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Abstract

We introduce a fairness criterion that we call Spanning. Spanning i) is implied by Cal-
ibration, ii) retains interesting properties of Calibration that some other ways of relaxing
that criterion do not, and iii) unlike Calibration and other prominent ways of weakening
it, is consistent with Equalized Odds outside of trivial cases.
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1 Introduction

The genre of much work on algorithmic fairness is tragedy. After the identification of some
set of seemingly desirable fairness criteria comes the statement of an impossibility theorem
establishing that those criteria are inconsistent or consistent in only utterly unrealistic or triv-
ial cases (Kleinberg et al., 2017; Pleiss et al., 2017; Chouldechova, 2017; Stewart and Nielsen,
2020; Beigang, 2023b). A central example is the result due to Kleinberg and coauthors estab-
lishing that two constraints called Calibration and Equalized Odds are inconsistent outside
of certain trivial cases (2017). One natural response is to weaken Equalized Odds. Pleiss
et al. show that, for a particular way of relaxing Equalized Odds, new possibilities emerge
(2017). Ways of weakening Calibration have also been investigated but have led to more
impossibility results (Stewart and Nielsen, 2020; Stewart et al., 2024).

We find the relative merits of Calibration and Equalized Odds difficult to evaluate. Conse-
quently, we regard explorations of relaxing each criterion in attempts to skirt the impossibility
result as worthwhile. For the present investigation, we will suppose that Equalized Odds is
a necessary condition of algorithmic fairness. Given this assumption, we ask what interest-
ing content of Calibration can be retained without running into triviality. Our genre is not
tragedy. We identify a way of weakening Calibration that retains some of its interesting prop-
erties, but is non-trivially consistent with Equalized Odds. We call this criterion Spanning.
It is important to emphasize that we are not proposing Spanning as a sufficient condition
for algorithmic fairness. On its own, it is a weak criterion. In some ways, this means that
the case for its status as a necessary condition is easier to make. Conjoined with Equalized
Odds, it’s stronger, but there may be yet further necessary criteria. After introducing the
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framework and the criteria in Section 2, we provide three motivations for Spanning in Section
3. Chief among these motivations is Spanning’s consistency with Equalized Odds, and, in
Section 4, we show that this observation can be strengthened to consistency with an even
stronger criterion. We conclude in Section 5 by responding to some potential objections.

2 Criteria of Algorithmic Fairness

We adopt the standard framework for theorizing about algorithmic fairness. We start with
a population N = {1, ..., n} of individuals. We are trying to predict whether or not each
individual has a certain property y. The random variable Y : N → {0, 1} represents that
individual i has property y if Y (i) = 1, and it represents that i does not have y if Y (i) = 0.
Typically, there is a vector of features associated with each individual, and it is on the basis of
these features predictions are made. Depending on the prediction task, the relevant features
might include high school GPA, type of crime committed, employment status, and so on. For
simplicity, we will not represent these vectors. Next, we suppose that our population N is
divided into groups. The groups are represented as the cells of a partition π of N . Finally,
an assessor is a function h : N → [0, 1] that represents predictions about whether individuals
have property y. For instance, we can interpret the number h(i) as the probability that an
algorithm assigns to the proposition that individual i has property y. Below we will say that
an assessor is binary if it takes only the values 0 and 1; otherwise it is continuous. These
four components—the population N , random variable Y , group partition π, and assessor h—
comprise what we will call an assessment scenario. Examples of assessment scenarios include
predicting the risk of recidivism in the criminal justice system, forecasting loan repayment,
and predicting which college applicants will eventually meet a specific criterion of success.

To formally represent talk of ratios and proportions in groups, we introduce a uniform
distribution P on N . This distribution can be relativized to a group G in a given partition
π by conditioning on G, PG(·) = P (·|G), yielding a uniform distribution on G. Define the
base rate for a group G in given partition π of population N as µG = PG(Y = 1). This is
the proportion of people in G that have the property y. When defined with respect to P ,
the expectation EG(h|Y = 0) is the average score h assigns to individuals in G that do not
have property y. This quantity, also denoted f+

G (h), is called the generalized false positive
rate for group G. Similarly, the generalized false negative rate for group G is defined as
f−
G (h) = EG(1− h|Y = 1) and is the average of the quantity 1− h for individuals in G that
do have property y. Together, the generalized false positive and false negative rates allow us
to define the Equalized Odds fairness criterion that figures centrally in the result of Kleinberg
and coauthors.

Equalized Odds. For an assessor h of N and any groups G,G′ in the relevant
partition π of N , f+

G (h) = f+
G′(h) and f−

G (h) = f−
G′(h) (whenever those terms are

defined).

Equalized Odds for a given partition π requires that generalized error rates are the same for
all groups in π. For example, in a partition into race groups in the context of predicting
recidivism, it rules out assigning a much higher average probability of recidivism to black
individuals who do not reoffend than to white individuals who do not reoffend. Equalized

2



Odds diagnoses such inequalities in errors as unfair bias.1 Violations of (a form of) this
criterion in the criminal justice system in the US have sparked much press, reflection, and
research (Angwin et al., 2016).

The other fairness criterion that figures in the theorem of Kleinberg and coauthors is
Calibration.

