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ABSTRACT. A standard way to challenge convergence-based accounts of inductive success
is to claim that they are too weak to constrain inductive inferences in the short run. We
respond to such a challenge by answering some questions raised by Juhl (1994). When it
comes to predicting limiting relative frequencies in the framework of Reichenbach, we show
that speed-optimal convergence—a long-run success condition—induces dynamic coherence
in the short run.
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1. INTRODUCTION

Reichenbach held that the inductive methods used in the sciences are essentially rules for
estimating probabilities. Probabilities, in turn, received a frequency interpretation, and this
led Reichenbach to regard the discovery of limiting relative frequencies as a primary aim of
scientific inquiry."

Reichenbach advocated a particularly simple inductive method for predicting frequencies,
the straight rule. Using the straight rule, he attempted a “pragmatic vindication” of induction
in response to Humean skepticism.> We must concede to Hume, Reichenbach thought, that
we cannot be certain that nature is regular. But if it is regular, then the straight rule will
reveal this to us in the limit of inquiry. In particular, if the relative frequency of an outcome
in a repeated experiment approaches a stable limit, then the straight rule’s conjectures about
the outcome’s frequency necessarily approach the same limit.

The chief problem with Reichenbach’s account of inductive success—convergence to the
correct limiting relative frequencies, when the limits exist—is that it places no constraints
whatsoever on the kinds of inductive inferences that can be made in the short-term.® Ar-
bitrary conjectures in response to a finite amount of data can always be extended in a way
that secures convergence in the long run.

In view of this limitation of Reichenbach’s account, it is natural to ask whether stronger
criteria of inductive success are able to induce substantive short-term constraints. This line
of thought is pursued by Juhl (1994), who introduces the notion of speed-optimal convergence.
Juhl shows that the straight rule is speed-optimal in his sense and that there are inductive
methods that, although convergent, are not speed-optimal. Considered as a criterion of
inductive success, then, speed-optimality places more constraints on inductive methodology
than the Reichenbachian account, which requires mere convergence.

Importantly, however, Juhl’s analysis leaves open one of the questions that motivates it.
Namely, does requiring speed-optimal convergence of one’s inductive method induce signif-
icant short-term constraints? Or can arbitrary short-term behavior always be extended in

Date: June 28, 2019.
'Reichenbach (1938, 1949). Also see van Fraassen (2000).
2Salmon (1991).
3Salmon (1966). For a more contemporary take on some of the limitations of Reichenbach’s account, see
Huttegger (2017a, 3.1).
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a speed-optimal way? The primary aim of this paper is to answer these questions. Speed-
optimal convergence does give rise to short-term constraints; not all short-term behavior can
be extended without loss of speed-optimality. Rather surprisingly, the short-term constraint
that can be derived from the requirement of speed-optimal convergence is one of great in-
dependent interest in the philosophy of induction and learning: dynamic coherence. The
importance of dynamic coherence in the Reichenbachian frequency prediction framework,
which our results reveal, suggests some intriguing connections with probabilistic frameworks
for learning, in which dynamic coherence also plays an important role. We discuss these
connections in the paper’s penultimate section by drawing on Brian Skyrms’s work on proba-
bilistic learning. In short, in both frameworks, there appear to be deep connections between
convergence, speed-optimality, martingale-like structures, and dynamic coherence. Along the
way to proving the results that connect speed-optimality and dynamic coherence, we will
also answer another open question of Juhl’s by providing a complete characterization of the
speed-optimal inductive methods.*

The paper is organized as follows. We begin, in the next section, by presenting the standard
mathematical framework for induction on relative frequencies. In section 3, we discuss speed-
optimality and present our characterization result. Section 4 contains our main result: short-
term inductive behavior can be extended in a speed-optimal way if and only if it is dynamically
coherent. In section 5, we discuss the possible connections to probabilistic learning and
martingales, and we also pose some open questions. Section 6 concludes. Proofs are in the
Appendix.

2. MATHEMATICAL PRELIMINARIES

Let C be the collection of all binary sequences. Sequences in C will be denoted by variants
of o = (0’1, g2, )

Let S = J,,{0, 1}" be the collection of all finite length binary sequences, which we will call
strings. Generic elements of S will be denoted by variants of s = (si,...,s,). Let |s| denote
the length of the string s.

If o € Cand n € N, let ¢™ = (01, ...,0,,) € S denote the initial segment of o of length n.
Similarly, if s € S and n < |s|, then s = (s1, ..., s,) is the initial segment of s of length n. If
se€ S andac {0,1}, let sa = (s1,...,55,a). A sequence o (resp. string s') extends a string
sif oIl = s (resp. 15l = s).

