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Abstract. When are two formal theories of broadly logical concepts, such as truth,
equivalent? The paper investigates a case study, involving twowell-known variants
Kripke-Feferman truth. The first, KF+CONS, features a consistent but partial truth
predicate. The second, KF + COMP, an inconsistent but complete truth predicate. It
is well-known that the two truth predicates are dual to each other. We show that
this duality reveals a much stricter correspondence between the two theories: they
are intertraslatable. Intertranslatability under natural assumptions coincides with
definitional equivalence, and is arguably the strictest notion of theoretical equiv-
alence different from logical equivalence. The case of KF + CONS and KF + COMP
raises a puzzle: the two theories can be proved to be strictly related, yet they appear
to embody remarkably different conceptions of truth. The puzzle can be solved by
reflecting on the scope and limitations of formal notions of theoretical equivalence
in certain contexts.

1. Introduction

When are two formal theories of broadly logical concepts, such as truth, equiva-
lent? From the work of logicians and philosophers of science, we know that there are
several notions ofmutual reduction between formal theories to choose from (Halvor-
son, 2019; Visser, 2006). Glymour (1970) proposed the (demanding) criterion of theo-
retical equivalence known as definitional equivalence or intertranslatability. The cri-
terion roughly states that two theories are equivalent if each theory can define the
primitive concepts of the other in a sufficiently natural way. “Natural” here has a
definite sense: each theory should recognize that the other theory’s definitions of its
own primitives are the inverse of its own definitions (see §3 for a precise definition).
Several theorists agree that intertranslatability is an unrealistically strict criterion
(Weatherall, 2019). For our purposes, however, this strictness is an advantage.

The ever-increasing popularity of truth-theoretic deflationism (Cieśliński, 2017),
togetherwith a revived attention to the Liar paradox prompted by new technical tools
(Field, 2008; Horsten, 2012; Halbach, 2014), led to a multiplication of formal systems
extending some standard syntax theory with a primitive truth predicate governed by
suitable axiom. These systems have a twofold nature: on the one hand they embody
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some conception of truth, including a solution to the difficulty posed by paradox; on
the other hand they characterize the truth predicate as a logical tool whose formal
properties witness the role that the notion of truth can play in (sustained) reasoning –
e.g. in applied mathematics and in the formal sciences. The existence of several such
systems leads naturally to the question of how to compare them, both in their formal
and philosophical aspects.

In what follows we study the question whether the formal notions of theoretical
equivalence devised from logicians and philosophers of science can support an ade-
quate comparison between formal theories of primitive truth. We focus on the case
study of one of the most influential cluster of theories of truth, the Kripke-Feferman
theory. Kripke-Feferman truth traces back to the work of Feferman on the founda-
tions of predicativism (Feferman, 1991), and it is often presented as an axiomatization
in classical logic of the class of fixed-point models proposed by Kripke (1975). Kripke-
Feferman truth is not a single theory, but rather a recipe to generate theories featuring
truth predicates with different properties. We will focus on two theories from the
Kripke-Feferman cluster. The first is the theory KF + CONS, whose truth predicate
is consistent but partial (not every sentence is true or false). The second is the the-
ory KF + COMP, whose truth predicate is inconsistent and complete (every sentence
is either true or false). In the light of these differences, it is implausible to consider
KF + CONS and KF + COMP as theoretically equivalent theories of truth.

Yet, in §4, we will show that KF + CONS and KF + COMP are intertranslatable. This
is certainly puzzling. Two truth predicates that reflect distinct concepts of truth
stand in a relation of theoretical inter-reduction that is considered to be too strong
by philosophers of science. We will discuss a potential way out of this puzzle in §5.
Before this, in §2, wewill introduce Kripke-Feferman truth and some of the key prop-
erties of the truth predicates of KF+CONS and KF+COMP. Since we are drawing paral-
lels between (formalizations of) scientific theories and theories of primitive truth, we
will also recall some theoretical contexts in which Kripke-Feferman truth has been
employed. §4 contains the main technical observations of the paper: the well-known
phenomenon of the duality between KF + CONS and KF + COMP will be recalled, and
we will show that it can be lifted to the intertranslatability of the two theories.

2. Kripke-Feferman truth

The system KF is formulated in the language LTr obtained by extending the lan-
guage Lℕ of arithmetic with a unary truth predicate Tr applying to Gödel codes
of sentences of LTr . It is convenient to formulate Lℕ in a relational signature: we
assume only a finite number of primitive recursive relations. An axiomatization of
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first-order arithmetic with these features can be found in (Hájek and Pudlák, 2017,
§I(e)). The expression ¤F stands for the code of a constant symbol 2F associated with
any F. It is well-known that there are primitive recursive injective functions sending
each F to 2F , e.g. the numeral function.