Calibration. For an assessor h of N and any group G in the relevant partition
π of N , PG(Y = 1|h = p) = p for all p ∈ [0, 1] such that PG(h = p) > 0.

Calibration for a given partition π requires that, for each group G ∈ π, among the individuals
in G assigned a score p, the proportion of individuals that actually has property y is p.
Consider the context of forecasting recidivism and a partition into race groups again. If 60% of
the white individuals assigned a score of 0.5 were recidivists, then h would be underconfident
in its predictions of white recidivism for these individuals. If 40% of Asians assigned a score
of 0.5 were recidivists, then h would be overconfident in its predictions of Asian recidivism.
Calbiration diagnoses both cases as unfair bias, requiring that forecast probabilities and
empirical frequencies match: 50% of the individuals assigned a score of 0.5 in any group in
the partition are recidivists.

We will call an assessment scenario trivial if either h is perfect or all groups have the same
base rate. What Kleinberg and coauthors show is that Calibration and Equalized Odds are
consistent only in trivial assessment scenarios. As we mentioned in the introduction, several
ways of weakening of Calibration have been studied in the literature, inspired in large part
by trying to skirt this impossibility result. For our purposes the following two are the most
relevant.2

Predictive Equity. For an assessor h of N and any groups G,G′ in a partition
π of N , PG(Y = 1|h = p) = PG′(Y = 1|h = p) for all p ∈ [0, 1] such that
PG(h = p), PG′(h = p) > 0.

Instead of requiring that the percentage of recidivists among white and Asian individuals
assigned a score of 0.5 is 50%, Predictive Equity requires only that those percentages are
equal across the partition. So while PWhite(Y = 1|h = 0.5) = PAsian(Y = 1|h = 0.5) = 0.6 is
a violation of Calibration, it is not a violation of Predictive Equity. In this sense, Predictive
Equity preserves a form of equal treatment that Calibration implies. On the one hand, it is
possible to conceive of Calibration as adding to this equal treatment requirement conditions
that are not fundamentally about fairness. For instance, the additional requirement that
PWhite(Y = 1|h = p) and PAsian(Y = 1|h = p) are not only equal to each other but equal
to precisely p can be interpreted as a sort of epistemic requirement of accuracy (Stewart
and Nielsen, 2020). On the other hand, there are ways of thinking of this within-group

1For the sake of brevity and because less brief motivations have been given a number of times elsewhere, we
restrict ourselves to brief motivations/explanations of each fairness criterion other than Spanning. For further
elaboration, see, for example, (Eva, 2022; Stewart, 2022).

2We are not treating all candidate ways of relaxing Calibration that have been proposed. For example,
a variant of Base Rate Tracking called Ratio Base Rate Tracking (Eva, 2022) has also been shown to be
consistent with Equalized Odds only in trivial scenarios (Stewart et al., 2024, Proposition 2). Likewise, a
more abstract and perhaps more difficult to interpret weakening of Calibration labeled ∗ has been shown to
be consistent with Equalized Odds only in trivial scenarios (Stewart and Nielsen, 2020, Theorem 2).
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constraint as a sort of fairness requirement. The idea is that even if PWhite(Y = 1|h = p) and
PAsian(Y = 1|h = p) are equal, it is still unfair to be under- or overconfident in recidivism—
even if the assessor is uniformly over- or underconfident across groups. We will return to this
issue when it comes to interpreting Spanning.

Eva (2022) advances a distinct way of relaxing Calibration.

Base Rate Tracking. For an assessor h of N and any groups G,G′ in the
relevant partition π of N , EG(h)− µG = EG′(h)− µG′ .

Continuing with the recidivism context, according to Base Rate Tracking, if the assessor
treats one group as more risky than another, it must be because that group is riskier. If
the base rates for Hispanic and Asian groups were roughly equal, but the Hispanic group
were assigned significantly higher average scores, Base Rate Tracking would diagnose that as
unfair bias.

The criterion that we would like to introduce for consideration is Spanning.

Spanning. For an assessor h of N and any group G in the relevant partition π
of N , the base rate µG lies in the interval [mini∈G h(i),maxi∈G h(i)].

Using the same recidivism context to explain the condition, Spanning requires that the base
rate for a given race group lies within the interval spanned by the predictions h makes on
that group. So if the base rate for white individuals were 0.4, but the lowest score h assigns
to a white individual were 0.5, h would violate Spanning. Like Calibration but unlike the
other criteria we have introduced, Spanning is a within-group condition. Instead of requiring
certain equalities hold across groups, it requires a particular condition to be satisfied within
each group. There are at least two ways of understanding Spanning, which correspond to the
two ways of understanding Calibration that we mentioned earlier. Recall that Calibration
can be understood either as adding an additional accuracy requirement to Predictive Equity
or as diagnosing failures of Calibration as a form of unfair bias in confidence. On the first way,
Spanning may be a requirement of good predictions without being a fairness requirement.
As far as the context of discovery goes, our inspiration is from a literature that takes an
analogue of Spanning to be an epistemic requirement.3 But as in the case of Calibration, it
is also possible to interpret Spanning as a criterion of fairness. Consider Figure 1. The base
rate for the group is 0.25, but all of the assessor’s predictions are greater than 0.25 in clear
violation of Spanning. It is natural to think that we do not need to consider the forecasts in
other groups to diagnose the predictions for this group as systematically biased and unfair. If
the assessor is predicting recidivism for the group, it is clear that the assessor is overconfident
in the riskiness of the group. We turn now to some additional motivations for Spanning.

