting  or  dividing  intervals  into  ‘before’ 
and  ‘after.’ There  are  affinities  here  between  Aristotle’s insistence  
that  there  must  be  a  soul  to  count  the  passage  of  time  (Phys.  
223a21-28),  and  Brouwer’s  notion  that  the  structure  of  the  con-
tinuum  is given  in  the  intuition  of time.  Since  time  is potentially  
infinite,  it  forever  grows  in  the  direction  of  the  future,  and  so 
there  will never  be a time  at which  all of its moments  exist  simul -
taneously.  Thus  far Aristotle  and  Brouwer  are  in agreement  that  a 
potential  infinity  is  as  Brouwer  would  say,  ‘denumerably  unfin -
ished’  or  incomplete.  Despite  the  frequency  with  which  the  com-
parison  between  Aristotelian  and  intuitionistic theories  of the con-
tinuum  is  casually  proposed,  it  is  seldom  carried  out  in  detail,  
perhaps  because  there  is  a  significant  disanalogy  between  Aris-
totle’s  approach,  with  its  coupling  of  classical  logic,  abstraction -
ism,  and  finitism  about  the  universe,  and  Brouwer’s  approach,  
with  its epistemic and  proof-theoretic reasons  for rejecting  infinite  
totalities.  Moreover,  although  a  good  deal  of mathematics  of the  
continuum  can  be  reconstructed  using  intuitionism,  intuitionistic 
mathematics  is plainly  not  adequate  to  capture  all  of contempor -
ary  mathematical  practice, a goal  which  was  still feasible for Aris-
totelian  mathematics  (see  Phys.  207b27-34). There  is thus  a  sense  
in  which  Aristotle’s  philosophy  of mathematics  is  more  success-
fully  conservative  of  mathematical  practice.  For  such  reasons,  a 
comparison  with  Brouwer  is especially difficult.

Cantor,  in  contrast  to  Aristotle,  proceeded  from  the  concep -
tion  that  the  continuum  and  all  of  its  uncountably  many  points  
already  exist  in  actuality  prior  to the  activity  of the  human  math -
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ematician.  This conception  legitimates  many  of Cantor’s  non-con-
structivist  claims.  Yet despite  their  different  metaphysics,  there  is 
a  substantial  area  of agreement  between  Cantor  and  Aristotle  as 
to  the  topological  nature  of the  continuum.  Cantor  upholds  Aris-
totle’s  insight  insofar  as  he  too  insists  that  a  mere  collection  of 
points,  no  matter  how  many,  cannot  in  themselves  constitute  a 
continuum.  The  collection  must  have  a  specific structure:  it  must  
be  connected,  dense,  and  closed.  Of these  three  criteria,  Aristotle  
already  singles  out  two  as  essential  to  continua,  and  shows  some  
understanding  of the  third  (at  least  for the  case of time-intervals).  
What  might  account  for  the  remarkable  similarity  in  these  theor -
ies of the  continuum?  I believe,  even  though  Cantor  would  reject  
such  an explanation,  that  the similarity  is best  explained  by taking  
a  leaf  out  of  Aristotle’s  philosophy  of  mathematics.  Cantor  and  
Aristotle  share  a  common  intuition  of  the  structure  of  the  con-
tinuum,  an  intuition  that  has  its  source  in  the  experience  of  the 
physical world.
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B lie outside  a space  H,  B can  be everywhere  dense  in  H,  without  being  dense  in  itself. However,  the  two  concepts  
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33 Cantor,  Georg.  Gesammelte Abhandlungen, 194.
34 Georg  Cantor , Gesammelte Abhandlungen, 207, fn. 11.
35 Of course,  we  would  need  to  adopt  the  convention  that.59999… was  to be written  as.6, and  so on,  in order  to  guar -

antee  the  unique  representation  of each point.
36 Benoit  Mandelbrot,  The Fractal Geometry of Nature, (New  York: W.H. Freeman  Co., 1983). 
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werde  ich  in  einer  späteren  Abhandlungen  zurückkommen.  Hier  beschränke  ich  mich  auf  den  Nachweis,  wie  aus  
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43 William  Charlton,  “Aristotle’s  Potential  Infinites,”  in  Aristotle’s Physics: A  Collection of Essays, ed.  by  L. Judson  (Ox-
ford: Clarendon  Press, 1991), 129-149.
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