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Mind and Machine:

At the Core of Any Black Box There Are Two
(Or More) White Boxes Required to Stay In

Lance Nizami’

This paper concerns the Black Box. It is not the engineer’s black box that can be opened to reveal its
mechanism, but rather one whose operations are inferred through input from (and output to) a
companion observer. We are observers ourselves, and we attempt to understand minds through
interactions with their host organisms. To this end, Ranulph Glanville followed W. Ross Ashby in
elaborating the Black Box. The Black Box and its observer together form a system having different
properties than either component alone, making it a greater Black Box to any further-external
observer. How far into this greater box can a further-external observer probe? The answer is crucial
to understanding Black Boxes, and so an answer is offered here. It employs von Foerster’s machines,
abstract entities having mechano-electrical bases, just like putative Black Boxes. Von Foerster
follows Turing, Ashby, E. F. Moore, and G. H. Mealy in recognizing archetype machines that he
calls trivial (predictable) and non-trivial (non-predictable). It is argued here that non-trivial
machines are the only true Black Boxes. But non-trivial machines can be concatenated from trivial
machines. Hence, the utter core of any greater Black Box (a non-trivial machine) may involve two
(or more) White Boxes (trivial machines). This is how an unpredictable thing emerges from
predictable parts. Interactions of White Boxes—of trivial machines—may be the ultimate source of
the mind.
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1. Introduction

This paper emanated from the 2019 Annual Conference of the American Society for
Cybernetics, its theme: Acting Cybernetically. Here, we will critically explore the
concepts of trivial and non-trivial machines. Understanding non-triviality is essential
to understanding how organisms can act cybernetically, that is, how they come to
understand and regulate their environments in a goal-oriented manner. Such actions
are taken to imply intelligence. Indeed, we attempt to quantify intelligence by
quantifying the behaviors—the conscious, willful acts, unlike mere physiological
reflexes—that themselves imply a mind in any entity besides the observer himself.
The observer’s own mind will be taken to be evident to him through his own
consciousness. Minds presumably exist within animals having recognizable brains.
Whether other species have minds will not be debated.

Of course, behavior itself can be difficult to quantify, especially when
experimental-research subjects cannot self-report. An example of reporting is the
confirming of particular sensations evoked by stimuli (Nizami, 2017). In animals,
primitive reporting (Yes/No, Left/Right, etc.) can be painstakingly conditioned. By-
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and-large, however, the animal remains a Black Box to the observer of behavior
(Nizami, 2017). The reason for the capital B’s will soon be explained.

Here, the attempts to understand a mind through sensory interaction with its host
organism are placed in relation to the notions of the Black Box and its observer as
proselytized by Ranulph Glanville (Glanville, 1982, 1997, 2007, 2009a, 2009b). The
black box of an engineer or a physicist is a physical object that can be opened, letting
its operation be comprehended. Nonetheless, there can be restrictions:

Both the power and the problem with modern scientific instrumentation are reflected in the term
black box, commonly used to describe the equipment. Today’s black-box instruments are highly
effective in making measurements and collecting data, enabling even novices to perform advanced
scientific experiments. But, at the same time, these black boxes are “opaque” (in that their inner
workings are often hidden and thus poorly understood by their users), and they are bland in
appearance (making it difficult for users to feel a sense of personal connection with scientific
activity). ... Most scientific instruments today are filled with little more than circuit boards and
integrated circuits. Even if they opened up the box and looked inside, most students (and even most
scientists) would understand very little about how the instrument works. (Resnick et al., 2000, p-9)

Opaqueness also occurs in software. Creel (2020, p. 4) observes: “As large-scale
computation becomes vital to many scientific disciplines, scientists express
dissatisfaction with the limited transparency it affords, especially when the new
computational methods seem less transparent than previous methods for performing
the same operation on smaller data sets ... .” As Creel emphasizes,

An algorithm is an abstract mathematical object. A computer program is a particular instantiation of
an algorithm. Because an algorithm can be multiply realized in code, knowing the algorithm does
not entail knowing the parts of a program or the relations between its parts. Programs that
successfully carry out the same algorithm can be composed of different arrangements of parts,
especially if they are written in different types of programing languages, whether procedural,
functional, object-oriented, or assembly. (Creel, 2020, p. 10)