3 Three Motivations for Spanning

There are at least three motivations for introducing Spanning. First, like Base Rate tracking
and Predictive Equity, it weakens Calibration in a natural way. In fact, these three ways of

3Calibration is formally similar to the reflection principle (van Fraassen, 1984). Spanning is formally similar
to certain weakenings of the reflection principle (van Fraassen, 1999; Huttegger and Nielsen, 2020; Nielsen,
2021; Dorst et al., 2021; Dorst, 2023). We’ve repurposed “Spanning” from van Fraassen and Halpern (2016).
A similar property has also been investigated in the pooling literature under the heading “bracketing the
truth” (Larrick and Soll, 2006).
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Figure 1: A group with base rate µ = 0.25. Eight predictions, each marked
by an o.
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Figure 2: Three independent weakenings of Calibration

relaxing Calibration are logically independent of one another. The relationships summarized
in the next proposition are depicted in Figure 2.

Proposition 1. Calibration implies Base Rate Tracking, Predictive Equity, and Spanning,
but those three conditions are independent of each other.

The proof of this proposition and the proofs of the two propositions below are in the Appendix.
As we have mentioned, the impossibility of satisfying Calibration and Equalized Odds

provides strong motivation for the program of studying ways to relax those criteria. Spanning
is part of that program. One important property of Calibration that Spanning retains is ruling
out the sort of systematic bias displayed in Figure 1. But Spanning retains other content as
well as we explain next.

The second motivation for Spanning is that, like Base Rate Tracking but unlike Predictive
Equity, Spanning retains a “commitment” to the ideal of perfect assessment (Stewart, 2024).
Fairness criteria are supposed to capture some aspect of fair treatment in the context of
assessment. If h satisfies some criterion like Calibration for all groups in a partition, no
group has a complaint about being treated unfairly in the sense ruled out by Calibration,
namely, complaints about the assessor’s over- or underconfidence. But other groups, not
in that partition, may. An assessor could be calibrated for a race partition but fail to be
calibrated for a gender partition, for example. Maximal fairness in the sense captured by
a specific criterion, while perhaps unrealistic in interesting cases, would be achieved if h
were to satisfy that criterion for all partitions, or, equivalently, all groups.4 In the case

4One might think that this is overkill. An anonymous referee expressed concern that the proof of Proposition
2 in the Appendix, for example, appeals to the partition of singletons. Instead of investigating a criterion’s
satisfaction for all partitions, perhaps we should content ourselves with a notion of maximal fairness that
requires a criterion’s satisfaction for all relevant partitions like races, sexes, and so on. We agree that bias
against some groups may be a more pressing issue than bias against just any gerrymandered group, but there
are several things one might say in response; here are four. First, we cannot rule out singleton groups. Even
for core protected classes like races or sexes, there may be applications and populations in which some group
is a singleton. So a priori constraints on the size of groups have to be abandoned if we want to treat arbitrary
populations. Second, there may well be nothing interesting to say about the set of “relevant partitions” in
general. Such a set could consist of a single partition with no characterizations of the sort in (Stewart, 2022)
and in Proposition 2 available. Third, and modestly, fairness for all partitions or all groups is clearly one
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of Calibration, no group would have a complaint about the assessor’s bias in confidence.
(Stewart, 2024) suggests that by considering what maximal fairness looks like according to
different algorithmic fairness criteria, we get information relevant to the normative evaluation
of those criteria, information about what “ideals” the various criteria are committed to. For
central criteria of algorithmic fairness, maximal fairness can be characterized in terms of
simple properties that concern fair treatment. For example, h is calibrated for all partitions
if and only if h is perfect: h(i) = Y (i). While h satisfies Predictive Equity for all partitions
if and only if h satisfies the weaker property of making perfect distinctions: Y (i) ̸= Y (j)
implies h(i) ̸= h(j). Arguably, perfection excludes any unfair treatment. Perfect distinctions
does not. It is consistent with assigning every recidivist a risk score 0 and every non-recidivist
a risk score of 1, or assigning all individuals different scores in any arbitrary fashion. For
example, as long as all individuals are assigned distinct scores, Predictive Equity’s ideal is
consistent with assigning very high scores to all black individuals and very low scores to all
white individuals. The thought is that Calibration encodes a more attractive ideal. What
about Spanning?

Proposition 2. Let h be an assessor for a (non-homogeneous) population N . The following
are equivalent.

1. h satisfies Calibration for all partitions of N .
2. h satisfies Base Rate Tracking for all partitions of N .
3. h satisfies Spanning for all partitions of N .
4. h is perfect.

But satisfying Predictive Equity for all partitions of N does not imply that h is perfect.

So while Spanning and Base Rate Tracking retain perfection as maximal fairness, Predic-
tive Equity does not. Those that find the ideals program—and the ideal of perfection in
particular—compelling might well take this as a consideration in support of Spanning. One
consequence of Proposition 2 is that any putatively necessary criteria of algorithmic fairness
that we add to Spanning will at least entail that maximal fairness implies the perfection ideal.