Let Ceonv denote the collection of sequences in C such that the limiting relative frequency
of 1s exists. That is, if 0 € Ceony, then

(o) := lim g1t O
n—oo n
exists.

An inductive method ¢ is a function of S into [0,1]. The value ¢(s) is interpreted as a
conjecture about the limiting relative frequency of 1s based on an observation of s. Note
that inductive methods are just arbitrary functions from strings into the unit interval. In
particular, they are not assumed to have any probabilistic structure.

4We should note at the outset that although formal learning theory has made many advances in the years
since Juhl’s paper, including in the study of fast and efficient inductive methods (Kelly, 1996; Schulte, 1999a,b),
the results in that literature do not, to the best of our knowledge, provide immediate answers to the questions
raised above.
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An inductive method is called convergent if

lim ¢(o") = {(0)

n—oo

for all 0 € Ceony- The conjectures of convergent methods approach actual limiting relative
frequencies whenever the limits exist.

The straight rule sr is the inductive method defined by

37"(3) _ S1+ ... + S|s|
sl
for all s € §. The straight rule always conjectures the observed relative frequency of 1s. It
is immediate from the definitions of the relevant terms that the straight rule is convergent.
Conjectures equal to observed frequencies are guaranteed to converge to actual limiting rela-
tive frequencies whenever the limits exist. It is in this sense that the straight rule is supposed
to vindicate induction: we cannot be certain that regularities will emerge as observations
unfold—for all we know, the relative frequency of 1s may oscillate forever—but if there is
regularity, then the straight rule is sure to identify it in the limit.

The claim that convergence does not constrain short-term behavior can be demonstrated
as follows. Let sq,...,s, be an arbitrary, finite collection of strings, and let ry,...,7, be an
arbitrary collection of real numbers in [0,1]. Then, there is a convergent inductive method
¢ such that ¢(s;) = r; for all i € {1,...,n}. For example, let ¢ agree with sr on all strings
besides, perhaps, s1, ..., S,. Since conjectures on s1, ..., S, are irrelevant to ¢’s behavior in the
limit, convergence is consistent with arbitrarily divergent predictions in the short-term.

3. SPEED-OPTIMALITY

In response to Salmon’s (1966) criticisms of Reichenbach, Juhl (1994) raises the question
whether we can derive short-term constraints by requiring more of our inductive methods
than mere convergence. If, following Reichenbach, a primary aim of scientific inquiry is to
learn frequencies, then it seems reasonable to favor those inductive methods that converge
to the correct frequencies as quickly as possible. A natural way to make this idea precise is
as follows.

For all 0 € Ceony, € > 0, and convergent inductive methods ¢, ¢/, we write ¢ >, ¢’ if and
only if there exists m € N such that

|p(a™) —U(0)] < e < |¢'(c™) — £(0)| whenever n > m.

In other words, ¢ >, ¢’ holds if and only if ¢ is within, and forever remains within, e of
(o) strictly before ¢/. When ¢ >, ¢’ holds, we say that ¢ beats ¢’ on o, €.

We say that an inductive method ¢ is faster than another inductive method ¢’ if and only
if ¢ beats ¢’ on some o, ¢ and ¢’ does not beat ¢ on any o, . More formally:

Jdo € Ceonv, e >0 @ >4 ¢ and Vo € Ceony, Ve > 0: ¢ o @)

Note that the faster than relation is not complete. If ¢ beats ¢’ on some o, and ¢’ beats
¢ on some other ¢/, ¢, then neither ¢ nor ¢’ is faster than the other. So there is no fastest
inductive method. We will say that a convergent inductive method ¢ is speed-optimal if and
only if there does not exist a convergent inductive method ¢’ that is faster than ¢.

We now summarize the known facts about speed-optimal convergence and provide an
additional example of the property. An inductive method ¢ is called monotonic if and only
if

¢(s0) < o(s) < ¢(s1)
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for all s € S. In other words, monotonic methods do not decrease (resp. increase) their
conjectures about the frequency of 1s in response to observing an additional 1 (resp. 0).

Facts (Juhl, 1994). If an inductive method is convergent and monotonic, then it is speed-
optimal. Hence, the straight rule is speed-optimal. There exist non-monotonic, speed-optimal
inductive methods. There exist convergent inductive methods that are not speed-optimal.