The present paper will not describe the brain as hardware, or the mind (or whatever
phenomena generate it) as software. Indeed, we must abandon the popular but
unjustified computational and informational models of brain and mind, which have
fascinated so many for so long, but with so few convincing conclusions (Nizami,
2010, 2011, 2012, 2013, 2014, 2015, 2017, 2018, 2019). Further, as we will be
concerned with an organ that helps generate behavior, let us emphasize once again
what will be meant by behavior. Behavior will be taken as something that is done
consciously and intentionally, and by a living thing. This contrasts, for example, to
reflexes in living things, which would include the jerk of the lower leg when the knee
is tapped by a physician, or the startle response in which a person involuntarily jumps
upwards when suddenly exposed to an unexpected and very loud auditory stimulus, or
the tendency of some single-celled organisms to move towards light. Likewise, the
much-touted “behaviors” of Grey Walter’s “tortoises” (Walter, 1950; Holland, 2003)
are merely reflexes that are built into non-living things.
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2. The Black Box and Its Observer

Glanville (2007) notes that much of his discourse on the Black Box originates in the
writings of W. Ross Ashby (1956). Hence, we begin with Ashby. Ashby devotes a
chapter to the Black Box in his book An Introduction to Cybernetics (1956), a book
cited over 13,000 times (GoogleScholar)z, a profound citation-count at a time when
100 citations is considered significant. (For a brief summary of Ashby’s importance to
science, see Ramage and Shipp, 2009.) Ashby’s 1961 edition is more readily
available, and is cited here. Now, if the machine of the engineer is incomprehensible
(or the programming by the computer scientist is undecipherable), then the black box
becomes a Black Box (Ashby, 1961). It is now understood only through inputs given
by, and outputs noted by, an observer (Ashby, 1961). Indeed, this input/output cycle
may never reveal the Black Box’s physical parts, even though the Box’s mechanism, if
defined as a procedure for achieving a goal, might be inferable. For example, a
mechanical realization (i.e., physical manifestation) of a mechanism may be
indistinguishable from an electrical one (Ashby, 1961). Ashby (1961) gives examples
of this, using mechanism in its streetwise definition as a physical realization of a
procedure. Ashby notes that we can

cover the central parts of the mechanism and the two machines are indistinguishable throughout an
infinite number of tests applied. Machines can thus show the profoundest similarities in behavior
while being, from other points of view, utterly dissimilar. (Ashby, 1961, p. 96)

Following Ashby, we might imagine machines that consist of both mechanical
and electrical components, mechano-electrical systems whose actual mechanisms-as-
physical-realizations are indistinguishable, one from another, through input and
output. As such, mechanisms become irrelevant, to a logical limit taken by Glanville:
“You cannot see inside the Black Box (there is nothing to see: there is nothing
there—it is an explanatory principle)” (Glanville, 1997, p. 2; italics added). That is:
“Our Black Box is not a physical object, but a concept ... . It has no substance, and so
can neither be opened, nor does it have an inside” (Glanville, 2009b, p. 154). The
Black Box is now a procedure for achieving a goal. However, Glanville (1982, 2007,
2009a, 2009b) contradicts himself by maintaining that the Black Box has a
mechanism, implied to be a mechano-electrical realization.

How can all this be? Glanville’s Black Box sounds suspiciously like a mind. No-
one can directly observe their own mind, or anybody/anything else’s. Mind is an
explanatory principle for what we call behavior. Nonetheless, mind emerges from a
mechano-electrical realization which is the animal body, particularly the brain. This
paper explores the notion of the mind as a Black Box.

2. https://scholar.google.com/scholar?hl=en&as _sdt=0%2C5&q=w-+ross+ashby&btnG=
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3. Whitening the Black Box

Let us clarify Glanville’s notion of the Black Box as a phenomenon or principle or
concept. First, let us assume that the Black Box is spatially located, thereby avoiding a
universal Black Box that might be named God or Nature. Hence there must be a
localized mechano-clectrical system that is the basis for (i.e., that produces) the Black
Box. For example, the brain with its extended network of neurons and blood vessels
indisputably produces the mind, whose existence is evident through conscious,
intentional behavior. This specific relation of brain, mind, and behavior appeared in the
literature almost a century ago (Patrick, 1922) and probably dates to much earlier
times. The mind is not independent of its host body; likewise, the Black Box is not
independent of its mechano-electrical basis.