The third and perhaps weightiest motivation for Spanning is that, unlike both Base Rate
Tracking and Predictive Equity, it is non-trivially consistent with Equalized Odds, both
generally and in the special case of binary assessment. Stewart et al. (2024, Theorem) prove
that relaxing Calibration to Base Rate Tracking opens up no new possibilities at all: Base
Rate Tracking and Equalized Odds are consistent only in trivial assessment scenarios. And
Stewart and Nielsen (2020, Theorem 3) show that relaxing Calibration to Predictive Equity
opens up no new possibilities for binary assessment unless the assessor is “maximally error-
prone”: Predictive Equity and Equalized Odds are consistent for binary assessors only if
the assessment scenario is trivial or the assessor’s false positive and false negative rates are

sensible conception of maximal fairness. Others may well be worth investigating, but this conception has
some precedent in the literature and others may be less interesting analytically. Fourth, even if we agree on
some set of partitions as the relevant ones, it does not follow that bias against groups that are not cells in
those partitions is ethically unimportant. While the set of people from rural areas may not have been listed as
a relevant group, the discovery of significant bias against the group may be diagnostic, ethically concerning,
and worth reducing. To us, it seems wrong in such a case to regard an assessor as maximally fair when another
assessor might reduce bias against rural folks without introducing any new bias. We take considerations like
these to suggest that the conception of maximal fairness that we adopt is interesting, legitimate, and worth
exploring.
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maximal (i.e. equal to 1) for all groups. Crucially, Spanning avoids both of these impossibility
results.

Theorem 1. There exist non-trivial assessment scenarios in which continuous assessors
satisfy both Spanning and Equalized Odds. And there exist non-trivial assessment scenarios
in which binary assessors satisfy both Spanning and Equalized Odds without being maximally
error-prone.

The theorem is proved by considering examples. We begin with a particularly simple
example that establishes Theorem 1’s first claim. In the examples below, an asterisk indicates
that the individual has property y.

Example 1: A non-trivial assessment scenario with a continuous assessor
satisfying Spanning and Equalized Odds

Group 1 h(1) = 1/3 h(2∗) = 2/3 h(3) = 1/3

Group 2 h(4∗) = 2/3 h(5∗) = 2/3 h(6) = 1/3

Spanning is easy to verify after observing that the base rate in Group 1 is 1/3 and the base
rate in Group 2 is 2/3. The generalized false positive rate in Group 1 is f+

G1
(h) = EG(h|Y =

0) = 1/3, which is the same as in Group 2. Likewise, the generalized false negative rate in
Groups 1 and 2 is 1/3. So the assessor in Example 1 satisfies both Spanning and Equalized
Odds. Note that this assessor is by no means unique. Given the same population there
are many other assessors that also non-trivially satisfy Spanning and Equalized Odds. For
instance, with c ∈ (0, 1/3):

Example 2: A continuum of non-trivial assessment scenarios with continu-
ous assessors satisfying Spanning and Equalized Odds

Group 1 h(1) = c h(2∗) = 1− c h(3) = c

Group 2 h(4∗) = 1− c h(5∗) = 1− c h(6) = c

At this point, it becomes a straightforward exercise to show that larger populations give rise
to an even greater variety of possibilities. Example 3 shows that h need not be two-valued.
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Example 3: A non-trivial assessment scenario with a continuous, non-two-
valued assessor satisfying Spanning and Equalized Odds

Group 1 h(1∗) = 3/5 h(2∗) = 9/10 h(3) = 1/10

h(4) = 1/10 h(5) = 1/5 h(6) = 1/5

Group 2 h(7∗) = 3/5 h(8∗) = 3/5 h(9∗) = 9/10

h(10∗) = 9/10 h(11) = 1/10 h(12) = 1/5

The next example establishes Theorem 1’s second claim.

Example 4: A non-trivial assessment scenario with a binary, not maximally
error-prone assessor satisfying Spanning and Equalized Odds

Group 1 h(1∗) = 0 h(2∗) = 1 h(3) = 0

Group 2 h(4∗) = 1 h(5∗) = 0 h(6) = 0 h(7)=0

Again, the assessor in Example 4 is not unique for the given population (though there cannot
be a continuum of binary fair assessors). For instance, interchanging the values of h(1∗) and
h(2∗) preserves the relevant features of the example.

4 Strengthening the Consistency Result: Strong Equalized
Odds

The foregoing examples actually establish something stronger than the non-trivial consistency
of Spanning with Equalized Odds. Part of explaining this point involves clarifying an issue
about which some confusion exists in the literature. Unfortunately, a number of formal
conditions are called Calibration in the literature on algorithmic fairness. Similarly, and
more to our point in this section, a number of formal conditions go by the name Equalized
Odds. One consequence of this unfortunate state of affairs is that impossibility theorems are
sometimes misreported and incorrectly described. For instance, it’s been claimed that the
result due to Kleinberg and coauthors establishes the non-trivial inconsistency of the criterion
that we call Predictive Equity and the following criterion, sometimes itself called Equalized
Odds, but which, for reasons that will become obvious, we refer to as Strong Equalized Odds
(Beigang, 2023a, p. 169).