KF extends classical logicwith equalitywith the basic axioms of a relational version
of PA, the induction schema for IND(LTr ) for formulae of the entire language LTr ,
and the following truth-theoretic axioms:

∀F1 . . . F<(Trp'( ¤F1, ..., ¤F<)q ↔ '(F1, ..., F<))(KF1)

∀F1 . . . F<(Trp¬'( ¤F1, ..., ¤F<)q ↔ ¬'(F1, ..., F<))(KF2)

∀F(TrpTr ¤Fq ↔ TrF)(KF3)

∀B(Trp¬Tr ¤Fq ↔ Tr¬. F)(KF4)

∀i∀k (Tr (i∧. k) ↔ (Tri ∧ Trk))(KF5)

∀i∀k (Tr¬. (i∧. k) ↔ (Tr¬. i ∨ Tr¬. k))(KF6)

∀D∀i(Tr∀. Di↔ ∀G Tri( ¤G/D))(KF7)

∀D∀i(Tr¬. ∀. Di↔ ∃G Tr¬. i( ¤G/D))(KF8)

∀i(Tr¬. ¬. i↔ Tri)(KF9)

In KF5-KF8, the quantification ∀i... abbreviates ∀F(SentLTr (F) → ... Other con-
ventions follow Halbach (2014), including the under-dotting convention for syntactic
functions.

The theory KFI is obtained by replacing theLTr -induction schema of KFwith the
axiom of internal induction:1

(I-IND(LTr ))
∀F

(
Sent(∀. DF) → (TrF(0/D) ∧ ∀G(TrF( ¤G/D) → TrF( ¤SG/D) → ∀GTrF( ¤G/D))

)
The theory KF �Lℕ is like KF but features only the axiom schema of induction re-
stricted to formulae ofLℕ.

In this paper we will focus on two extensions of KF obtained by adding, respec-
tively, the axioms

∀F(Tr¬. F → ¬TrF),(cons)

∀F(¬TrF → Tr¬. F).(comp)

The Liar paradox shows that KF + CONS and KF + COMP are mutually inconsistent.

1We prefer to present the full (non-abbreviated) version because of the restriction of unary formulae.
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KF can be seen as an axiomatization of Kripke’s fixed point semantics Kripke (1975).
Let Φ : Pl −→ Pl be the arithmetical operator associated with the Kripke truth set
(Halbach, 2014, p. 190).2 A fixed point - ⊆ l of Φ is consistent if there is no sentence
i ∈ LTr such that {i,¬i} ⊂ - ; a complete fixed point is such that either i ∈ - or
¬i ∈ - for any sentence i of LTr . Standard models of KF + CONS are precisely the
consistent fixed points, and standard models of KF + COMP are the complete ones:

fact 1.

(i) ( is a consistent fixed point of Φ iff (ℕ, () � KF + CONS;

(ii) ( is a complete fixed point of Φ iff (ℕ, () � KF + COMP.

2.1. Gaps and Gluts. KF + CONS and KF + COMP embody different concepts of truth.
For future reference, we recall some simple facts separating the two truth predicates.
They disagree on almost any key principle available in the theories, such as paradox-
ical sentences, axioms, and rules of inference.

The truth predicate of KF+CONS is partial and does not declare any sentence to be
both true and false. This entails that that there are sentences that are consequences
of KF + CONS and yet they are declared not true by the theory. For our purposes, let
us define the Liar sentence _ as the sentence ¬Tr :, for which the identity : = p¬Tr :q
provable in PA. If Tr :, then CONS entails that ¬Tr :, that is _. But Tr : also entails ¬_.
Therefore, _ is a theorem of KF + CONS. This phenomenon extends to instances of
some axioms of KF + CONS, such the instance

Tr¬. : → ¬Tr :

of CONS. They are declared not true by the theory. The argument is quite straight-
forward: assuming Tr (p¬Tr ¬. : ∨ ¬Tr :q) in KF + CONS, by distributing the truth
predicate and applying KF3, 4, 9 one gets Tr : ∨ Tr :, that is Tr :, which contradicts
¬Tr :.3 A noticeable feature of KF + CONS is that it derives a universally quantified
version of the modal axioms K:

(1) ∀i∀k (Tri ∧ Tr (i→ k) → Trk).

The proof of (1) in KF + CONS relies essentially on CONS and on the compositional
axioms: if Tr i and Tr (¬i ∨ k), then Tr i holds together with Tr ¬i or with Tr k

2I will not distinguish between sentences and their codes in the following semantic considerations.
3Some authors, such as Field, claim that classical gap theories (such as KF + CONS) are bound to declare
their non-logical axioms untrue (Field, 2008, Ch.7). As we have just seen, only some instances of such
axioms behave in thisway. Since themeaning of the external universal quantifier is governed by classical
logic, and the logic of the truth predicate is nonclassical, the fact that the link between a universally
quantified axiom and the truth of its instances is broken may not be so devastating as having truth
axioms that are not true.
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by compositionality. The first option contradicts CONS, while the second gives us
Trk. Either way, (1) follows. The sentence (1) can be seen as the claim that KF + CONS
formalizes the assertion that its (classical) rules of inference are truth preserving. This
is especially adequate if, without loss of generality, one formulates KF + CONS in a
Hilbert system for classical logic in which the only rule of inference is Modus Ponens
(Enderton, 2001, Ch. 2.4).