Figure 1 schematizes the Black Box and its observer. The observer makes
inferences about the Black Box by presenting stimuli, the inputs, and recording the
Box’s consequent responses, the outputs (Ashby, 1961; Glanville, 1982, 1997, 2007,
2009a, 2009b). Glanville (1982, p. 1) states that the observer gains a functional
description of the Black Box. That is, “The ‘functional description’ ... describes how
the observer understands the action of the Black Box™ (Glanville, 1997, p. 2). With the
box being closed, the functional description is: the mechanism as a procedure for
achieving a goal. The procedure arises from the mechano-electrical basis. In inferring
the procedure, that is, the conceptual transformations happening within the Black Box,
the Black Box is whitened (Glanville, 1982). Practical examples of whitening through
input/output might include an experimental psychologist studying the behavior of a
human or an animal, or a physiologist making a noninvasive electrical recording
(Nizami, 2015, 2017). As the reader might suspect, an experimenter’s whitening of a
research subject may involve a likewise whitening of the experimenter, from the
research subject’s perspective, as will now be described.

4. Observer as Black Box, Black Box as Observer

Whitening of the Black Box becomes more intriguing yet. Glanville (1982, 1997,
2009a, 2009b) declares that the observer can be considered a Black Box, from the
Black Box’s viewpoint. Consider that an output of the Black Box is an input to its
observer; an input to the Black Box is an output from the observer. Hence, “we come
to assume that the Black Box also makes a functional description of its interaction
with the observer” (Glanville, 1997, p. 2). The Black Box whitens its observer, by
acting as an observer (Glanville, 1982).

Imagine now the mind as a Black Box, probed through input and output. We call
this action psychiatry or psychology. But each psychiatrist or psychologist has their
own mind, which itself is a Black Box! Those particular Black Boxes regulate
everything that those particular observers say and do; the observers themselves are
Black Boxes. And indeed, W. Ross Ashby (1961) and a contemporary of his, E. F.
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Moore (1956), both imply that a psychiatrist and a patient are interacting Black Boxes.
When the psychiatrist (or the experimental psychologist) probes the patient (or the
research subject), each participant (if awake and aware) is an observer, who regards
the other as a Black Box. Such interacting parts can be regarded, in total, as a system.
Ashby (1961, p. 87) thinks of experiments themselves as systems: “By thus acting on
the Box, and by allowing the Box to affect him and his recording apparatus, the
experimenter is coupling himself to the Box, so that the two together form a system
with feedback.”

Observer

Figure 1. The Glanville notion of the Black Box and its observer.
The observer sends inputs to the Box, and receives outputs from it.

5. Black Box + Observer = System: Inside Every White Box There Are Two Black
Boxes Trying to Get Out

In Ashby’s system, experimenter and Box each feed back to the other, each becoming
both observer and Black Box. The total system, let us call it the BlackBox/observer
system, has different properties than either the Black Box or the observer alone: “The
Black Box and the observer act together to constitute a (new) whole” (Glanville,
2009a, p. 1; see Glanville, 2009b, p. 161). This new whole is called the White Box
from 1982 onwards (Glanville, 1982-2009b).

Figure 2 schematizes the White Box. If now the observer himself is taken to be a
Black Box, then the title of Glanville’s paper of 1982 becomes comprehensible:
“Inside every White Box there are two Black Boxes trying to get out.” According to
Glanville (1982, 2009a, 2009b) the White Box, as a system, is nonetheless Black to
any further-external observer.

6. Interim (1): Trivial Machines
To further explicate the relation of mind to Black Box, it is necessary to digress into a

definition of the machine. Machines were introduced in section 2, as mechano-
electrical devices. However, a product of a mechano-electrical basis—a product that is
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an abstract entity such as the Glanville Black Box—can itself be a machine as
characterized by von Foerster (2003, p. 207, italics added): “The term ‘machine’ in
this context refers to well-defined functional properties of an abstract entity rather
than to an assembly of cogwheels, buttons and levers, although such assemblies may
represent embodiments of these abstract functional entities [machines].” As an
abstract entity, consider the mind; among its functional properties, consider
perception, itself inseparable from consciousness, and consider also the capabilities
embedded in consciousness, such as remembering, calculating, and reason-based
decision-making. Machine = Black Box = Mechanism as a procedure for achieving a
goal.