Strong Equalized Odds. For an assessor h of N and any groups G,G′ in
the relevant partition π of N , PG(h = p|Y = 1) = PG′(h = p|Y = 1) and
PG(h = p|Y = 0) = PG′(h = p|Y = 0) for any p (whenever those probabilities are
defined).
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Figure 3: Two independent weakenings of Strong Equalized Odds

Strong Equalized Odds requires that, across groups, equal proportions of individuals with
(respectively, without) property y are given score p. So, if 50% of black recidivists are
assigned a score of 0.8, for example, then 50% of white recidivists should be assigned a
score of 0.8. But we have two quick points to make about the report that this property
is inconsistent with Predictive Equity outside of trivial scenarios. First, contrary to that
report, Predictive Equity and Strong Equalized Odds are not the criteria that figure in the
Kleinberg et al. impossibility theorem. Second, and more importantly, these criteria are not
inconsistent outside of trivial scenarios. Example 6 in the Appendix witnesses this fact.

Another criterion often referred to as Equalized Odds is the following condition that we
will call Threshold Equalized Odds (e.g., Crespo et al., 2024).

Threshold Equalized Odds. For an assessor h of N , a specified threshold
t ∈ [0, 1], and any groups G,G′ in the relevant partition π of N , PG(h > t|Y =
0) = PG′(h > t|Y = 0) and PG(h < t|Y = 1) = PG′(h < t|Y = 1) for any p
(whenever those probabilities are defined).

The quantities PG(h > t|Y = 0) and PG(h < t|Y = 1) are sometimes referred to as the false
positive and false negative rates, respectively, for group G. Suppose we specify a threshold
of 0.25. If 60% of Asian non-recidivists are assigned a score above 0.25, Threshold Equalized
Odds requires that 60% of non-recidivists in every other racial group be assigned a score
above 0.25. And if 0% of Asian recidivists are assigned a score below 0.25, the false negative
rate for all groups must be 0.

We now clarify the relationships between these three criteria that have all been called
Equalized Odds. Again, the logical relationships summarized in Proposition 3 are also de-
picted in Figure 3.

Proposition 3. Strong Equalized Odds implies Equalized Odds and Threshold Equalized
Odds, but Equalized Odds and Threshold Equalized Odds are independent of one another.

Proposition 3 allows us to state our main point: Spanning is non-trivially consistent with
Strong Equalized Odds, as Examples 1 and 3 establish. It follows from Proposition 3 that it
is also consistent with Threshold Equalized Odds. Of course, neither Calibration nor Base
Rate Tracking nor Predictive Equity is consistent with Strong Equalized Odds outside of
trivial scenarios.

5 Objections and Responses

We have been arguing that weakening Calibration to Spanning opens up new possibilities
for fair assessment. Throughout the previous section, we assumed that Equalized Odds
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is necessary for fair assessment. This assumption has received plenty of support in the
literature,5 but Equalized Odds also has its detractors. Hedden (2021), in particular, argues
that Equalized Odds is vulnerable to counterexamples. Hedden’s arguments have already
garnered a lot of attention, and although this debate extends beyond the scope of our paper,
it is worth making two brief remarks.

First, Hedden’s argument is compatible with our main point. If fair assessors need not
satisfy Equalized Odds, then there are even more possibilities for fair assessment than we
imagined in the previous section. However, one might think that Hedden’s counterexamples
do threaten our argument with otiosity. By Hedden’s lights, his counterexamples refute
every prominent statistical criterion of fairness except Calibration, and if Calibration is the
only fairness criterion, then it’s already clear that the impossibility results can be avoided.
So, arguably, Hedden’s counterexamples obviate the motivation to explore weakenings of
Calibration such as Spanning. Our second remark about Hedden’s argument, however, is that
not everyone agrees that his counterexamples to Equalized Odds succeed (Viganò et al., 2022;
Søgaard et al., 2024). We are sympathetic to a line of objection on which Hedden’s alleged
counterexamples have features that genuine assessment problems lack. For instance, Hedden’s
examples involve assessors that have access to the “objective chances” that individuals have
property y. But this never occurs in the cases that motivate research on algorithmic fairness.
We never know the objective chance that a given individual will recidivate, for example—
even supposing it makes sense at all to speak of chances in this case. In genuine prediction
problems, assessors must make predictions without being able to take objective chances into
account. To be fair, Hedden concedes, “I am not claiming that the case of people, coins,
and rooms is realistic or completely analogous to cases like COMPAS. Of course it is not
[. . . ] human behavior is not normally chancy, at least not in the same way that coin flips
are” (2021, p. 223). However, the objection we mean to express sympathy with here is not
merely that Hedden’s examples are unrealistic, but that their unrealistic features make them
different in kind from the cases that Equalized Odds is supposed to constrain.6 If that’s
right, then Hedden’s examples don’t show that Equalized Odds isn’t required for fairness in
genuine assessment problems. But providing detailed support for this objection will have to
be left for another time. In any case, having noted some of the controversies surrounding
Hedden’s argument, our assumption that Equalized Odds is necessary for fair assessment is
not implausible.