Example 1. Say that an inductive method ¢ is Laplacian if there exist parameters a, ap > 0
such that for all s € S
plo) = 2H T s
|s| + a1 + ao

The straight rule is Laplacian with parameters a; = ag = 0. Intuitively, Laplacian methods
are biased straight rules, with the biases encoded by the parameters «; and as. It is a
straightforward exercise to show that Laplacian methods are convergent and monotonic, and
therefore speed-optimal.

In view of the partial results recorded in the Facts above, Juhl asks, “Exactly which
[convergent inductive methods] are speed-optimal?” (862). In the remainder of this section,
we provide an answer to this question. In the next section, we extend our answer to show
that speed-optimal convergence induces an interesting short-run constraint.

The formal definition of our characterizing condition for speed-optimality is somewhat
technical, but the idea behind it is simple and easy to explain: the conjectures of speed-
optimal methods are rigid in the sense that they cannot be changed without sacrificing speed.
Intuitively, our characterization result shows that if ¢’s conjecture at s can be changed without
the resulting method being any slower than ¢, then ¢ cannot have been speed-optimal in the
first place; and, conversely, if any change to ¢’s conjecture at s results in a slower inductive
method, then ¢ is speed-optimal.

We’ll now introduce the formal definition of rigidity. If we are given an inductive method
¢, a string s € S, and a sequence o € Ceony extending s, we write

€p,s,0 = SUP ’¢(0n) - E(U)‘7

n>|s|
which is the largest distance between ¢(c™) and ¢(o) after time |s|. We also define
L0 = [0(0) = €4,5,0, £(0) + €4,5.5] N[0, 1]
This is the smallest closed interval, centered at ¢(o), that contains ¢(c™) for all n > [s|.
Finally, we define
Ips= (] Ipse-

0€Cconv
One important thing to note is that, by the definitions just given, ¢(s) € I s for all ¢ and s.
So, Iy is always nonempty.

Let us take a moment to discuss how we think about I .. Intuitively, the closed interval
I, s represents ways that ¢’s conjecture at s can be changed without sacrificing speed. To see
this, suppose that z € I, s and define a new method ¢’ from ¢ by ¢'(s) = z and ¢'(t) = ¢(t)
for all t # s. The method ¢ is the result of setting ¢’s conjecture at s to z and leaving ¢’s
other conjectures unchanged. By unpacking the definitions above, we can see that ¢ is not
faster than ¢'. In particular, ¢ does not beat ¢’ on any o, e. To spell this out in a bit more
detail, consider any sequence o € Ceony that extends s (¢ cannot beat ¢’ on o, € if o is not

5This formula generalizes Laplace’s rule of succession, which is the case a1 = a2 = 1, and was developed
independently by Johnson (1924; 1932) and Carnap (1950; 1952). See Huttegger (2017a) for more details.
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an extension of s because ¢ and ¢’ make the same conjectures about all initial segments of
such a o, by construction). Now, ¢(s) is in the interval I s, by definition. The radius of
the interval I, s, is (by definition) the smallest € such that ¢(o™) is within € of ¢(0) at all
times n after |s|. Since ¢'(s) lies within this interval, we do not have

(™) = L(o)] < € < |¢/(s) — L(o)], Yn > |s]

for any €. So, since s is the only string on which the conjectures of ¢ and ¢’ differ, ¢ is
not faster than ¢’. Thus, the numbers x # ¢(s) in the interval Iy, are speed-preserving
alternatives to ¢(s) in the sense that changing ¢’s conjecture at s to x does not result in a
slower inductive method.

Rigid inductive methods do not have speed-preserving alternatives. Formally, we say that
an inductive method ¢ is rigid if Iy = {¢(s)} for all s € S. By way of illustrating the
concept, consider the following simple example of a non-rigid inductive method.

Example 2. Let ) make the same conjectures as the straight rule sr, with the exception that
¥ (00) = 0.5. Now consider s = 0. First, we have ¢(0) = sr(0) = 0 and ¥(01) = sr(01) = 0.5.
Next, every o € Ceony that extends s is such that o® € {00,01}, and therefore [0,0.5] C I 5 »
for every o € Ceonv extending s. It follows that [0,0.5] C Iy 5, so ¢ is not rigid.

The inductive method 1 is also not speed-optimal. To see this, let £ make the same
conjectures as v, with the exception that £(0) = 0.5. Then ¢ is faster than . Indeed, &
beats 1 on o, € if ¢ is the sequence that repeats 01 forever and € < 0.5. On the other hand, v
never beats £, since if ¢(0) = 0 is ever a better conjecture than £(0) = 0.5, this cannot yield
faster convergence for 1 since its next conjecture 1(00) or 1(01) will be 0.5.

