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1. Introduction 

Within the field of quantum gravity, there is an influential research program developing the 

connection between quantum entanglement and spatiotemporal distance. Quantum information 

theory gives us highly refined tools for quantifying quantum entanglement. A common measure 

is the von Neumann entropy S, which can be seen as a quantum analog of the Shannon entropy. 

For a state with density matrix 𝜌, 

(1.1)   𝑆(𝜌) = 	−𝑡𝑟(𝜌𝑙𝑜𝑔𝜌).  

Where the density matrix is diagonalizable, with eigenvalues 𝜆!, the von Neumann entropy may 

also be expressed as  

(1.2)  𝑆(𝜌) = ∑ 𝜆!𝑙𝑜𝑔
"
#!! .  

The von Neumann entropy gives one a measure of how entangled a system is. So, for example if 

we consider a bipartite system 𝜎$%, we may ask how entangled are its parts, 𝜎$ and 𝜎%. In this 

case, we can refer to 𝑆(𝜌$) or 𝑆(𝜌%), where 𝜌$ and 𝜌% are the reduced density matrices of the 

system’s parts, as the parts’ entanglement entropies. If the joint state of the system is a product 

state so that 𝜌$% = 𝜌$⨂𝜌%, then the entanglement entropy for either part, 𝑆(𝜌$) or 𝑆(𝜌%) will be 

zero. On the other hand, for an entangled system, the entanglement entropy of the parts will not 

be zero. Indeed, depending on the degrees of freedom of the system, there will be a maximum 

value of the entanglement entropy associated with the maximally entangled state. For a system of 

 
1 Thanks to Steve Carlip for conversations that inspired and detailed comments that substantially 
improved this paper.  
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qubits, this will be the value associated with the Bell states, 𝜓$% =
"
√'
(|01⟩ ± |10⟩) and 𝜓$% =

"
√'
(|00⟩ ± |11⟩). 

Through a series of well-confirmed results, it has been shown how these facts about the 

entanglement entropy of component systems may be connected to facts about spatiotemporal 

distance.2 Physicists are seeing these results as yielding promising methods for better 

understanding the emergence of (the dynamical) spacetime (of general relativity) from more 

fundamental quantum theories, and moreover, as promising for the development of a 

nonperturbative theory of quantum gravity. These results appear to be part of a more general 

convergence forming from several different approaches to quantum gravity (string theory, spin 

foams, causal sets) around the idea that spacetime, dynamical spacetime of the kind found in 

general relativity, is an emergent phenomenon, a phenomenon that arises in some sense or other 

from a more fundamental, non-gravitational description (Carlip 2012, Huggett and Wüthrich 

2013). However, to what extent does the case for the entanglement entropy-distance link provide 

evidence that spacetime structure is nonfundamental and emergent from nongravitational degrees 

of freedom? I will show that a closer look at the results lends support only to a weaker 

conclusion, that the facts about quantum entanglement are constrained by facts about 

spatiotemporal distance, and not that they are the basis from which facts about spatiotemporal 

distance emerge. 

 

2. Constructing the Metric from the Entanglement Entropy in the AdS/CFT Context 

 
2 We may note, in anticipation of this fact that entanglement entropy will be connected with 
spatiotemporal distance, that this quantity has certain features that make it apt to serve as a 
distance relation itself. In particular, it satisfies the triangle inequality: For a joint state 𝜌$% ,
𝑆(𝜌$%) ≥ |𝑆(𝜌$) − 𝑆(𝜌%)| (Nielsen and Chuang 2016, pp. 515-516). 
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Let’s start by looking at results connecting facts about the spacetime metric with facts about 

quantum entanglement that have been motivated from within the string theory paradigm. These 

follow, first, on Maldacena’s (1997) discovery of the AdS/CFT correspondence. Maldacena 

showed how one could establish a holographic correspondence between two theories. The first 

theory was a gravitational theory, a string theory on anti-de Sitter (AdS) spacetime in N+1 

dimensions. The other theory was a theory without gravitational degrees of freedom, a conformal 

field theory, a type of quantum field theory with a kind of scaling symmetry (CFT), defined on a 

flat spacetime in N dimensions.  

Figure 1: AdS/CFT Correspondence 

 

In this model, one may view the AdS description as defining a bulk spacetime for which the CFT 

lies on its boundary. Maldacena showed how one can translate back and forth between the 

description of the N+1-dimensional spacetime in the bulk and the N-dimensional spacetime on 

its boundary. This work has been extremely influential and so it is a good place to start to look 
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for mainstream arguments on the link between quantum features and spacetime structure. Even 

though we don’t ourselves inhabit an AdS spacetime, this correspondence shows us how one 

might, for at least one case, derive facts about a curved spacetime, and hence gravity, from a 

quantum theory without it. 

 A lot of philosophical work has discussed the AdS/CFT correspondence.3 However, I 

want to look at a particular line of research that has started within the AdS/CFT context, work 

that aims to derive facts about the AdS metric using particular facts about the CFT on the 

boundary, in particular, facts about the entanglement entropy of particular states living on the 

boundary. In 2006, Ryu and Takayanagi asked us to consider the following. First, take a CFT 

boundary and divide it into two regions, A and its complement, �̅�.  

Figure 2: Ryu-Takayanagi Cut 

 

 
3 Rickles (2013), Teh (2013), Dieks et. al. (2015), Butterfield (forthcoming), Huggett and 
Wüthrich (forthcoming), for example. 
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We may then consider the reduced density matrices 𝜌$, that describes the state on region A, and 

𝜌$̅, that describes the state on the complement region �̅�.	Given these density matrices, we can 

then compute their entanglement entropy. Assuming the total boundary region is in a pure state, 

𝑆(𝜌$) = 𝑆(𝜌$̅). Now consider the minimal surface running through the AdS bulk that connects 

the two edges dividing region A from its complement. Call this surface 𝛾$. 