By contrast, the truth predicate of KF + COMP is inconsistent. Consider again the
sentence _. Reasoning in KF + COMP: if _, then Tr p_q by COMP; also, _ entails ¬Tr :.
Therefore ¬_, that is Tr p_q, by classical logic. Now suppose ¬Tr ¬. :. By KF4, this
entails _. But we have just established ¬_. Therefore, Tr p¬_q after all. By KF5,
Trp_ ∧ ¬_q.

By a straightforward induction on the complexity of the sentence � of LTr , all
instances of the schema

(Tr-IN) �→ Trp�q

can be seen to be theorems of KF+COMP. The schema (Tr-IN) guarantees that, unlike
what happens in KF + CONS, all axioms of KF + COMP are deemed true by the theory.
However, the theory’s defining axiom COMP has instances that are provably false. We
have seen that Tr p_q is provable in KF + COMP. This entails, within KF + COMP, the
sentence Tr p¬Tr :q ∧ Tr p¬Tr¬. :q (the second conjunct employs KF9 and KF4). By
compositionality, this entails

(2) Trp¬(¬¬Tr : ∨ Tr¬. :)q,

which expresses that the instance of COMP involving the Liar sentence is deemed false
(i.e. its negation is true) by the theory. Finally, KF+COMP regards its rule of inference to
fail to preserve truth. Since KF+COMP proves Trp¬_q, it also proves Trp¬_∨0 ≠ 0q.
However, KF2 entails that ¬Tr p0 ≠ 0q. This simply means that the negation of the
instance

Trp_q ∧ Trp_→ 0 ≠ 0q → Trp0 ≠ 0q.

of (1) is provable in KF + COMP.

2.2. Paradox, Semantics, and Incompleteness. As it is argued in Fischer et al.
(2021), KF (and variants theoreof) is a theory of scientific truth. The theoretical sta-
tus of KF, they argue, depends entirely on the success of its applications outside logic
(broadly construed). This is unlike nonclassical theories that are fully characterized
by its logical property of intersubstitutivity between � and Tr p�q; these theories
have a different epistemological status because their constitutive principles are con-
ceptually necessary. We will assume this view of KF in what follows. Qua theories
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of scientific truth, it is plausible to analyze KF + CONS and KF + COMP by means of
standard measures of theoretical equivalence. This is what will be done in the next
section. In this subsection we recall some theoretical contexts in which KF and its
variants have played a significant role.

The origins of KF trace back to Feferman’s predicativist view in the philosophy
of mathematics. The limits of predicativity had been already investigated by means
of the ramified analytical hierarchy in the sixties by Feferman himself and Schütte
(Feferman, 1964; Schütte, 1965). Feferman (1991) provides a non-hierarchical frame-
work to capture the limits of predicativity given the natural numbers. The result is
a version of KF endowed with a special substitution rule – dubbed Ref∗(PA(%)) in
Feferman (1991). The theory KF is the simpler version of the reflective closure of PA
– i.e. in Feferman’s view, the theory capturing theLℕ-statements that are implicit in
the acceptance of PA –, and it is equivalent to the union of all U < Y0 iterations of
Tarskian truth predicates over PA. This ordinal Y0 is not ad hoc: it’s the supremum
of the ordinals that can be proved to be well-founded in the theory whose reflective
closure is investigated, i.e. PA. KF then elegantly captures by means of a single, self-
applicable truth predicate, the iterations of Tarskian truth along thewellordering that
are licensed by the base theory PA.

Kripke-Feferman truth can play a role in articulating the formal properties of a
semantic notion of truth. According to Michael Glanzberg (see e.g. Glanzberg (2015)),
our implicit grasp of the semantic properties of a language can be made explicit by
an act of reflection, involving an explicit characterization of the notion of truth for
the language. One such characterization is the formulation of the theory KF + CONS.
Glanzberg countenances hierarchies of KF + CONS-axioms to model the open-ended
nature of the act of reflecting on one’s implicit grasp of the semantic properties of
a language. Glanzberg’s perspective can be seen as the semanticist’s framework to
study languages endowed with a self-applicable truth predicate.4 This entails that a
semantic theorizing may reveal that it is not KF+CONS, but rather KF+COMP the best
theory to model truth ascription.

Kripke-Feferman truth has been employed to provide a diagnosis of the Liar para-
dox. Reinhardt (1986) famously advocated KF + CONS as a theoretical tool to uncover
the truth-theoretic content of fixed-point semantics. Theorems of KF + CONS of the
form Tr p�q are members of the extension of the truth predicate of all consistent
fixed points. Therefore, one may employ KF + CONS as an efficient reasoning tool
to uncover truths without giving in to the clumsiness of nonclassical conditionals.
Somewhat similarly, Maudlin (2004) argued that KF + CONS is the basis of a theory of
4This nice way of describing the the semantic role of KF is due to Johannes Stern.
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truth and permissible assertability. Roughly speaking, theorems of KF+CONS such as
the Liar sentence that are not true are nonetheless assertible. The view is then com-
pleted by a careful consideration of the norms relating truth and assertability that are
compatible with such formal properties.