A second potential worry about our argument is that Spanning yields the wrong verdicts
in specific cases. Consider Figure 4. Interpret the two images as two different assessors both
issuing predictions about a single group of eight individuals. Given that the base rate for the
group is 0.25, the top assessor violates Spanning whereas the bottom one satisfies it. But
the top assessor’s predictions are, on average, much closer to the base rate. Is that reason
to think the top assessor is more fair? We would like to make two points in response to this
concern.

First, the alternatives to Spanning that we have considered—Calibration, Base Rate
Tracking, Predictive Equity—also fail to yield the verdict that the top assessor is “more fair”
than the bottom. Both the top and bottom assessors violate Calibration. And since we are

5See Grant (2023) for a recent defense.
6Søgaard et al. (2024) develop a similar point in detail, arguing that Hedden’s counterexample is not a

standard machine learning problem. Their focus is the fact that the performance of Hedden’s assessors cannot
be evaluated on “held-out data (a new random sample) from the underlying distribution” (p. 9).
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Figure 4: Base rate µ = 0.25 with eight predictions, each marked by an o
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considering a single group, Base Rate Tracking and Predictive Equity are silent since they are
inter-group criteria. We might seek to supplement Calibration or one of its other weakenings
with an account of how “close” an assessor is to satisfying the relevant constraint. So for
some ways of specifying closeness, the top assessor is closer to Calibration than the bottom
assessor is. Even with an appropriate account of closeness in hand, however, the question of
the relative fairness of the two assessors is not settled, which leads us to the next point.

The second point about this second objection that we would like to make is that we are
not proposing Spanning as a sufficient condition for fairness. And neither is Calibration nor
either of its alternative weakenings advanced as a sufficient condition. We can even concede
that there is something unfair about each assessor in Figure 4. Nothing that we have said
commits us to insisting that the bottom assessor is fair. Whether an assessor’s forecasts
count as fair will depend on the other conditions required for fairness. If we were to interpret
the two images as a single assessor’s predictions for two different groups, each with the same
base rate, it would be clear that in addition to violating Spanning, these forecasts violate
Equalized Odds. Since the base rate is 0.25, six out of the eight individuals do not have
property y. So the generalized false positive rate is considerably greater in the bottom group.
If we suppose that Spanning and Equalized Odds are necessary conditions for fairness, the
defects of the assessor in the single-assessor interpretation of Figure 4 are multiple. If we
insist on Calibration or one of its alternative weakenings, on the other hand, since these
criteria are generally inconsistent with Equalized Odds, Equalized Odds cannot also be a
general necessary criterion of fairness if any of those are. As a result, we are prevented from
diagnosing the bias in generalized error rates in the example.

Another way of developing the wrong verdicts concern challenges the notion that fail-
ures of Spanning can diagnose unfair treatment of a group independently of the assessor’s
forecasts for other groups.7 Consider the top image in Figure 4 again, but suppose that the
assessment problem is about successful performance in some college if admitted, for instance.
In this case, the worry goes, the assessor’s rosy evaluations of the group are not unfair to
that group. After all, the assessor’s overconfidence in the group is to the group’s benefit.
We think that there are several potentially mollifying considerations here. First, as we noted
above, this objection does not rule out the possibility that certain failures of Spanning are
unfair regardless of the assessor’s performance in other groups. Consider the same image in
Figure 4 under the interpretation of recidivism forecasting, for instance. Second, as we also
mentioned above when we introduced Spanning, even in cases like the college admissions ex-
ample, Spanning could represent a sort of epistemic defect in the forecasts. Overconfidence,
even if beneficial, is a form of inaccuracy. Such inaccuracy could (and typically does) frus-

7Thanks to an anonymous referee for putting this objection to us.
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trate the primary purpose of the forecasts—like admitting a talented and successful class of
students. Moreover, such inaccuracy could also have problematic consequences for the very
group that apparently benefits. As Borsboom and coauthors note in the context of college
admissions, the likely eventual underperformance of the group subject to overly optimistic
assessment could reinforce negative group stereotypes (2008). So concluding that the asses-
sor’s overconfidence is to the group’s benefit in the college admissions setting is hasty. Third,
Spanning doesn’t imply that the assessor in Figure 4 is unfair to the top group. If Spanning is
necessary for fairness, and an assessor violates Spanning, then it follows that the assessor is
unfair, but it is a further question which group(s) the assessor treats unfairly. Answering this
question probably is not a purely statistical matter and might require an investigation of the
moral/ethical features of the case under consideration. In the college admissions problem, for
example, it could be that the bottom group of Figure 4 is treated unfairly. The bottom group
may complain that the admissions assessor is overconfident about the top group. Fourth, and
most concessively, we could reformulate Spanning in various accommodating ways. For in-
stance, in assessment problems in which only one type of error is harmful or intuitively unfair,
Spanning could be relaxed to requiring only that not all the forecasts are above or below the
group base rate depending on whether higher or lower probabilities are considered harmful.
In the top image in Figure 4, such a modification of Spanning might classify the forecasts
as unfair when recidivism is being predicted, but not when college success is the forecasting
task.