Figure 3: Minimal Surface 

 

The Ryu-Takayanagi conjecture is that a particular relationship exists between the area (or in the 

N=1 case, length) of 𝛾$ and the entanglement entropy of the region on the boundary A: 

(2.1)  𝑆(𝜌$) = 	
)*+)	-.	/"
01#

(#%&) , 

where GNN+1 is Newton’s constant for the relevant N+1-dimensional space. Those familiar with 

work on black hole thermodynamics will immediately recognize that this relationship has the 

same form as the Bekenstein-Hawking formula that relates the entropy of a black hole to the area 

of its event horizon (Bekenstein 1973, Hawking 1975): 
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(2.2)  𝑆%2 =	
)*+)	-.	34+	+5+63	4-*!7-6

01
. 

This is something we will come back to. Ryu and Takayanagi motivate their conjecture by 

appeal to this earlier work on black hole entropy, and in particular, the explanation of why this 

formula holds developed by Sorkin and his collaborators (Sorkin 1983, Bombelli et. al. 1986). 

 We will discuss below how Ryu and Takayanagi establish their conjecture. For now, it is 

just worth noting how influential this work has been in motivating a research program in 

quantum gravity, working within the AdS/CFT context, for seeing the connection between facts 

about quantum entanglement (entanglement entropy) in a quantum field theory without 

gravitational degrees of freedom, and facts about the metric in a curved (AdS) spacetime. To 

begin, Hubeny, Rangamani, and Takayanagi (2007) generalized the result from one about a static 

region of the AdS spacetime to more general regions, providing a covariant account of AdS 

distances in quantum information theoretic terms. Later work asked whether it possible to 

recover more of the AdS metric from the entanglement properties of regions on the boundary, 

beyond the area of the minimal surfaces 𝛾$. That is, how far can we succeed in “bulk 

reconstruction,” i.e. in gaining an understanding of “how these degrees of freedom, which are 

well-understood from the perspective of nongravitational quantum field theory, reorganize 

themselves (in an appropriate limit) into a manifestly local gravitational theory” (Bao et. al 2019, 

p. 1). 

The work on “hole-ography” of, for example, Balasubramanian et. al. (2014), Headrick 

et. al, (2014) and Myers et. al. (2014) aims to construct the metrical properties of closed surfaces 

embedded in the AdS space from entanglement entropies on the boundary field theory. The 

strategy can be (loosely) explicated as follows. Take a closed surface in the AdS bulk. 
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Figure 4: Closed Surface in the AdS Bulk 

 

Now find geodesics k that are tangent to each region on that closed surface and extend them out 

to the CFT boundary to get a boundary region Ik.  

Figure 5: Tangent Curves 
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The idea then is to argue that one can recover the surface’s area in terms of the entanglement 

entropies on the boundary using: 

(2.3)  𝐸 = ∑ [𝑆(𝐼8) − 𝑆(𝐼8 ∩ 𝐼89")]6
8:" , 

where E is what Myers et. al. refer to as the differential entropy. The area of the surface is 

identified with the limit of this quantity as n®¥. 

These developments lead Keeler and her collaborators to argue that entanglement 

entropies on the boundary are sufficient to uniquely fix the metric (up to diffeomorphism) 

everywhere in the neighborhood of the extremal surfaces (Bao et. al. 2019). Although there does 

seem to be an open question about whether this work can rule out the existence of “entanglement 

shadows” in the AdS bulk, regions where the metric is left undetermined by the entropy of 

boundary regions, perhaps because there are regions which extremal surfaces can’t cross due to 

singularities (cf. Headrick et. al. 2014, p. 38), large steps have already been taken to capture a lot 

of information about the AdS metric in terms of quantum entanglement on the CFT boundary. 
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3. The Entanglement Entropy-Distance Link Beyond AdS/CFT: Area Laws 

As noted, our universe doesn’t have an AdS geometry, and so one might ask whether these 

results are confined to the AdS/CFT context, or whether we may have justification for seeing a 

connection between entanglement entropy and distance in the more general case. Let us back up 

and reframe a bit what we are after. So far, what we are seeing is the establishment of a series of 

area laws. Although in classical thermodynamics we are familiar with the idea that entropy is an 

extensive quantity, scaling with volume, this is not so for the cases we have been considering. In 

the case of black hole thermodynamics and the Ryu-Takayanagi conjecture, (Bekenstein-

Hawking or entanglement) entropies scale with area. And this is what allows us to relate facts 

about entanglement entropy to facts about the metric.  

The work we have just discussed argued for a direct correspondence between the 

entanglement entropy of a CFT state A on the boundary and the area of surfaces through the AdS 

bulk separating A from its complement. We should probe whether this connection between the 

entanglement entropy of a region A and the area of the surface separating it from its complement 

may be generalized from the AdS/CFT context to more general quantum systems. Indeed, there 

are indications that area laws may hold more generally outside of the AdS/CFT context, and thus 

there is a research program devoted to finding the conditions under which they hold. Again, this 

is inspired by the Bekenstein-Hawking law for black hole entropy.  

 Although it is familiar from the consideration of Bell states in quantum mechanics that 

quantum entanglement/correlations may persist over indefinitely long spatial distances, 

interactions in quantum many body systems are typically local. That is, subsystems typically 

interact over short distances with only a finite number of neighboring subsystems. There is an 
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intuition that interactions are short-range because these correlations are enacted through the 

interface surfaces4 between regions. An area law analogous to what we’ve already seen provides 

support for this intuition. 