Besides Feferman’s study of the implicit commitment of formal theories, the phe-
nomenon of incompleteness of mathematical theories prompted more daring philo-
sophical questions. One such question is whether the incompleteness theorems show
that the human mind can be mechanized. Roger Penrose formulated an interesting
argument against mechanism based on the notions of truth and absolute provabil-
ity Penrose (1994). Penrose wasn’t careful in calibrating the exact list of principles of
truth employed in the argument. This task has been recently taken up by logicians
and philosophers (Koellner, 2018; Stern, 2018). In particular, Stern analyzes Penrose’s
argument by formalizing it in KF+CONS: he shows that mechanism can be refuted in
KF + CONS, although this refutation cannot fall into the extension of the truth predi-
cate of KF + CONS (as we have seen, this pattern is quite common in KF + CONS).

3. Theoretical Equivalence

Qua theories of scientific truth, KF + COMP and KF + COMP should be evaluated by
means of standard theory choice criteria. Comparing scientific theories can also be
done formally. There is a rich variety of notions of formal inter-theoretic reductions
which have been studied in the philosophy of science: a comprehensive overview of
such notions can be found for instance in Halvorson (2019). In what follows we will
apply some standard notions of inter-theoretic reductions to KF+CONS and KF+COMP.
This section contains the necessary background.

Given first-order theories ) and, , a relative translation g of L) into L, – for-
mulated in a relational signature – can be described as a pair (X , �) where X is aL, -
formula with one free variable – the domain of the translation – and � is a (finite)
mapping that takes <-ary relation symbols of L) and returns formulas of L, with
< free variables. The description of the translation g is completed, modulo suitable
renaming of bound variables, by the following inductive clauses:

• ('(F1, ..., F<))g :↔ � (') (F1, ..., F<);
• g commutes with propositional connectives;

• (∀F �(F))g :↔ ∀F (X (F) → �g).

Definition 1. An interpretation  is specified by a triple (), g,, ), where g is a trans-
lation of L) in L, , such that for all formulas i(F1, .., F<) of L) with the free variables
displayed, we have:
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if ) ` i(F1, ..., F<), then, `
∧<
7=1 X (F7) → ig .

Wewill write  : ) → , for ‘ is an interpretation of) in, ’. Model-theoretically,
a  : ) → , provides a method for constructing, in any modelM � , , an internal
modelM � ) .
) and, are said to be mutually interpretable if there are interpretations  : ) →

, and ! : , → ) .
Given g0 : L) → L, and g1 : L, → L+ , the composite of  = (), g0, , ) and

! = (,, g1, + ) is the interpretation ! ◦  = (), g1 ◦ g0, + ), where X!◦ (F) :↔
X !
 
(F) ∧ X!(F).
Two interpretations  0,  1 : ) → , are equal if, , the target theory, proves this.

In particular, one requires,

, ` ∀F (X 0 (F) ↔ X 1 (F)),

, ` ∀®F (' 0 ( ®F) ↔ ' 1 ( ®F)), for any relation symbol ' ofL) .

Mutual interpretability is arguably a good measure of consistency strength, but it
does not capture finer grained relations between theories. As it is well-known, it does
not even differentiate between sound and unsound theories (e.g. PA and PA+Con(PA)
are mutually interpretable).

The notion of intertranslatability is a much stricter notion of theoretical equiva-
lence. As shown in Visser (2006), it preserves many formal property of theories such
as ^-categoricity, finite axiomatizability.

Definition 2 (intertranslatability). * and + are intertranslatable if and only if
there are interpretations  : * → + and ! : + → * such that + proves that  ◦ ! and
id+ – the identity interpretation on + – are equal and, symmetrically,* proves that !◦ 
is equal to id* .

In the philosophy of science the notion of definitional equivalence, a notion akin
to intertranslatability, has played a prominent role (starting at least with Glymour
(1970)). Two theories* and + – again for simplicity, we assume a finite relational sig-
nature – are definitionally equivalent if they have a common definitional extension.
A definitional extension of a theory * is simply a theory in a new language featur-
ing, alongside the axioms of * , explicit definitions of the new relation symbols not
inL* .5

Definitional equivalence is more rigid than intertranslatability in the following
sense: whereas for * and + featuring disjoint signatures, the two notions coincide,6

5For a precise definition, see (Halvorson, 2019, Def. 4.6.15).
6This is a folklore result. For a proof, see (Halvorson, 2019, Thm. 4.6.17, Thm. 6.6.21).
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this is not so with theories sharing some part or all of their signature. An example is
before our very eyes.

Observation 1. KF + COMP and KF + CONS cannot be definitionally equivalent.