A third worry, related to the previous ones, is that, due either to its weakness or to
its formal structure, Spanning is “gameable” in problematic ways. Some agents, like the
proprietors of algorithms used in industry or the criminal justice system, may have incentives
to avoid accusations of algorithmic bias regardless of whether the algorithms are in fact
fair or not. Perhaps, the worry goes, it is too easy to avoid accusations of bias based on
violations of Spanning. Similarly, machine learning algorithms may seek to satisfy Spanning
in trivial or unappealing ways. In The Ethical Algorithm, Kearns and Roth observe, “One
theme running throughout this book is that algorithms generally, and especially machine
learning algorithms, are good at optimizing what you ask them to optimize, but they cannot
be counted on to do things you’d like them to do but didn’t ask for, nor to avoid doing things
you didn’t want but didn’t tell them not to do” (2019, p. 87). In the most extreme case,
can’t an algorithm “optimize” for fairness and avoid charges of bias simply by assigning two
individuals in each group a score of 0 and 1, respectively?

If Spanning were all we cared about, maybe so. But, if Equalized Odds is also necessary
for fairness, then accusations of bias are not so easily avoided. If an algorithm haphazardly
assigns 0s and 1s in order to satisfy Spanning, it might make error rates differ across groups.
In that case, the attempt to “game” Spanning actually creates biases in the form of Equalized
Odds violations. But is there a way to game Spanning and Equalized Odds together? For
instance, is there an algorithm that assigns some 0s and 1s in order to satisfy Spanning and
is guaranteed to satisfy Equalized Odds as well? In general, no. In order to assign 0s and 1s
while guaranteeing that Equalized Odds is satisfied, one must know which individuals have
property y and which do not. And that is precisely what we do not know in situations that
call for predictive algorithms. So, while it’s true that it is easy to guarantee that Spanning
is satisfied, that’s not tantamount to a guarantee that accusations of bias can be avoided.

But perhaps the ease with which Spanning can be satisfied is troubling on its own, even if
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it does not point to a general method for gaming algorithmic fairness. In our view, this is not
a serious problem. Equalized Odds is easy to satisfy too—any constant assessor will do—but
that is not taken as a mark against it. The reason why mirrors what we have just said about
Spanning: while a constant assessor is guaranteed to satisfy Equalized Odds, in general it
will not satisfy Spanning or other weakenings of Calibration, so in general one cannot game
Equalized Odds without violating other plausible fairness criteria. The lesson here is that we
should be concerned about the “gameability” of proposed fairness criteria only to the extent
that there are general methods for guaranteeing that all of the criteria are satisfied. That an
individual constraint like Spanning (or Equalized Odds) is easy to satisfy tells us little about
its plausibility as a criterion for fairness.

Acknowledgments. Thanks to Lee Elkin, Jens Kipper, Ignacio Ojea Quintana, Tom
Sterkenburg, Reuben Stern, two anonymous referees, and an audience at the Northeastern
Ethics & Epistemology Workshop 2024 for helpful conversations and feedback.

Appendix

Proof of Proposition 1

Proof. Proposition 1 in (Stewart et al., 2024) establishes that Calibration for some partition
π implies Base Rate Tracking for π. That same proposition also establishes that Calibration
for π implies that EG(h) = µG for all G ∈ π. But this fact clearly requires that µG ∈
[mini∈G h(i),maxi∈G h(i)] for all G ∈ π. So Calibration for π implies Spanning for π. And
that Calibration implies Predictive Equity is immediate.

Next, to see that Base Rate Tracking implies neither Predictive Equity nor Spanning,
consider the following.

Example 5: Base Rate Tracking without Predictive Equity or Spanning

Group 1 h(1∗) = 3/4 h(2) = 2/3

Group 2 h(3∗) = 2/3 h(4) = 3/4

In Example 5, EG1(h) = EG2(h) and µG1 = µG2 , so h satisfies Base Rate Tracking. But
PG1(Y = 1|h = 3/4) = 1 ̸= PG2(Y = 1|h = 3/4) = 0, so h does not satisfy Predictive Equity.
And since the base rate in each group is 1/2 and lies below the least prediction in each group,
h does not satisfy Spanning.

Next is an example of an assessor that satisfies Predictive Equity for a partition but
neither Base Rate Tracking nor Spanning for that partition.
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Example 6: Predictive Equity without Base Rate Tracking or Spanning

Group 1 h(1∗) = 4/5 h(2∗) = 4/5 h(3) = 3/4

Group 2 h(4∗) = 4/5 h(5) = 3/4

To verify Predictive Equity, notice that there are just two scores so two cases to check. First,
PG1(Y = 1|h = 4/5) = PG2(Y = 1|h = 4/5) = 1. Second, PG1(Y = 1|h = 3/4) = PG2(Y =
1|h = 3/4) = 0. So h satisfies Predictive Equity. But h does not satisfy Base Rate Tracking
since EG1(h) − µG1 = 7/60 and EG2(h) − µG2 = 11/40. The base rate for Group 1 is 2/3
which is less than the least score h assigns in that group. (Spanning likewise fails in Group
2.) So h does not satisfy Spanning.