 In a survey article, Eisert et. al. (2010) develop the case for area laws by illustration with 

systems representable as a lattice, in particular one-dimensional systems where the entire system 

may be represented as a chain of quantum systems L, and we focus on the entanglement entropy 

of a part of this chain, e.g., the block I consisting of its first n members: {1,…n}. If the 

entanglement entropy scaled with volume, then this would mean that the entanglement entropy 

of I, 𝑆(𝜌;) would be proportional to the cardinality of the block, i.e. n. However, it may be 

shown that instead, for this many body quantum system, 𝑆(𝜌;) scales with the area of the 

boundary.  

For such a one-dimensional chain, the boundary is very simple. The boundary is one or 

two parts of the block, depending on the boundary conditions imposed. And so, we obtain an 

area law for the entanglement entropy just in case 𝑆(𝜌;) is independent of the block size and 

instead is proportional to 1. 

(3.1)  𝑆(𝜌;) = 𝑂(1) 

Eisert et. al. emphasize that their claim is not that area laws always hold for many body quantum 

systems. Rather, one fact determining whether or not an area law holds is whether the system is 

at a quantum critical point or not. For systems near criticality, the entanglement varies with the 

length of the chain. And so, what we have is not an area law, but a volume law. This is not 

surprising given what is known about the breakdown of locality in critical systems in 

 
4 I use ‘interface surface’ here to make a distinction with the ‘boundary surface’ in the AdS/CFT 
context. What we discuss here as the interface surface corresponds to the black hole’s event 
horizon or Ryu and Takayanagi’s minimal extremal surface. 
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thermodynamics. In what follows, I summarize the argument, eliding most of the technical 

details. 

 Consider a bosonic harmonic chain. In this case, the elements of the chain are modeled as 

discrete versions of Klein-Gordon fields, that is, as spinless particles with charge. We write 

down a Hamiltonian for this system in terms of the canonical operators x and p, and system 

operators X and P which describe the coupling structure. These allows us to rewrite the 

Hamiltonian in terms of bosonic annihilation operators, and to define the covariance matrix, Γ:  

(3.2)  Γ = Γ<⨁Γ=, where Γ= = 𝑋" '> (𝑋" '> 𝑃𝑋" '> )?" '> 𝑋" '> , and Γ< = Γ=?". 

It turns out that even in such one-dimensional systems, simple though they are, the entanglement 

entropy is quite difficult to compute. However, there is another entanglement measure, the 

logarithmic negativity EN, that is more tractable and which provides an upper bound for the 

entanglement entropy (at least for pure states). And this latter entanglement measure may be 

computed in terms of the covariance matrix as: 

(3.3)  𝑆(𝜌;) ≤ 𝐸@(𝜌, 𝐼) = log	(𝑡𝑟 K(𝜌A(B𝜌A()" '> L). 

 Following Eisert et. al., consider the simplest case where the chain L is bisected 

symmetrically into two parts. We will assume the Hamiltonian describes parts of the system as 

only able to directly interact with their nearest neighbors, so interactions are local. Here we have 

a gapped system, one in which there are discrete energy gaps above the ground state that depend 

on the coupling strength. In this case, Audenart et al. (2002) proved that: 

 (3.4)  𝑆(𝜌;) ≤ 𝐸@(𝜌, 𝐼) =
"
'
𝑙𝑜𝑔 M ‖D‖&/*

#+!,
&
*- (D)

N,  

where ‖𝑋‖ is the norm of the system operator X. This was the first rigorous area law for a 

quantum lattice system. As one can see, the upper bound for entanglement entropy does not 



 12 

depend on the size of the system I. It depends rather only on the coupling. A key lesson that 

Eisert et. al. (2010) draw from this work, as well as discussion of more complicated cases, is that 

under the assumption of local interaction, entanglement tracks distance. As they put it, describing 

the import of (3.4): 

This result suggested that the locality of the interaction in the gapped model is inherited 

by the locality of entanglement, a picture that was also confirmed in more generality. 

(2010, p. 5) 

In the case of criticality, just as for thermal systems, we lose the locality of interactions, and so 

the assumptions used for deriving an area law fail. Entanglement entropy, in such cases, scales 

with volume, as we would otherwise expect by analogy with the thermal entropy. 

 More recent work by Cao et. al. (2017) builds on these proofs of area laws using them 

(again, outside of the AdS/CFT context) to argue that we can see the spacetime metric as 

emerging from facts about entanglement entropy. Or, more accurately, Cao et. al. (2017) use the 

quantum analog of the mutual information, S(A:B), which is defined in terms of the entanglement 

entropy, and link this with facts about spatial distance: 

(3.5)  𝑆(𝐴: 𝐵) ≡ 𝑆(𝜌$) + 𝑆(𝜌%) − 𝑆(𝜌$%) (Nielsen and Chuang 2016, p. 514). 

The spacetime metric for Cao et. al. emerges from relations of mutual information between parts 

of the total quantum state in Hilbert space. Eliding the details, we can just note that again, the 

inference isn’t direct, but mediated by a claim about local interactions: 

The mutual information between regions is a measure of how correlated they are. It 

provides a useful way of characterizing the “distance” between such regions because of 

its relation to correlation functions between operators. We expect that in the ground state 

of a field theory, correlators of field operators will decay as exponentials (for massive 
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fields) or power laws (for massless ones). The mutual information may reflect this 

behavior, as it provides an upper bound on the correlation function between two 

operators. (2017, p. 4, my emphasis) 

So again, for Cao et. al., it is in the assumption of a local field theory that the relevant area laws 

obtain. We will return to this locality assumption shortly. 