In general, since a definitional extension of * and + includes both * and + , if
* and + are mutually inconsistent, then they cannot have a common definitional
extension. Intertranslatability is compatible with mutually inconsistent theories. We
will in fact show that KF + CONS and KF + COMP are intertranslatable.

Some additional discussion of the relationship between intertranslatability and
definitional equivalence is contained in the final section.

4. Duality Theorems and Theoretical Equivalence

That a relation of duality exists between KF+CONS and KF+COMP has been already
noticed by Cantini (1989), which is the first systematic study of variations of the basic
theory KF from Feferman (1991).7 Informally, this duality consists in the fact that the
truth predicate of KF + COMP (resp. KF + CONS) can be understood within KF + CONS
(KF + COMP) as the predicate ‘it’s not false’. In semantic terms, given a consistent fixed
point (, one can define a predicate ¬i ∉ ( – i.e. i is not determinately false – to isolate
a class of sentences satisfying the KF + COMP truth axioms. Symmetrically, given a
complete fixed point ', the set {i | ¬i ∉ '} isolates the class of sentences of LTr

that are classically true (i.e. whose negation is not determinately true or glutty). As
such, this set satisfies the truth axioms of KF + CONS.

The following is a precise statement corresponding to the informal picture above.
We insert some detail of the proofmainly to adapt it to the abstract approach to trans-
lations and interpretations introduced in the previous section on theoretical equiva-
lence. It should be understood as part of the proof of Proposition 1.

Lemma 1 (Cantini (1989)). KF + CONS and KF + COMP are mutually interpretable.

Proof. Let g : LTr → LTr be such that it does not relativizes quantifiers, commutes
with propositional connectives, leaves arithmetical vocabulary unchanged, and as-
signes ¬Tr¬. F to TrF. In other words, g is specified by:

Xg := F = F Fg (Tr ) := ¬Tr¬. F

Fg (') := '(F1, . . . , F<) for each ' ∈ Lℕ.

g (¬�) :↔ ¬g (�) g (� ∧ �) :↔ g (�) ∧ g (�)

7Dates of publications of the references just givenmay bemisleading: althoughCantini’s paper precedes
Feferman’s, the latter was circulating as a draft since the early 80’s. Field also considers the duality
phenomenon in a slightly different setting, without reference to these classic papers (Field, 2008, Ch. 7).
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g (∀F�) :↔ ∀Fg (�)

It is worth emphasizing that the translation does not act internally on codes aswell, so
that there is no need to employ more sophisticated tools such as Kleene’s Recursion
Theorem.

We let

K = (KF + CONS, g, KF + COMP) L = (KF + COMP, g, KF + CONS).

To verify that K and L are indeed interpretations, we treat the key cases of the axioms
for truth ascriptions and CONS/COMP.

We start with K, and verify that the translation of KF4 is provable in KF + COMP.
Reasoning in KF + COMP,

(Trp¬Tr ¤Fq)g ↔ ¬Tr¬. p¬Tr ¤Fq

↔ ¬TrpTr ¤Fq by KF9

↔ ¬Tr¬. ¬. F by KF3, KF9

↔ (Tr¬. F)g def. of K

Similarly, for KF3 we have:

(TrpTr ¤Fq)g ↔ ¬Tr¬. pTr ¤Fq

↔ ¬Tr¬. F by KF4

↔ (TrF)g def. of K

The arguments above do not employ COMP, so the verification that KF3 and KF4 hold
in KF+ CONS via L is essentially the same modulo the notational differences. We turn
to CONS. Reasoning again in KF + COMP: (Tr ¬. F)g is ¬Tr ¬. ¬. F. By KF9, this entails
¬Tr F. By COMP, we obtain Tr¬. F and therefore ¬¬Tr¬. F, which is simply (¬Tr F)g .
We have thus shown

(Tr¬. F → ¬TrF)g .
Within KF + CONS, we assume (¬Tr F)g , that is ¬¬Tr ¬. F. By logic and CONS, we

obtain ¬TrF. KF9 gives us ¬Tr¬. ¬. F, which is simply (Tr¬. F)g . Therefore:

(¬TrF → Tr¬. F)g .

qed

By inspecting the proof above, one realizes that the argument is independent from
the choice of the the non-logical schemata employed in the truth theories. This en-
ables one to employ the same argument to obtain the next corollary.
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Corollary 1.

(i) KFI + CONS and KFI + COMP are mutually interpretable.

(ii) KF�Lℕ + CONS and KF�Lℕ + COMP are mutually interpretable.

Lemma 1 and Corollary 1 are based on interpretations that do not relativize quan-
tifiers, and the leave all vocabulary other than the truth predicate unchanged. These
interpretations belong to a specific kind that have been recently dubbed relative truth
definitions by Fujimoto (2010). Relative truth definitions preserve the arithmetical the-
orems. As such, a mutual truth definability between two theories entails the identity
of theirLℕ theorems. Identity ofLℕ-theorems has historically been considered to be
the most important notion of reduction between truth systems, especially in connec-
tion with Feferman’s programme discussed in the previous section. Such a measure
is less relevant when a system of truth is studied in relation to a specific solution to
the semantic paradoxes, or to a specific conception of truth. Relative truth definabil-
ity goes beyond mere proof-theoretic equivalence in that it compares fine-grained
properties of truth predicates by keeping the underlying syntax theory fixed, and it
is certainly more suited for conceptual reductions of truth predicate.