Observer

The BlackBox/observer system,
‘whitened’ on the inside

Figure 2. The Black Box and its observer mutually whiten through interaction,
making a system (dashed boundary) that is whitened inside.

Von Foerster (1984, 2003) recognizes two types of machines: trivial, and non-
trivial. As he explains,

A trivial machine is characterized by a one-to-one relationship between its “input” (stimulus, cause)
and its “output” (response, effect). This invariant relationship is “the machine”. Since this
relationship is determined once and for all, this is a deterministic system; and since an output once
observed for a given input will be the same for the same input given later, this is also a predictable
system. (von Foerster, 2003, p. 208; italics added)

Algebra-wise, von Foerster explains that for input x and output y, “a y once observed
for a given x will be the same for the same x given later” (von Foerster, 1984, p. 9).
According to von Foerster, “one simply has to record for each given x the
corresponding y. This record is then ‘the machine’” (von Foerster, 1984, p. 10).

An example of a trivial machine is provided by von Foerster (1984, p. 10) in the
form of a table in which he assigns an output y to each of four possible inputs x. The
x’s are the letters A, U, S, and T, and the respective outputs y are 0, 1, 1, and 0. Von
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Foerster (2003, p. 208) notes that “All machines we construct and buy are, hopefully,
trivial machines,” that is, they are predictable. '

7. Interim (2): Internal States

In reality, not all machines are trivial. A physical machine, as Ashby (1961) points
out, can have internal conditions or configurations, which he calls states. Let us
likewise assume that the products of physical machines can also have states, products
such as conceptual machines, such as Black Boxes. Ashby notes “that certain states of
the Box cannot be returned to at will” (Ashby, 1961, p. 92), which (he declares) “is
very common in practice. Such states will be called inaccessible” (Ashby, 1961, p. 92;
original boldface). Ashby continues: “Essentially the same phenomenon occurs when
experiments are conducted on an organism that /earns; for as time goes on it leaves its
‘unsophisticated’ initial state, and no simple manipulation can get it back to this state”
(p. 92; italics added). Learning presumably means changes in abilities and knowledge,
reflected in changes of behavior.

Here, mind is machine is Black Box. Learning is presumably concurrent with
changes in the mind’s mechano-electrical basis, the brain and its collaterals; changes
in brain-states manifest as changes in mind-states. Thanks to learning, a response to a
stimulus can differ from a previous response, and in unexpected ways. When a
stimulus is a question, for example, von Foerster (2003, p. 311) notes that a child can
offer a correct (because carefully trained) answer, or a correct (but unexpected)
answer, or an answer that is intentionally capricious! Minds are not trivial machines.
Note well that we are not claiming that brains or minds are algorithms or that brains or
minds are computers, unlike other authors (as reviewed, e.g., in Piccinini &
Scarantino, 2011).

We must therefore ask whether the observer of any Black Box can give input, and
record output, without changing the Box’s possible output to the next input. That is,
can the Black Box be observed without being perturbed? Likewise, can a Black Box’s
output be observed by, but not perturb, the observer?

8. Interim (3): Sequential Machines

Conceivably, there are perturbable machines. Such devices were envisioned long
before Ashby (1961). Indeed, Turing (1937) conceives of a machine whose input and/
or output can change the response to the next input. Turing describes the machine only
in terms of its process, as follows: The machine has a finite number of internal states,
called conditions or configurations. The machine accepts an input in the form of a
continuous tape, divided into equal segments, each segment either containing a symbol
or being blank. The machine scans one tape segment at a time; the scanned symbol (or
blank), along with the machine’s current configuration, altogether determine the
impending response. That response can include erasing a symbol from the tape; or
printing (or not), on a blank segment of the tape, a symbol consisting of a digit (0 or 1)
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or some other symbol; or shifting the tape one segment to the left or one segment to the
right (Turing, 1937).

Turing’s machine exemplifies what came to be known as sequential machines. One
class of sequential machines was described by Moore (1956). Moore, like Turing, used
operational descriptions:

The state that the machine will be in at a given time [the current state] depends only on its state at the
previous time and the previous input symbol. The output symbol at a given time depends only on the
current state of the machine. (Moore, 1956, p. 133)

In other words, an input evokes an output, which is nonetheless determined only
by the present internal state. That state then changes to another state, determined by
whatever was the input and the internal state. Each internal state represents a
capability to do something (to the inputs), that is, a readiness of the system.