Finally, Spanning implies neither Base Rate Tracking nor Predictive Equity. Example
1 provides an example of an assessor that satisfies Spanning but not Base Rate Tracking.8

(This is as should be expected in light of the theorem in (Stewart et al., 2024).) And Example
4 is an example of an assessor that satisfies Spanning but not Predictive Equity. (Again, this
is as we should expect given Theorem 3 in (Stewart and Nielsen, 2020).)

Proof of Proposition 2

Proof. That Calibration for all partitions is equivalent to perfection and not equivalent to
Predictive Equity for all partitions is established in (Stewart, 2022). The equivalence of Base
Rate Tracking for all partitions and perfection, under the assumption that the population is
non-homogeneous, is established in Stewart (2024). For the equivalence of Spanning for all
partitions and perfection, suppose first that Spanning holds for all partitions. Then it holds
for the partition of N into singletons. Since the span of h on a singleton is the degenerate
interval [h(i), h(i)], Spanning requires µ{i} = h(i). But for any singleton {i}, the base rate
µ{i} is either 1 if Y (i) = 1 or 0 if Y (i) = 0. This implies that h(i) = 1 if Y (i) = 1, and
h(i) = 0 if Y (i) = 0, which is to say that h is perfect. Conversely, suppose that h is perfect.
For any group G in some partition π of N , there are three cases to consider: the base rate
is either 0, 1, or something in between. If the base rate of G is 0 (respectively, 1), then h
assigns 0 (1) to every member of G because it is perfect, and Spanning is satisfied. If the
base rate of G is strictly in between 0 and 1, then some member i of G is such that Y (i) = 1,
which implies h(i) = 1 by perfection, and some other member j of G is such that Y (j) = 0,
which implies h(j) = 0. So, in this case too, Spanning is satisfied.

Remark. Like with Calibration but unlike with Base Rate Tracking, the equivalence of Span-
ning for all partitions and perfection does not require the restriction to non-homogeneous
populations.

8Here, it is important to stress that Base Rate Tracking is not formulated in terms of the absolute value
of EG(h)− µG.
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Proof of Proposition 3

Proof. To see that Strong Equalized Odds implies Equalized Odds, suppose that, for all
G,G′ ∈ π, PG(h = p|Y = 1) = PG′(h = p|Y = 1) and PG(h = p|Y = 0) = PG′(h = p|Y = 0).
Let h[A] be the image of h on A ⊆ N so that

h[G ∩ {Y = 0}] = {p : h(i) = p for some i ∈ G such that Y (i) = 0}.

By Strong Equalized Odds, h[G ∩ {Y = 0}] = h[G′ ∩ {Y = 0}] for all G,G′ ∈ π since,
otherwise, there would be some G,G′ ∈ π and some p ∈ [0, 1] such that PG(h = p|Y = 0) >
0 = PG′(h = p|Y = 0), which contradicts Strong Equalized Odds. Using this fact and Strong
Equalized Odds,

EG(h|Y = 0) =
∑

p∈h[G∩{Y=0}]

pPG(h = p|Y = 0)

=
∑

p∈h[G′∩{Y=0}]

pPG′(h = p|Y = 0)

= EG′(h|Y = 0).

Hence, Strong Equalized Odds implies equal generalized false positive rates: f+
G (h) = f+

G′(h)
for all G,G′ ∈ π. (And note that, when PG(h = p|Y = 0) is undefined, so is EG(h|Y = 0).)
The argument for equal generalized false negative rates is analogous. So, Strong Equalized
Odds implies Equalized Odds.

For the implication from Strong Equalized Odds to Threshold Equalized Odds, assume
Strong Equalized Odds again and observe that for any G,G′ ∈ π and any t ∈ [0, 1],

PG(h > t|Y = 0) =
∑
p>t

PG(h = p|Y = 0)

=
∑
p>t

PG′(h = p|Y = 0)

= PG′(h > t|Y = 0),

whenever PG(·|Y = 0) and PG′(·|Y = 0) are both defined. An analogous argument establishes
that PG(h < t|Y = 1) = PG′(h < t|Y = 1) for any t ∈ [0, 1] whenever both terms are defined.
So, Strong Equalized Odds implies Threshold Equalized Odds.

To see that Equalized Odds and Threshold Equalized Odds are independent, first consider
Example 7.

Example 7: Equalized Odds without Threshold Equalized Odds for t = 0.4

Group 1 h(1∗) = 1/3 h(2∗) = 2/3 h(3) = 1/5

Group 2 h(4∗) = 1/2 h(5) = 1/5

Here, f+
G1

(h) = f+
G2

(h) = 1/5 and f−
G1

(h) = f−
G2

(h) = 1/2, securing Equalized Odds. But
suppose we set t = 0.4. Then, PG1(h < 0.4|Y = 1) = 1/2 ̸= PG2(h < 0.4|Y = 1) =
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0. So h violates Threshold Equalized Odds. Next, Example 5 presents an assessor that
satisfies Threshold Equalized Odds for many choices of threshold but not Equalized Odds.
For instance, set t = 0.4 again. Then, PG1(h > 0.4|Y = 0) = PG2(h > 0.4|Y = 0) = 1 and
PG1(h < 0.4|Y = 1) = PG2(h < 0.4|Y = 1) = 0. But f+

G1
(h) = 2/3 ̸= f+

G2
(h) = 3/4.
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