We now turn to the main claim of the section. KF + CONS and KF + COMP are
equivalent in a much stricter sense than the one given by truth definitions. The in-
terpretations K and L given above are inverse to each other, provably in KF + CONS
and KF + COMP. This witnesses the intertranslatability of the two theories. Since K
and L are truth-definitions, the claim entails that KF+CONS and KF+COMP are mutu-
ally truth-definable. That intertranslatability given by truth-definitions is a properly
stricter notion than mutual truth definability follows from results in Nicolai (2017):
the theories KF and PUTB over a finitely axiomatizable theory such as EA or IΣ1 are
mutually truth definable but not intertranslatable.

Proposition 1. KF + CONS and KF + COMP are intertranslatable.

Proof. The proof is strictly speaking by induction on the length of the proofs in KF +
CONS and KF + COMP to prove, respectively, that

KF + CONS ` �↔ �L◦K,

KF + COMP ` �↔ �K◦L.

However, to verify that KF + CONS and KF + COMP are intertranslatable, it suffices to
check that the interpretations K and L commute in the required sense for primitive
predicates ofLTr . By abusing of notation for the sake of readability, I write K and L
instead of g for the translation as well.



12

The case of arithmetical relations is trivial in both directions and we omit it: both
K and L behave like the identity interpretation on arithmetical vocabulary.

The interesting case concerns the verification (i) that the interpretation L ◦ K be-
haves like the identity intepretation in KF+CONS onTr , and (ii) that the interpretation
K ◦ L behaves like the identity interpretation in KF + COMP on Tr .

We start with (i):

(TrF)L◦K ↔ ¬TrL¬. F By def. of K

↔ ¬¬Tr¬¬F def. of L

↔ TrF logic and KF9

In the third line, KF9 is employed. By inverting the intepretations (i.e. starting with
¬TrL◦K¬. F), we obtain (ii), that is the desired equivalence within KF + COMP as well.

The induction step is also immediate by induction hypothesis, given that the com-
position of interpretations L ◦ K (resp. K ◦ L) respects logical vocabulary in a uniform
way. qed

It is useful take stock and paraphrase what goes on in intertranslatability result.
The duality theorem for KF + COMP and KF + CONS tell us that each theory can repro-
duce the truth predicate of the other by means of a new predicate obtained by com-
bining their primitive truth predicate and a combination of classical (external) negation
and nonclassical (internal) negation. This is enough to guarantee the proof-theoretic
equivalence of the two systems in several respects: the mutual interpretability result
entails that the two systems have equal consistency strength; the fact that the trans-
lation g is in fact a truth definition in the sense explained above entails that the two
theories prove the sameLℕ-sentences. However, truth definability, let alone mutual
interpretability, is not enough for theoretical equivalence. Mutually truth-definable
theories may substantially diverge in a spectacular amount of theoretical properties
(Nicolai, 2017).

The intertranslatability of KF + CONS and KF + COMP reveals that the relationships
between the two theories are in fact much stricter. The situation can be visualized
in figures 1 and 2. In the former we are living in an arbitrary fixed point model of
KF + CONS (for simplicity, one can think about it as the minimal fixed point of the
operator Φ considered in §2), and consider the set of codes of sentences ofLTr . The
light red triangle labelled T represents the (consistent) extension of the truth predi-
cate, i.e. the sentences that are determinately true. The white triangle represents the
sentences that are determinately false. In the light blue space, all other sentences of
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T {i | ¬i ∈ T}

K

L

SentLTr

Figure 1. Intertranslatability in fixed point models of KF + CONS.

LTr , including “ungrounded” sentences such as the Liar sentence _. The interpreta-
tion K shifts the extension of the truth predicate to

TrK = T ∪ {k | k ∉ T ∪ {i | ¬i ∈ T}},

that is to the sentences that are determinately true and not determinately false. The
predicate Tr K satisfies the axioms of KF + COMP. However, the key to the intertrans-
latability result is contained in the next step, when one interprets back the newly
obtained truth predicate TrK via L. In fact, L returns the predicate:

TrL◦K = {i | ¬i ∉ TrK},

that is the set of sentences whose negation is neither determinately true nor indeter-
minate. Since we are reasoning about a truth predicate governed by the KF + CONS
axioms, the set TrL◦K is simply the set T.

The situation with KF + COMP is symmetric and is represented in Figure 2. We are

T

{i | ¬i ∈ T}

K

L

SentLTr

Figure 2. Intertranslatability in fixed point models of KF + COMP.

now working on the set of codes of sentences of LTr within a fixed-point model
of KF + COMP (it’s useful to think about the model obtained by starting with the set
of all sentences over the standard model ℕ and excluding sentences by iterating the
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operator Φ and taking intersections at limit stages). The extension T of the truth
predicate is now the entire light blue space: everything but the determinately false
sentences. The set Tr L now gives us the set of determinately true sentences, but by
applying K to Tr L we obtain the original extension T. All this is carried out within
KF + COMP.