 

4. From Correspondence to Emergence? 

The work described so far is very suggestive and, even if this is not always explicit as it is in the 

work of Cao et. al., the establishment of such links between entanglement measures and metrical 

features has held out the promise for many that one can see spacetime as emerging from facts 

about entanglement entropy. We certainly have, in these several cases, a bridge that can take us, 

in certain well-defined contexts, back and forth between entanglement facts and facts about 

spatiotemporal distance or area. But is there reason to see the one set of facts as emerging from 

the other?5  

 Rickles (2013), Teh (2013), and Crowther (2014), in earlier discussions of the AdS/CFT 

correspondence, have warned us to be cautious before moving from the existence of such a 

duality or bridge, to a claim of emergence. And this is important: although the area laws we have 

discussed may enable us the ability to move back and forth between two theoretical frameworks, 

this is compatible with the holding of several possible inter-theoretic relationships: 

1) Facts about the metric emerge from fundamental facts about entanglement entropy. 

 
5 As is standard in this literature, I will continue to use the language of emergence. But for these 
purposes, I could just as easily have framed the discussion in terms of whether we should see 
there being a reductive link, where the facts about spacetime metric are being reduced to facts 
about quantum entanglement.  
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2) Facts about the entanglement entropy emerge from fundamental facts about the 

metric. 

3) Facts about the metric and entanglement entropy are equally fundamental. 

4) Facts about the metric and entanglement entropy are neither fundamental, but both 

emerge from some more fundamental, as yet undiscovered, framework.6 

Following Teh, we must recognize that, before we can be justified in adopting a claim of 

emergence (of facts in theory B from facts in theory A), we must establish that the A-facts are 

more fundamental. Teh (2013) acknowledges that in the AdS/CFT context, often, because it is 

easier to define the quantum field theory than the gravity theory, there is reason to view the CFT 

as more fundamental. But on the other hand, following Maldacena’s original development of 

AdS/CFT in the string theory context, one might view neither theory as fundamental, but both as 

emerging from a more fundamental string theory (2013, p. 309).  

Another issue that needs to be considered that is relevant to the question of emergence 

concerns whether it is reasonable to believe the AdS/CFT correspondence is exact. Dieks et. al. 

(2015, p. 208) rightly note that although it is often treated as an exact correspondence, it is not 

clear whether this is actually so. If it is not exact, then experiments could, in principle, decide the 

question of which of the two theories is the more fundamental and settle this question of 

emergence. In the case in which it turns out the correspondence is exact, Dieks et. al. are more 

skeptical that what we have is a situation in which either theory is more fundamental: “in this 

case that the two theories completely agree on everything that is physically meaningful, the two 

 
6 This is the alternative both Rickles (2013) and Crowther (2014) express sympathy for when 
discussing the AdS/CFT correspondence. 
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sides of the duality should be taken as different representations of one and the same physical 

theory” (2015, p. 209). 

For present purposes, although the initial discussion of the entanglement-distance link 

occurred in the context of AdS/CFT, we are attempting to take the entanglement-distance link 

out of that context and seek out its deeper motivation. And so, I argue, we shouldn’t be basing a 

judgment of which of (1) - (4) is correct on what is reasonable to believe about AdS/CFT. 

Moreover, as many have noted, even if it is reasonable to think the AdS/CFT correspondence 

supports a claim of emergence, it doesn’t itself explain how dynamical spacetime might emerge 

from a quantum field theory on flat spacetime (c.f. Van Raamsdonk 2010). And so, we are going 

to need more of a story about how this works either way (from within or outside of the AdS/CFT 

context). And this story may provide insights on which of (1) - (4) best describes the 

metaphysical structure of our world.  

 

5. Gluing With Entanglement? 

As just mentioned, Van Raamsdonk (2010) notes that just from the AdS/CFT correspondence 

alone, we can’t see how dynamical spacetime emerges from a nongravitational quantum field 

theory. However, he believes that if one appeals to quantum information theoretic facts about 

entanglement measures, then it can be made clear how what we have is a case of emergence. His 

argument works by considering two cases. The first involves a set of disconnected AdS 

spacetimes that we can then regard as connected by virtue of the entanglement relations in their 

dual CFTs. The second case involves a single vacuum CFT in which we gradually remove the 

entanglement between its component degrees of freedom. As this happens, we can see the 

corresponding regions in the dual AdS spacetime as becoming pushed away from each other 
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until, when their mutual information goes to zero, the distance between them becomes infinite, 

and they effectively pinch apart. 

 These cases are extremely suggestive, suggestive of the idea that there is a genuine 

explanatory connection between the metrical features of an AdS spacetime and the entanglement 

entropies of its dual quantum field theory. And especially in Van Raamsdonk’s discussion of the 

first case, we see a good reason to think that there isn’t merely a correlation between the two 

theories, but that one set of facts is arising because of the other. However, as I will explain, it is 

not clear to me that these cases are illustrating emergence as in option (1) of the previous section. 

 Let’s begin with the second case first, as it’s simpler, consisting of just one CFT and its 

dual global AdS spacetime. Here, Van Raamsdonk’s discussion of the case provides a 

fascinating picture of how the entanglement of degrees of freedom in a CFT track distance in its 

holographic dual. 

 

Figure 6: Minimal Surface Variation 
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What we see is that as the entanglement between region A and its complement is decreased, the 

area of the region through the bulk AdS spacetime separating A from �̅�, what we earlier denoted 

𝛾$, decreases, and the distance between points 𝑥$ and 𝑥$̅ increases. Eventually as 𝑆(𝜌$) → 0, 𝑥$ 

and 𝑥$̅ pinch off from one another altogether.  