Our first result is that rigidity characterizes speed-optimality.
Theorem 1. A convergent inductive method is speed-optimal if and only if it is rigid.

Theorem 1 implies that 1 in Example 2 is not speed-optimal, and the proof of the theorem
provides a general method for constructing methods that are faster than non-rigid methods
(one such faster inductive method that can be obtained from the proof is £). We will explore
rigidity further in the next section, but for now we turn to the main question posed in the
introduction.

4. DyNAMIC COHERENCE

The question that motivated us at the outset is whether requiring one’s inductive method to
be speed-optimally convergent places any substantive constraints on the method’s predictions
in the short-term. Juhl (1994) asks precisely this as an open question at the end of his paper:

Is any short-term behavior compatible with speed-optimality?...If a negative
answer to this question can be proved, then we will have established the exis-
tence of short-run norms on estimation rules. If non-trivial short-term norms
can be shown to be induced by the requirement of speed-optimality, then the
chief intuitive objection to Reichenbach’s attempts to ‘vindicate induction’
would be answered (862).

The aim of this section is to show that, indeed, a negative answer to the question in the
Juhl quote can be established. Speed-optimality does induce a non-trivial and, we will argue,
particularly interesting short-run inductive constraint.

Let us begin by formalizing the problem. Call a function f from a finite subset A of S into
[0,1] a partial inductive method. Partial inductive methods represent prediction behavior in
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the short run. Since a partial inductive method f is defined on a finite set, there is some long-
run time horizon n such that f is undefined for all strings of length more than n. An inductive
method ¢ : S — [0,1] is an extension of f : A — [0,1] if ¢(s) = f(s) for all s € A, and
we say that ¢ extends f. Now, the question whether any short-term behavior is compatible
with speed-optimality becomes: Is every partial inductive method extended by some speed-
optimal, convergent inductive method? If the answer to this question is negative, and it can
be shown that exactly those partial inductive methods with property P admit speed-optimal
extensions, then we say that speed-optimality induces the short-term constraint P. We will
now start working towards a result along these lines.

Our short-run constraint turns out to be closely related to a central idea in the philosophy
of induction, and in theorizing about rational learning more generally. The idea is that the
conjectures that a rational inductive method makes at a given time are constrained in a
particular way by the conjectures that it might make in the future. It is irrational, the idea
goes, to conjecture x now while at the same time expecting to conjecture y # x in the future
no matter what new data one observes between now and then.

This general idea has been formalized in a number of ways across several disciplines. In the
philosophy of probability and formal epistemology, the principle of reflection captures the
idea. It says that a rational agent’s conditional probability for A, given that her probability
for A will be z after learning some new evidence, must be equal to 2.% In the theory of finitely
additive probability, there is a great deal of research on the concept of non-conglomerability,
which occurs when an unconditional, finitely additive probability value does not reside in
the interval spanned by its conditional probability values, given the members of a countably
infinite partition.” In decision theory, Savage’s sure-thing principle says that if option 1 is
preferred to option 2 conditional on every member of some partition, then option 1 ought to
be preferred to option 2 unconditionally.® Similar principles of dynamic consistency appear
in the economics literature.” In statistics, results due to Lane and Sudderth (1984; 1985)
show that probability estimates are dynamically coherent (avoid Dutch book) just in case
they are contained within the closed, convex hull of possible future estimates.

The condition that we articulate is similar to all of these, and we borrow some terminology
accordingly. Let S, denote the collection of strings of length at most n. We say that a partial
inductive method f : S, — [0, 1] is dynamically coherent (or sometimes simply coherent) if
forall se S,_1

f(s0) < f(s) < f(s1) or f(s1) < f(s) < f(s0).

For example, dynamic coherence rules out the possibility of conjecturing 0.5 now and 0.6
after the next observation no matter what is observed. Put another way, the conjectures
of dynamically coherent methods are always contained within the interval spanned by the
conjectures that might be made after observing more data. We note that monotonic partial
inductive methods are coherent.

We now have the following preliminary result.

6yan Fraassen (1984, 1999); van Fraassen and Halpern (2016); Huttegger (2013, 2014).

"de Finetti (1972); Dubins (1975); Schervish et al. (1984); Kadane et al. (1996). A related phenomenon in
the theory of imprecise probability is dilation (Seidenfeld and Wasserman, 1993; Pedersen and Wheeler, 2014,
2015).

8Savage (1972). Gaifman (2013) discusses connections between some of the phenomena mentioned above.
Also see Gaifman and Vasudevan (2012).