By inspection of the proofs above, we notice that the induction schema IND(LTr )
does not play a key role: the proof only rests on the fact that KF+CONS and KF+COMP
both feature IND(LTr ). Therefore, we have:

Corollary 2.

(i) KFI + CONS and KFI + COMP are intertranslatable.

(ii) KF�Lℕ + CONS and KF�Lℕ + COMP are intertranslatable.

The combination of Observation 1 and Proposition 1 provide us with another ex-
ample of a pair of theories sharing part of their signature that are intertranslatable
but not definitionally equivalent. Other, simpler examples are known. For instance,
one can consider the theories in classical predicate logic {∀F%F} and {∀F¬%F} in the
signature {%}. By interpreting % as ¬%, one obtains a mutual interpretability result
and the intertranslatability of the two theories. However, since the two theories are
mutually inconsistent, they cannot be definitionally equivalent. Unlike those simple
examples, Proposition 1 involves rich, non ad hoc theories that have been employed
in several theoretical contexts (cf. §2.2).

5. A Dilemma?

The observations contained in the previous section are prima facie puzzling. As
explained in §2.1, the two theories KF + CONS and KF + COMP formalize two different
conceptions of truth. Yet, if one follows standard practice in the philosophy of sci-
ence, and considers intertranslatability as a good (albeit rather strict) measure of the
theoretical equivalence of the two theories, one should arrive at the rather surprising
conclusion that KF + CONS and KF + COMP are equivalent for all theoretical purposes.
This appears to be incorrect: after all, KF+ CONS states there are no truth value gluts,
but that there may be sentences that are neither true nor false. KF + COMP drastically
disagrees, and states that any sentence is either true or false, and that occasionally it
can be both.

One option is to reject KF + CONS and KF + COMP as viable theoretical alternatives.
According to this line of thought, what the theoretical equivalence of KF + CONS and
KF + COMP shows is that the two theories are failed attempts to capture, respectively,
a partial or inconsistent truth predicate in classical logic. This would be by no means
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the first critical assessment of KF + CONS and KF + COMP. Several authors attribute
to KF and its variants a form of incoherence – for instance Field (2008), chapter 6,
and Horsten (2012), chapter 9. It is incoherent to assert (prove) a sentence, and assert
(prove) that it isn’true; it is incoherent to assert the negation of a sentence, a yet to
assert its truth; it is incoherent to assert (prove) a disjunction, whose disjunct are both
incoherent. As discussed in §2.1, this is what happens in KF + CONS, KF + COMP, and
KF respectively.

Many of these critics, including Field and Horsten, are happy to give up classical
logic to overcome this incoherence. In fact, by realigning the internal logic of the
truth predicate and the external logic of the theory of truth, the asymmetries between
provability and truth disappear. For instance, one can construct axiomatizations of
fixed point semantics in the style ofHalbach andHorsten’s PKF (Halbach andHorsten,
2006) in which � and Trp�q are interderivable, and whose logic is either the internal
logic of KF + CONS, Strong Kleene Logic, or the internal logic LP of KF + COMP. It is
clear that, for quite trivial reasons, an analogue of Proposition 1 is not immediately
available for such nonclassical systems. The very notion of relative interpretation is
not devised to compare theories in different logics. Surely the truth systems would
have the sameLℕ-consequences, but nothing like the strict correspondence given by
intertranslatability would be available.8

The purported incoherence of KF + CONS and KF + COMP, however, should be
weighed against the cost of giving up well-established logical principles. The adop-
tion of a nonclassical logic impacts directly on contexts in which classical logic is
traditionally undisputed, such as mathematics and its applicability to scientific the-
orizing (Williamson, 2018). To mention a familiar example, we would like to apply
mathematical induction to properties involving the notion of truth itself. This obvi-
ous task is severely impeded if, say, wemove from a classical theory such as KF+CONS
to its nonclassical version in Strong Kleene logic. A significant amount of inductive
reasoning is lost by adopting a nonclassical logic (Halbach and Horsten, 2006; Hal-
bach and Nicolai, 2018).

We favour a different option. We can accept KF + CONS and KF + COMP as legit-
imate theoretical options, and claim that there isn’t anything deeply problematic in
embracing the theoretical equivalence of KF+CONS and KF+COMP, once the notion of
theoretical equivalence at stake is clarified. However, the strange case of KF + CONS
and KF + COMP tells us something about the scope and limits of formal notions of
theoretical equivalence for theories of logical concepts such as truth.