So Van Raamsdonk’s second case illustrates the existence of a correlation between 

entanglement entropy and distance. Indeed this correlation is a natural one given that as the 

entanglement entropy decreases, the mutual information 𝑆(𝐴: �̅�) also decreases, and (as Cao et. 

al. 2007 also note) the mutual information has several features (positivity, symmetry, the obeying 

of a triangle inequality) that make it particularly apt to be tracking distance relations. But what 

reason is there to think this correlation is due to the emergence of the facts about distance from 

the facts about entanglement? Van Raamsdonk’s case for the correlation and corresponding 

images comes simply from an appeal to the Ryu-Takayanagi conjecture (2010, p. 3). And so, to 

evaluate whether this connection comes from the fact that the spatiotemporal relations are 
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emerging from entanglement on the boundary (in support of my Option (1)), we must go back to 

see what justifies the Ryu-Takayanagi area law in the first place.  

 We will return to that momentarily, but first let us consider Van Raamsdonk’s first case 

in which we see a pair of disconnected AdS spacetimes becoming spatiotemporally connected, 

“glued,” using quantum entanglement. First, Van Raamsdonk asks us to consider a pair of CFTs, 

which we may call CFT1 and CFT2, each defined on S3 x R. In a product state, their combined 

quantum state may be written as a tensor product, 𝜌$% = 𝜌$⨂𝜌%. In this case, there is no 

entanglement between the degrees of freedom of the two CFTs. And so their individual 

entanglement entropies are identically zero. Here, CFT1 and CFT2 describe two separate systems, 

and so, Van Raamsdonk argues (p. 1), the dual AdS spacetimes, AdS1 and AdS2 are therefore 

disconnected.7 

 However, what if we take two such unentangled CFTs and combine them into a quantum 

superposition? Here, Van Raamsdonk asks us to consider the following superposition of product 

states: 

(5.1)  |𝜓⟩ = ∑ 𝑒
./0!
*! |𝐸!⟩⨂|𝐸!⟩ 

This state, the Hawking-Hartle state, has been shown by Maldacena (2003) to correspond to a 

classically connected spacetime, the eternal AdS black hole spacetime, which can be represented 

by the following Penrose diagram:  

 

Figure 7: Eternal AdS Black Hole Spacetime 

 
7 One might already question this inference, at least insofar as it is supposed to generalize beyond 
the case of AdS/CFT, where we may assume each CFT gives a complete description of an AdS 
spacetime. Outside of the AdS/CFT context, we have no problem conceiving separable states of 
quantum systems where the component states 𝜌$and 𝜌% inhabit a common spacetime.  
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Here regions I and II correspond to the duals of the reduced states for CFT1 and CFT2 

respectively. Jagged lines represent the past and future singularities. 

Van Raamsdonk concludes how remarkable it is that such a complicated quantum state 

can give rise to a spacetime with such a simple geometric description in classical terms: 

… we have a remarkable conclusion: the state |𝜓⟩ which clearly represented a quantum 

superposition of disconnected spacetimes may also be identified with a classically 

connected spacetime. In this example, classical connectivity arises by entangling the 

degrees of freedom in the two components. (2010, p. 2) 

But is this the correct order of explanation? In the eternal AdS black hole spacetime, the causal 

futures of the two asymptotic regions AdS1 and AdS2 intersect past the event horizon. This is 

their joint causal future, Region IV. As Van Raamsdonk notes, it follows from the AdS/CFT 

correspondence that if we take a measurement on a state described by CFT1, the dual of the result 

of that measurement will eventually enter region IV. This is the causal future of the dual to 
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CFT2. This suggests that measurement of CFT1 affects the state of CFT2, and supports the claim 

that the two are entangled. Thus, it seems it is the spatiotemporal connection between AdS1 and 

AdS2 that partially grounds the entanglement between the dual CFT1 and CFT2. But given this 

fact, Van Raamsdonk’s discussion of the eternal AdS black hole seems most suggestive of the 

idea that the order of explanation goes in the opposite direction than what he wants. It is the 

spacetime structure that explains why it is that the measurement in the dual CFT1 has an effect 

on the measurement in the dual CFT2, and so explains the entanglement of the two component 

states. If this is right, then it is not that the quantum facts emerge from the geometric facts, but 

rather that the latter constrains (and so helps to explain) the former. 

 Return to the four metaphysical options presented in Section 4. 

1) Facts about the metric emerge from fundamental facts about entanglement entropy. 

2) Facts about the entanglement entropy emerge from fundamental facts about the 

metric. 

3) Facts about the metric and entanglement entropy are equally fundamental. 

4) Facts about the metric and entanglement entropy are neither fundamental, but both 

emerge from some more fundamental, as yet undiscovered, framework. 

My claim is that Van Raamsdonk’s first case does not support Option (1) over its rivals, even if 

it does support the existence of an explanatory connection between facts about entanglement 

entropy and facts about the metric. The explanation of the entanglement relations in this case 

presupposes facts about the metric. 

 

6. Back to Ryu-Takayanagi and Black Hole Thermodynamics 
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Let’s try to seek out arguments for the emergence claim that are more promising by returning to 

the Ryu-Takayanagi conjecture and seeing in the first place why this conjecture turns out to 

work.  

 Recall again that Ryu and Takayanagi propose the following area law: 

(6.1)  𝑆(𝜌$) = 	
)*+)	-.	/"
01#

(#%&) , 

where GNN+1 is Newton’s constant for the relevant N+1-dimensional space. It’s easiest to 

understand the case for this area law in the context of a specific physical scenario. Let’s consider 

the simplest case of N=2. Here we are considering an AdS3 gravity theory that is dual to a 1+1-

dimensional CFT. For an AdS3 spacetime with radius of curvature R, the dual CFT has central 

charge c = 3R/2GN(3). 