9Epstein and Le Breton (1993); Epstein and Schneider (2003).
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Lemma 1. Let n € N and f : S, — [0,1]. Then there exists a speed-optimal convergent
inductive method that extends f if and only if f is dynamically coherent.

Lemma 1 provides a partial answer to the question that we raised above. There are partial
inductive methods that do not have speed-optimal extensions. In particular, any method that
fails to be dynamically coherent cannot be extended in a speed-optimal way. We see that
speed-optimality, then, induces dynamic coherence in the short-term for all partial inductive
methods with domains of the form S,,.

Removing this last proviso, so that the conclusion of Lemma 1 applies to all partial induc-
tive methods, requires a modest generalization of the definition of dynamic coherence. Given
s,t € S, we write s C ¢ (resp. s [ t) if ¢ is a (resp. strict) extension of s. Suppose A C S,,.
If s € S,,, we say that A covers s if for each ¢ of length n which extends s, there exists u € A
such that s C u C ¢. In other words, A covers s if a partial inductive method with domain
A is guaranteed to always make another conjecture after reaching s. If A covers s, we write
ca(s) for the set of t € A such that s C ¢ and there does not exist any v € A such that
s C u C t. That is, c4(s) is the set of possible “next times” a partial inductive method with
domain A will make a conjecture after reaching s.

Finally, we say that a partial inductive method f: A — [0,1] is dynamically coherent if

min f(t) < f(s) < max f(t
tecal(s) teca(s)
for all s € A such that A covers s. In other words, f is dynamically coherent if each (non-
final) conjecture that it makes is contained in the interval spanned by the set of possible next
conjectures. If A =S, then A covers every s € S,,_1 and ca(s) = {s0, s1}, so this is indeed
a generalization of the previous definition of dynamic coherence. We are now able to state
our main result.

Theorem 2. Let A be a finite subset of S and f : A — [0,1]. Then f extends to a speed-
optimal, convergent inductive method if and only if f is dynamically coherent.

This result provides a completely general answer to the question whether arbitrary short-
term behavior is compatible with speed-optimality: the partial inductive methods that have
speed-optimal extensions are exactly the dynamically coherent ones. In other words, speed-
optimality induces dynamic coherence in the short-term. By strengthening Reichenbach’s
convergence criterion so that speed-optimality is required, one can avoid the objection that
long-run requirements do not constrain short-term behavior. Dynamic coherence is necessary
(and sufficient) in the short-term if the long-run goal of speed-optimal convergence is to be
achieved.

Before concluding this section, we address a question that arises naturally in view of the
preceding results. Is there anything more precise to be said about the relation between
rigidity and dynamic coherence? There is. Roughly, we will show that rigidity on a larger
domain of binary sequences than Ceony 18 equivalent to dynamic coherence. In other words,
the two concepts are equivalent given the right domain of definition.

To show this let us say that an inductive method ¢ is dynamically coherent if the restriction
of ¢ to S, is dynamically coherent for all n. That is, ¢ is dynamically coherent if for all s € §

¢(s0) < ¢(s) < @(s1) or ¢(s1) < é(s) < p(s0).

Since each instance of dynamic coherence involves only finitely many values of ¢, Theorem
2 implies that if ¢ is a speed-optimal convergent inductive method, then ¢ is dynamically
coherent.
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Example 3. Return to Example 2. There, ¢ is not dynamically coherent because 1(0) =0
while ¢(00) = ¢(01) = 0.5. It follows from Theorem 2 that v is not speed-optimal, which we
also showed above by pointing out that £ is faster than .

Next, let C4 C C be the set of binary sequences o such that (¢(c"))nen converges to a
limit. Note that Cg 2 Ceonv if ¢ is convergent. For all s € S, let

I:'Z;,S = ﬂ I¢’sﬂ0—7
O'EC¢
and say that ¢ is rigid" if I} & = {¢(s)} for all s. Note that if ¢ is convergent, then I . C Iy
since Cyp 2 Ceonv-

Proposition 1. A convergent inductive method is dynamically coherent if and only if it is
rigid*.

Since a convergent method is rigid* if it is rigid, Proposition 1 shows that we can view
rigidity (or equivalently, speed-optimality) as nothing more than a slight strengthening of dy-
namic coherence. We do not currently know whether there are convergent inductive methods
that are rigid* but not rigid. This leaves open the possibility that the two rigidity concepts
are equivalent for convergent methods. In other words, it is an open question whether every
convergent, dynamically coherent inductive method is speed-optimal. We will discuss this
open question more in the next section.

5. DISCUSSION

In addition to discussing the problems that our analysis has left open, we would like to
conclude by drawing some connections between our results and probabilistic learning. This
will raise some interesting possibilities for future research.