8Although, given the duality of the consequence relation between LP and K3, some nonstandard notion
of theoretical equivalence for nonclassical logics may not be difficult to devise.
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Natural notions of theoretical equivalence can be linearly arranged on the basis of
their strictness. On one side, we find the strictest notion of equivalence, logical equiv-
alence, followed by the looser notion of definitional equivalence (which, we have seen,
coincide with our notion of intertranslatability under some plausible assumptions).
On the looser end, we find mere consistency (i.e. consistent theories are all equiva-
lent, and true9), arguably followed by mutual interpretability. There is much in be-
tween, and we refer to systematic studies on the topic for a comprehesive overview
(Halvorson, 2019; Visser, 2006); these intermediate notions are not immediately rel-
evant to our discussion. Halvorson convincingly argues that the choice of the right
notion of theoretical equivalence is highly purpose relative, and it should be the out-
come of suitable philosophical work (Halvorson, 2019, Ch. 8). The philosopher’s job
is precisely the one of finding good reasons to choose among the sophisticated for-
mal alternatives provided by logical and mathematical work on reductions between
formal theories.

Is intertranslatability the right notion to deem KF + CONS and KF + COMP (and
variants thereof) theoretically equivalent? One one sense of ‘theoretical equivalent’,
the answer is positive. The KF + CONS-theorist can define a predicate, Tr K (cf. §4),
satisfying the axioms of KF + COMP, and verify that the definition of its own truth
predicate by the KF + COMP-theorist given by the intepretation L returns precisely its
own truth predicate. The KF + COMP-theorist can do the same by inverting the roles
of the interpretations. In other words, each theorist not only can define in a natural
way the other’s truth predicate, but they can also see that the other’s truth definition
is a faithful one, returning their own concept of truth. Whatever theoretical purpose
one is pursuing within KF+CONS (resp. KF+COMP), the intertranslatability of the two
theories guarantees that this can be achieved in KF+COMP (KF+CONS) by a trustworthy
definition of truth. This applies to any argument given in the two theories, including
the derivations witnessing the peculiar behaviour of the Liar sentence in the two
theories: for instance, KF + CONS can reproduce the proof of Tr Kp_q in KF + COMP,
and understand that this derivation is nothing else than its own derivation of _ –
i.e. of ¬TrL◦Kp_q.

However, if theoretical equivalence should mean that the two theories feature an
equivalent truth predicate, things change. We have seen that KF + CONS is about a
consistent, partial truth predicate, and KF + COMP is about an inconsistent, complete
truth predicate. If the exact nature of the truth predicate of the two theories is at stake,

9This view is attributed to Putnam by Halvorson (Halvorson, 2019, p. 274), and called Zenonian equiva-
lence.
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even the strict notion of intertranslatability is bound to fail to deliver the required
equivalence.

An analogy with standard mathematical theories may help. It is known that Peano
Arithmetic and Finite Set Theory – more precisely, ZF minus infinity plus its nega-
tion and the sentence ‘every set has a transitive closure’ – are intertranslatable.10 That
each theory can (mutually) faithfully reproduce the inferential structure of the other
is guaranteed by their intertranslatability. This is not to say, though, that the two the-
ories are about the same subject matter, or that the concept of (finite) set is the same
as the one natural number. This may sound trivial, but it isn’t. Mathematicians are
usually happy to identify isomorphic structures, and intertranslatability gives us iso-
morphism of models and much more. For instance, intertranslatability entails that
in any structure satisfying the axioms of PA, there lives a universe of finite sets which
contains, definably in PA, exactly the natural number structure we started with (simi-
larly for Finite Set Theory). However, finer-grained considerations involving, for in-
stance, the aboutness relation connecting a formal theory to its subject matter, or the
nature of the basic concepts underlying some formal construction, are not captured
by the intertranslatability relation as they are not usually relevant for mathematical
theorizing – so that PA and Finite Set Theory may be considered to be equivalent
for mathematical purposes. By constrast, such considerations are often central in
philosophical debates.

If one seeks the formal counterpart of a conception of truth, the right notion of the-
oretical equivalence is closer to what Halvorson calls Heraclitean equivalence: theo-
ries should be identified if the are logically equivalent. Very strict notions of formal
theoretical inter-reducibility (let alone structure-isomorphism) such as intertrans-
latability are not a sufficient criterion for conceptual equivalence. Otherwise, in light
of Proposition 1, we would need to identify truth predicates that are based on clearly
incompatible conceptions of truth. However, this does not entail that looser criteria
of theoretical equivalence should not be employed, even in the analysis and compari-
son of the conceptions of truth (and other broadly logical concepts) captured by some
formal theories. Such criteria proved already to be useful, especially to establish neg-
ative results about philosophical reductions of truth predicates to each other and to
other logical notions such as higher-order quantifiers (Nicolai, 2017, 2021).

10Qualifications are in order here: Kaye and Wong (2007) show that Peano Arithmetic and ZF minus
infinity plus its negation and the claim ‘every set has a transitive closure’ are bi-interpretable, or weakly
intertranslatable in the terminology of Halvorson (2019). Since the interpretation is identity preserving,
by a result of Albert Visser and Harvey Friedman, the two theories are intertranslatable (Visser and
Friedman, 2014).
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