Now note that the metric of the AdS3 spacetime is: 

(6.2)  ds2 = R2(-coshr2dt2 + dr2 +sinhr2dθ2) 

This diverges as r goes to infinity. Although this divergence is not problematic on its own, for 

there to be a finite boundary on which the dual CFT will yield values for physical quantities that 

do not diverge, we impose a cutoff r0 and restrict the space of interest to r ≤ r0. In the dual CFT, 

this corresponds to imposing a UV cutoff where there is a minimal distance between field values 

of a, the lattice spacing (cf. Susskind and Witten 1998). We can then think of the CFT as living 

on the boundary of AdS3 where r=r0. This makes the 1+1-dimensional spacetime for the CFT a 

cylinder (t, θ) with radius r0.  

Ryu and Takayanagi consider the static case where the CFT lies on a single time slice t.  

 

Figure 8: Static Case 
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As mentioned, Hubeny, Rangamani, and Takayanagi (2007) later extended this argument to 

more general regions to give a covariant result. To give the main idea of how this is established, I 

will focus on the static case and closely follow the 2006 discussion. Take a particular time-slice 

of the cylinder and divide it into a region A and its complement, such that A corresponds to 0 ≤ θ 

≤ 'GH
I

, where l is the length of A and L is the length of the total boundary. The minimal surface γA 

then will be the geodesic with fixed t that connects the points θ = 0 and θ = 'GH
I

. This will be a 

geodesic running through the AdS3 spacetime.  

Ryu and Takayangi compute the length of the geodesic from the metric as 1 +

2𝑠𝑖𝑛ℎ'𝜌J𝑠𝑖𝑛'
GH
I

.  And then using this for the area of 𝛾$, they use the proposed area law (6.1) to 

get an expression for 𝑆(𝜌$). The neat thing is that the result given by the area law is confirmed 

by independent work on the entanglement entropy of many body 1+1-dimensional CFTs. As Ryu 

and Takayanagi note, Calabrese and Cardy (2004) showed (generalizing results of Hozheny et. 



 23 

al. 1994) that for 1+1-dimensional CFTs, the entanglement entropy of a quantum many-body 

system (with periodic boundary conditions) is given by: 

(6.3)  𝑆(𝜌$) =
K
L
𝑙𝑜𝑔 K I

G)
𝑠𝑖𝑛 \GH

I
]L,  

where again L is the length of the total system, l is the length of A, a is the lattice spacing, and c 

is the CFT’s central charge. Recalling that our CFT has central charge c = 3R/2GN, we then 

recover: 

(6.4)  𝑆(𝜌$) =
K
L
𝑙𝑜𝑔(𝑒M1𝑠𝑖𝑛 GH

I
), 

assuming 𝑒M1 ≫ 1. 

 The form of argument Ryu and Takayanagi use may be summarized as follows. Using the 

AdS3 metric, we can compute the area of a minimal surface connecting the edges of region A 

through the bulk. If we then assume the area law, this allows us to calculate a certain formula for 

the entanglement entropy 𝑆(𝜌$) in the language of conformal field theory. This turns out to be 

the correct formula for 𝑆(𝜌$) within a 1+1-dimensional CFT, given independent results. This 

thus confirms the area law. Ryu and Takayanagi develop similar arguments for more 

complicated setups in higher dimensions (2006a,b). 

 So we get confirmation of Ryu and Takayanagi’s conjecture of an area law, but this does 

raise the question of why such an area law obtains. What grounds the connection between 𝑆(𝜌$) 

and the area of 𝛾$? Discussions of Ryu and Takayanagi’s paper often take their result to support 

the emergence of spacetime from an underlying quantum theory without gravitational degrees of 

freedom, but although their arguments certainly confirm an entanglement-distance link, they 

don’t provide the explanation of why this link should hold, and as such cannot support Option 

(1) over its three rivals. Here I would suggest it is helpful if we think about the Bekenstein-

Hawking law, which inspired Ryu and Takayanagi’s conjecture. Bombelli et. al. (1986) develop 
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an illuminating physical argument that provides an explanation of why the Bekenstein-Hawking 

relationship holds. As it works by explicating Bekenstein-Hawking entropy as a form of 

entanglement entropy, it can help us here in better understanding the metaphysical implications 

of the Ryu-Takayanagi paper, which essentially takes the Bekenstein-Hawking result and 

generalizes it outside of the black hole context.8 

First, Bombelli et. al. ask us to suppose that, as is the case for thermal entropy, we can 

provide a statistical mechanical reduction of the entropy of a black hole, as SBH = klogN, where 

N is the number of possible internal states of the black hole. This faces two major problems. 

First, because the black hole is black, the number of internal states compatible with the external 

appearance of the black hole is infinite. And so this interpretation trivializes the black hole’s 

entropy. However, even if there was a way to make the number of internal black hole states 

finite, there would still be a problem in that we could not use SBH = klogN to establish a 

generalized second law of thermodynamics incorporating SBH. This generalized second law 

should say Stotal = Sexternal + SBH increases toward the future. But the derivation of a second law 

for thermal systems generally rests on two hypotheses that are not satisfied for black holes: (a) 

that there is weak interaction between a system and its environment, and (b) that the system is in 

equilibrium. Black holes are not generally interpretable as being in a state of equilibrium and the 

weak interaction assumption fails.9 The outside of a black hole has a strong effect on its interior, 

 
8 It should be noted that arguments based on the claim that black hole entropy is entanglement 
entropy do not provide the only path to explaining the Bekenstein-Hawking formula. For 
example, one also finds arguments that one can arrive at the relationship just by counting states 
on the boundary (see Carlip 2014). However, the form of argument I will describe and closely 
related arguments presented e.g. by Srednicki (1993) are the most salient if one wants an 
explanation that can be carried over to the Ryu-Takayanagi area law which concerns 
entanglement entropy. 
9 Though they can be put into a state of equilibrium by being placed in a box (cf. Jacobson 
(1996), p. 35). 