One of the most distinguished proponents of dynamic coherence in settings where agents’
degrees of beliefs are represented by probability measures is Brian Skyrms.'? A key insight
of Skyrms’s work in this area is that dynamically coherent degrees of belief form martingales.
Martingales, in turn, have especially nice convergence properties. Using this fact, Skyrms
has shown that dynamic coherence implies (almost surely) convergent degrees of belief—and
this holds quite generally, without the assumption that beliefs change by Bayesian condition-
alization, for instance. An important philosophical consequence of this result, emphasized by
Skyrms, is that dynamic coherence rules out a particularly strong kind of inductive skepti-
cism (Skyrms, 2014).'! If one’s beliefs are dynamically coherent, and so convergent, then one
must expect that one’s own beliefs will exhibit regularities in the long-run. In the presence of
coherence, absolute skepticism—the view that nature exhibits no regularities whatsoever—is
untenable.

One question that Skyrms does not explicitly answer is whether dynamic coherence is
necessary for convergent degrees of belief in the probabilistic setting. In fact, it is not. This
follows from a small body of mathematical literature produced in the 1970s that, so far as we
know, has never been mentioned in philosophical work on convergence and coherence.'? This
literature shows that degrees of belief are convergent in Skyrms’s sense just in case they are
martingales in the limit, a property strictly weaker than being a martingale. So convergent

10g1kyrms (1987, 1990, 1996, 2006). Also see Huttegger (2013, 2014, 2015, 2017b).

H Also see Diaconis and Skyrms (2017, ch. 10).

121 particular, this follows from results in Blake (1978). Also see Blake (1970); Mucci (1973, 1976); Edgar
and Sucheston (1976, 1977).
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degrees of belief need not be dynamically coherent. In view of the fact that convergence
for degrees of belief is a strictly weaker property than dynamic coherence, the following
question arises naturally: Is there a compelling notion of convergence for degrees of belief
that strengthens Skyrms’s notion and does imply dynamic coherence in the probabilistic
sense? More specifically, is there a notion of speed-optimal convergence in the probabilistic
setting that is sufficient for dynamic coherence? To the best of our knowledge, these questions
are wide open.

These gaps in the probabilistic setting are, in a sense, dual to the ones that we have left
open in our paper. To show this, we begin by remarking that there is a connection to be made
with martingales in our framework as well. In our case, the relevant notion of martingale
comes not from probability theory but the theory of algorithmic randomness. An inductive
method ¢ is called a martingale if

o(5) = 20+ 9051

for all s € §. This notion of martingale was introduced by Jean Ville (1936; 1939) and plays
an important role in contemporary studies of random binary sequences.

It is clear from the definition that any inductive method that is a martingale is dynamically
coherent in the sense of the previous section. As we also indicated in the previous section,
our analysis has left open the question whether convergent martingales are necessarily speed-
optimal. More generally, an important question for future research in our framework is: Are
convergent, dynamically coherent inductive methods speed-optimal? Or, equivalently: Are
convergent, rigid* methods rigid?

In the probabilistic setting, then, there is the question whether a notion of speed-optimal
convergence is sufficient for coherence. And in the frequency prediction setting there is the
question whether speed-optimal convergence is necessary for coherence. These questions,
while independently interesting, are especially intriguing when considered together. We hope
that future research will not only answer the open questions raised here but also shed light on
unifying connections between induction in the probabilistic setting of Skyrms and induction
in the frequency prediction setting of Reichenbach.'4

6. CONCLUSION

In this paper, we have shown that a well-known objection to Reichenbach’s criterion of
inductive success—mere convergence—can be resisted by appealing to Juhl’s notion of speed-
optimality. Inductive methods that are speed-optimally convergent cannot behave arbitrarily
in the short run, unlike inductive methods that are merely convergent. In order to secure
speed-optimality, dynamic coherence is necessary. Dynamic coherence, in turn, is a substan-
tive short-term constraint on inductive inference of considerable philosophical interest. Of
special interest, to us, are the possible connections between this paper’s results and known

I3Nies (2009). Also see Shafer and Vovk (2005) and Bienvenu et al. (2009).