 25 

but there is no causal arrow in the other direction. Bombelli et. al. conclude that we must try to 

understand black hole entropy in some other way. 

 The core idea introduced in Sorkin (1983) and developed in Bombelli et. al. (1986) is to 

treat the source of black hole entropy as related to its entanglement entropy, and find the 

entanglement entropy of the black hole by considering the entanglement entropy of the region 

outside it.10 This is illustrated using a simple model, where the states of the total region consist of 

the states of a massless scalar field in its vacuum state. To calculate the entanglement entropy, 

we can represent the field as a lattice of harmonic oscillators with density 1 ℓL` . This allows us to 

represent the entanglement entropy as a sum over eigenvalues 𝜆! for an operator Λ, using the 

previously stated relation: 

(6.5)  𝑆(𝜌) = ∑ 𝜆!𝑙𝑜𝑔
"
#!! .  

This operator Λ encodes the correlations between points in the lattice and importantly depends on 

a division of points in the lattice into those internal and external to the black hole. See Bombelli 

et. al. (1986) for the details and Sorkin (1983) for an overview, but the core idea is that assuming 

a finite number of points in the lattice, the main contribution to the entanglement entropy will 

come from the values of Λ closer to the horizon (cf. Carlip 2009). And so, given how Λ is 

constructed, “the leading term in S will be proportional to A/ℓ2 where A is the area of the surface 

(“horizon”) separating Hint from Hext” (Sorkin 1983, p. 3).11 The entropy of a black hole thus 

scales with the area of its event horizon. This is because the sum in (6.5) is dominated by terms 

describing the states of the field near the boundary, and thus the size of the boundary between the 

 
10 Sorkin introduced the idea of entanglement entropy in this 1983 paper. 
11 Hint and Hext are the two spacelike hypersurfaces we are considering inside and outside of the 
black hole.  
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regions inside and outside of the black hole is imposing a constraint on the leading contribution 

to 𝑆(𝜌+<3). 

 We can see why this is by considering that any physically acceptable state of the field 

will be a Hadamard state.12 As noted in Unruh and Wald (2017, p. 2), the leading order behavior 

for Hadamard states Ψ of a free scalar field 𝜙 at two points x1 and x2 is: 

(6.6)  ⟨Ψ|𝜙(𝑥")𝜙(𝑥')|Ψ⟩	~
N(<&,<*)

('G)*P(<&,<*)
 

This is the two-point function of the field, where 𝑈(𝑥", 𝑥') is some smooth function and 

𝜎(𝑥", 𝑥') is the squared geodesic distance between the two points. From (6.6), it is easily seen 

that the two-point function diverges as x1 and x2 approach one another. And so, as the operator Λ 

encodes the correlations between points inside and outside of the event horizon, the largest 

contributions to (6.5) will come from those right at the event horizon. 

Bombelli et. al.’s derivation of an area law for the entanglement entropy of a black hole, 

at least the contribution to this entropy given by a massless scalar field, justifies the posited area 

law of Bekenstein and Hawking. And so we can use this justification to ask about the 

justification for its generalization, the area law of Ryu and Takayanagi. 

 

7. No Support for Emergence 

It is clear from the above discussion of black hole entropy that there is no antecedent reason to 

view the area of the event horizon as constructed out of or emerging from the entanglement of 

the reduced quantum state 𝜌%2. The most natural way to interpret the argument is that the 

horizon area is providing a constraint on the black hole entropy. It is not emerging from the 

 
12 Wald (1994, Chapters 2-3) argues that the requirement that states be Hadamard ensures that the 
stress-energy tensor is defined. 
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entropy.13 Insofar as the Ryu-Takayanagi conjecture is providing a generalization of the black 

hole area law, in that case too, there doesn’t seem to be any reason to view the area of the 

minimal surface 𝛾$ as constructed out of the entanglement entropy. It is more natural again to 

view the area of the minimal surface as providing a constraint on the entanglement entropy. And 

so, the burden of proof is on one who wants to interpret the area law of Ryu and Takayanagi in a 

very different way metaphysically from the area law it was aimed at generalizing. This point 

carries over to the work following Ryu and Takayanagi (e.g. Hubeny, Rangamani, and 

Takayanagi 2007, Bao et. al. 2019, and so on). It is worth noting that Ryu and Takayanagi do not 

speculate about metaphysics in their original paper. Moreover, in a longer work (2006b) that 

followed it, expanding on its implications, they present their results not as motivating the 

emergence of spacetime but rather in an instrumental way: since it is often mathematically very 

difficult to compute the entanglement entropy from the quantum field theory side of things, one 

can make use of this proposed area law to get a good approximation of the entanglement entropy 

(2006b, pp. 2-3). 

 One might argue that although the Ryu-Takayanagi conjecture was inspired by the 

Sorkin-Bombelli explanation of the area law of Bekenstein and Hawking, and although there are 

important analogies between black hole entropy and entanglement entropy on a CFT boundary, 

this does not entail that there is an absolute alignment between the two cases. Although in the 

case of the Bekenstein-Hawking law, facts about spatiotemporal distances do explain the 

entanglement entropy, one might argue that in the case of the AdS/CFT correspondence, facts 

 
13 This is the most natural interpretation of ‘t Hooft’s (1993) holographic proposal for black hole 
entropy as well, as he argues that the black hole entropy is maximal when it reaches 𝑆Q)< =

"
0
𝐴. 