Map anonymous referee has suggested another promising avenue for future research. An alternative cri-
terion to speed-optimality, which also strengthens Reichenbach’s criterion of mere convergence, is the mini-
mization of mind changes. This criterion has already proved itself to be a powerful tool in formal learning
theory. See, for example, Kelly (1996) and Schulte (2018). It would be interesting to investigate the relation
between minimizing mind changes and dynamic coherence. For example, is dynamic coherence necessary in
order to minimize mind changes, as it is in order to secure speed-optimal convergence? We thank the referee
for suggesting this question.
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results concerning dynamic coherence for probabilistic learning. In the previous section, we
suggested several open questions that we hope future research will be able to settle.
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APPENDIX
PROOF OF THEOREM 1

First, suppose ¢ is a rigid convergent inductive method and ¢’ is any other convergent
inductive method. Then ¢(s) # ¢/(s) for some s. Since ¢ is rigid, there exists some o € Ceony
extending s such that ¢'(s) & I s ,. It follows that ey s, > €45, and so ¢’ cannot be faster
than ¢.

Conversely, suppose ¢ is a convergent inductive method which is not rigid. Then for some
s, Iy s = [a,b] is a nondegenerate interval.

Now let t € S be a minimal finite extension of s such that I s Z I (such a t exists since
¢ is convergent). Let u be ¢ with its last bit removed; then u is also an extension of s.

Define

o(t) () € Lps
r=1a o(t) < a
b o(t) > 0.

Now define ¢'(u) = x and ¢'(v) = ¢(v) for all v # u. Note that since x € I s and I s C Iy,
by minimality of ¢, =[¢ >, ¢'] for all 0 € Ceony and all € > 0. On the other hand, since
Iys € Iyy, there is some 0 € Ceony extending ¢ such that Iy o € 14+ ,. Note that ¢(t) € Iy 0.
So, if gf)(t) S I¢75, then gf)'(u) = (;5(75) S I¢7t’g = I¢/7t70 and so Iqb’,u,a = I¢>,t,a 2 I¢’S. If qb(t) < a,
then b & I, (otherwise Iy, , would contain all of Iy ;) and it follows that b & Iy ,, , since
we defined ¢'(u) = a. Similarly, if ¢(t) > b, then a &€ Iy 4 0.

So in all cases, we have Iy, » 2 Iy s, and in particular Iy , 5 # Ipu,e since Iy o 2 Ip,, 2
Iy 1t follows that Iy 5 C 1440, and therefore ey o < €44.0. S0, ¢ =5 ¢ for € = €y 4 0.
Thus ¢’ is faster than ¢, and ¢ is not speed-optimal. O

PRrROOF OF LEMMA 1

First, suppose that ¢ : S — [0, 1] is a convergent inductive method extending f and that
f is not dynamically coherent. Let s € §,,_1 witness that f is incoherent. We assume that
f(s0) < f(s) and f(sl) < f(s), as the other case is similar. Let a = max(f(s0), f(s1)). Then
[a, f(s)] = [a, ¢(s)] C I, since any o € Ceony extending s must have ol*I*1 € {50, s1}. Hence,
¢ is not rigid, and by Theorem 1, not speed-optimal.

Now suppose that f is dynamically coherent. Define ¢ : S — [0,1] by ¢(s) = f(s) if |s| < n

e S+ F(57)
_ i>n s + s"
¢(S) - |S’ -n + 1

if |s] > n. Then ¢ is convergent and extends f.

To prove that ¢ is rigid and hence speed-optimal, let s € S. If |s| > n, let o = s0000...
be the sequence obtained by extending s with all 0s. Then o € Ceony With £(0) = 0 and the
values ¢(0™) are monotone decreasing for m > |s|. It follows that I4 s , = [0, #(s)]. Similarly,
if we take 0/ = s1111..., then Iy 5o = [¢(s),1]. Thus Iy s C Iy o NIy = {P(s)} and so

Iys = {(s)}-
In the case |s| < n, we use a similar argument but with different sequences. Since ¢ extends
J and f is dynamically coherent, we can choose a1,as...,a,_|5 such that
o(s) > ¢(sa1) > p(saraz) > - > P(saraz ... an_s|)-
Taking o0 = sa1asy . ..a,_|50000..., then we have as before that the values ¢(c™) are mono-

tone decreasing for m > [s| and so Iy s, = [0, ¢(s)]. Similarly, we can choose b1, bz ..., b,
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such that
¢(s) < ¢(sbr) < P(sbrba) < --- < G(sbrby ... b))

and then o’ = sbiby...b,_|g1111... satisfies Iy s, = [¢(s),1]. Thus again, we have Iy, =
{o(s)}- O

PRrROOF OF THEOREM 2

The proof requires a preliminary lemma.

In the proof of the lemma, it will be convenient to say f is coherent at s, by which we
mean that f(s) does not witness a counterexample to dynamic coherence, as defined in the
main text.

Lemma 2. Let A C S, and let f : A — [0,
s € 8y, \ A and an extension g : AU {s} — [0,

1] be dynamically coherent. Then there exists
1] of f which is dynamically coherent.

Proof. Let s € S, \ A be minimal with respect to extension. If s is not the empty string, let
t € S, be such that (without loss of generality) s = t0. By minimality of s, we must have
t € A. Note that AU {s} will not cover any elements of S,, not covered by A, except possibly
t. Moreover, if A covers u and u # ¢, then cqys(u) = ca(u). So to check that an extension
g: AU{s} — [0,1] of f is coherent, we need only check coherence at s and at t.

To define g and prove it is coherent, we consider several cases.

First, suppose s is not covered by A. In that case, we define g(s) = f(t), or we define g(s)
arbitrarily if s is the empty string. In this case AU {s} still will not cover s. If AU{s} covers
t, note that s € cyuqs)(t) and so since g(s) = g(t), s witnesses the coherence of g at t.

Now suppose s is covered by A. Let I be the closed interval spanned by f(ca(s)). As long
as we define g(s) to be some element of I, then g will be coherent at s. So if s is the empty
string, we just define g(s) to be any element of I.

If s is not the empty string, first suppose that ¢ is not covered by A. Since s = t0 is covered
by A but t is not covered by A, there must be some u of length n extending ¢1 such that
there is no v € A with ¢t < v < w. But then this u witnesses that ¢ is still not covered by
AU {s}, so we may define g(s) to be any element of I.

Finally, suppose t is covered by A. Since f is coherent at t, there exist u,v € c4(t) such
that f(u) < f(t) < f(v). If u and v both extend ¢1, then u,v € ca(5(t) as well, so we can
define g(s) to be any element of I. If u extends t0 and v extends ¢1, then u € c4(s) and so
f(u) € I, so we can define g(s) = f(u). Then g is coherent at ¢ because s,v € cay(t) and
g(s) < g(t) < g(v). Similarly if u extends t1 and v extends t0, we can define g(s) = f(v).
Finally, if v and v both extend ¢0, then u,v € ca(s) and so f(t) € I since it is between f(u)
and f(v). So, we may define g(s) = f(t), and then g is coherent at ¢ since s € cyu(s)(t). O

Proof of Theorem 2. Let A C S,,. First, suppose f : A — [0,1] is dynamically coherent. If
A # S, then by Lemma 2, we can extend f to one more element of S, while preserving
its coherence. Iterating this, we may extend f to a partial inductive method ¢ : S,, — [0,1]
which is coherent. By Lemma 1, we can then extend g to a speed-optimal convergent inductive
method ¢ : § — [0, 1].

Conversely, suppose f is not dynamically coherent, and let s € A witness the incoherence
of f. Then A covers s and either mine. ,(s) f(t) > f(s) or maxye., () f(t) < f(s). We write
a = maXe.,(s) f(t) and assume that a < f(s) as the other case is similar.

Now suppose that ¢ is any convergent inductive method extending f. For any o € Ceony
extending s, we have 0™ € cy(s) for some m > |s|, since A covers s. We thus have ¢(c™) =
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f(e™) < a for some m > |s|. It follows that [a, f(s)] = [a, ¢(s)] C I4s. Hence ¢ is not rigid,
and by Theorem 1, not speed-optimal. ]

PROOF OF PROPOSITION 1

If a convergent inductive method ¢ : & — [0,1] is not dynamically coherent, then its
restriction to some S, is not dynamically coherent. The proof of Lemma 1, shows that ¢ is
not rigid, but actually the same argument (applied to all o € C4 and not just all o € Ceony)
shows that ¢ is not rigid*.

Conversely, suppose a convergent inductive method ¢ : & — [0, 1] is dynamically coherent.
Let s € S; we wish to show I} & = {#(s)}. Since ¢ is dynamically coherent, there is some a; €
{0,1} such that ¢(sa1) < ¢(s). There is similarly as € {0,1} such that ¢(sajaz) < ¢(say).
Continuing by induction, we obtain a sequence o extending s such that ¢(c™) < ¢(o™) for
all m,n > |s| such that m > n.

Since the values ¢(c™) form an eventually monotone sequence, they converge to some
limit, so o € Cg. Moreover, since ¢(c™) is decreasing for m > |s|, the right endpoint of I »
is ¢(s).

We may similarly construct a sequence o’ such that ¢(c’™) is increasing for m > |s| and so
the left endpoint of Iy 0 is ¢(s). Thus I5 C Iy 0 N1ss0 = {¢(s)} and so I} . = {é(s)},
as desired. O
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