“[The entropy] is saturated when one black hole has the largest possible size that still fits inside 
our area” (p. 5). 
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about entanglement entropy are fundamental and instead explain the facts about spatiotemporal 

distance. This is a coherent possibility. However, what I am trying to argue is that a more natural 

attitude is to view the Ryu-Takayanagi result as supporting the generalization of the Sorkin-

Bombelli framework outside of the context it was initially intended to describe. And thus that in 

general, entanglement entropy is constrained by interface (event horizon or minimal surface) 

area. Interface area doesn’t emerge from entanglement entropy in either case. 

 To make the case for Option (1), one needs to point to arguments in which entanglement 

entropies are plausibly being used to explain metrical features, without thereby assuming them. 

One may immediately think of the influential paper by Jacobson (1995), which derives the 

Einstein Field Equation from facts about entanglement entropy. But Jacobson himself relies on 

the Bekenstein-Hawking relationship (and the Sorkin-Bombelli explanation of it) in his 

argument. So this doesn’t give us what we are looking for. Work of Padmanabhan (2010a, 

2010b) comes closer, as it attempts to provide an explanation of the spacetime metric using a 

more basic statistical mechanical framework for understanding facts about entanglement entropy. 

Padmanabhan explicitly frames his work as a part of a project in emergent gravity:  

In this paradigm, one considers spacetime (described by the metric, curvature etc.) as a 

physical system analogous to a gas or a fluid (described by density, velocity etc.). The 

fact that either physical system (spacetime or gas) exhibits thermal phenomena shows 

there must exist microstructure in either system… We do not yet know what are the 

correct microscopic degrees of freedom of the spacetime, but the horizon 

thermodynamics provides a clue… (2010b, p. 3) 
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Padmanabhan (2010a) shows how one can use the equipartition law ∆𝐸 = (1 2̀)(∆𝑛)𝑘%𝑇 to 

derive the existence of these fundamental microscopic degrees of freedom and their relationship 

to the spacetime metric such that: 

(7.1)  ∆𝑛 = ∆$
I2
* , 

where LP is the Planck length. The idea seems to be that the facts about entanglement entropy 

motivate the postulation of these fundamental degrees of freedom which in turn ground the 

structure of gravity and emergent spacetime. This is an intriguing possibility, however at this 

stage, it is worth noting, given we don’t have any idea what these microscopic degrees of 

freedom are, or a strong motivation for believing in them, how much more speculative these 

arguments are than the arguments we saw above that show how facts about the entanglement 

between components of quantum systems are constrained by facts about the interface surface 

between these components. Then again, as Carlip (p.c.) points out, the latter kind of arguments 

have had a “big head start.”  

 Let’s finally return to the case for area laws outside of the AdS/CFT context, the 

argument we find in the results summarized in Eisert et. al. (2010) and followed up on by e.g. 

Cao et. al. (2017). This route into the entanglement-distance link also fails to provide support for 

the view that the facts about spatiotemporal distance emerge from facts about entanglement 

entropy. As we saw, the way area laws were derived for quantum many body systems relied on 

an initial assumption of local interactions. The idea is that when influences are only able to act 

locally, then the limits on correlation and hence, entanglement will be restricted by the region’s 

surface area. In this case again, there doesn’t seem to be support for the emergence hypothesis. 

Again, what seems supported, indeed presupposed, by the whole discussion is that the area of the 

boundary is constraining the entanglement of the two component regions, (for Eisert et. al., these 
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are I and its complement), by constraining the quantity of direct interactions. It is certainly much 

more exciting and radical to view the entanglement-distance link as resulting from a fact about 

emergence – that the spatiotemporal manifold is not fundamental, but ultimately results from 

deeper, quantum information theoretic facts about quantum entanglement. But the way these 

results are motivated does not support this radical view. In the framework in which the results 

are articulated, the spatiotemporal facts are fundamental. They then constrain facts about 

interactions, which then in turn constrain the facts about entanglement entropy. 

 

8. Conclusion 

What I have hoped to show is that there is strong support both from within and without the 

AdS/CFT context for the existence of an important link between entanglement entropy and 

spatiotemporal distance. However, these results do not lend obvious support for the speculation 

that the dynamical spacetime of general relativity is emergent from facts about quantum 

entanglement, at least this is not supported by work to date. One has to interpret results like that 

of Ryu and Takayanagi in a way that departs significantly from the intuitions that make them 

comprehensible to have them support the claim that spacetime emerges from the facts of 

quantum entanglement.  

 This isn’t to say that one cannot use the results of Ryu and Takayanagi and the others to 

support the claim that the metric emerges from facts about quantum entanglement. In a recent 

popular book, Carroll suggests we do just that. He says: 

…following our reverse-engineering philosophy, we can define the “area” of a collection 

of degrees of freedom to be proportional to its entanglement entropy. In fact, we can 

assert this for every possible subset of degrees of freedom, assigning areas to every 
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surface we can imagine drawing within our network… If the degrees of freedom are 

highly entangled, we define them to be nearby … A metric on space has emerged from 

the entanglement structure of the quantum state. (2019, p. 284) 

Of course this is a move one can make, and certainly the attendant emergence hypothesis is one 

we should keep on the table, especially as it seems supported by other routes into developing a 

quantum theory of gravity (cf. Wüthrich 2017). However, the goal of this paper has been to make 

clear that this is not what area laws most directly support, when we pay attention to how they 

have been typically justified in physics. 
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