Moore (1956) provides an example of a sequential machine, in the form of two
tables that relate inputs, outputs, and internal states (Moore, 1956, p. 134). Let us
presently symbolize an input by x. In Moore’s paper, the identities of the inputs were
also the identities of the possible outputs; but for the sake of distinction, let us presently
symbolize an output by y. One of Moore’s tables shows the present output y of the
machine, as a function of the present state. Let us symbolize the latter by z. Let y=¥(z)
denote the relation between y and z, and let it be realized by the trivial machine called
the Output Generator. The second of Moore’s two tables shows “the present state of
the machine ... as a function of the previous state and the previous input” (Moore,
1956, p. 134). Let us call Moore’s previous state z_; and the previous input x_;. Let z_;
and z be realized by the trivial machine called the State Generator that obeys the
relation z=Q(x_j, 2_7)-

This algebra is truly necessary, in order to link Moore’s concepts to other important
concepts, namely those of von Foerster (1984, 2003), and those of Mealy (1955), the
possible origin of von Foerster’s ideas, all of which is discussed below. But back to
Moore (1956): Moore uses four possible internal states, which he labels ¢;, ¢,, 3, and
q4 and two possible inputs, x=0 or x=1, the two digits used in binary computation.
Recall from above that Moore explains a sequential machine by using two tables that
relate inputs, outputs, and internal states. Presently, for the sake of comprehensibility,
Moore’s two tables have been re-arranged into five smaller tables. Four show z as a
function of x_; for the four possible values of z_; (namely, ¢q;, ¢;, g3, and q,); the
remaining table shows y as a function of z. The five tables have then been collected.
Table 1 shows that collection.

Consider an example of how the Moore sequential machine works. First, note from
Table 1 that the present internal state z=¢, could have arisen from the previous state
7.;=q3 and the previous input x_;= 0 or 1, or alternatively from the previous state
z.7=q; and the previous input x_;=0. Regardless, a new input x=0 or x=1 evokes the
output y=1, after which z=¢, becomes z_;=q, and either x=0 (if having been given)
becomes x_;=0, or x=1 (if having been given) becomes x_;=1. By coincidence, the
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internal state is now z=¢, (according to Table 1) regardless of what value was x. A
subsequent input x=0 or x=1 will result in y=0; hence, the sequence continues.

Table 1: Relations in E. F. Moore’s (1956)
Example of a Sequential Machine.

Z,=q Z,= Qe Z,=9; Z =Yy z |y

0 |94 0 19 0 ]9 019 G| 0
119 119 119 119 94 | O
Qs | 1

Note: The four leftmost tables describe the State Generator, which fulfils z=Q(x_j, z_;)
for internal states q;, 42, 43, and g, Whichever of those is the current internal state
determines the output y of the Output Generator, which obeys y=Y¥(z) according to
the rightmost table.

In Moore’s scheme, a particular output can result from different internal states;
further, a particular internal state can result from different inputs. What we presently
call the State Generator and the Output Generator are deterministic (i.€., non-random),
and they are predictable insofar as an outside observer supplying input and recording
output can gain increasing confidence about each generator’s operating rules. Both
generators are therefore trivial machines. This is a crucial distinction, as follows.

Moore’s sequential machine is the concatenation of three things: two trivial
machines, and a register of the current internal state, a register which is also a trivial
machine. The overall result, however, is a non-trivial machine, meaning it is non-
predictable. That is, the whole is more than the sum of its trivial parts. This seems to
be a case of emergence (Nizami, 2017, 2018). How, then, would an observer of the
sequential machine (rather than its maker) gain the data to fill Moore’s two tables?
Moore (1956, p. 132) introduces “a somewhat artificial restriction that will be
imposed on the action of the experimenter. He is not allowed to open up the machine
and look at the parts to see what they are and how they are interconnected.” That is,
“the machines under consideration are always just what are sometimes called ‘black
boxes’, described in terms of their inputs and outputs, but no internal construction
information can be gained” (Moore, 1956, p. 132).

Moore himself offers no graphical illustration of a sequential machine as a Black
Box. Nonetheless, such an illustration can be imagined. Figure 3 shows a sequential
machine configured as a Black Box, one whose inventor must know that it contains
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three trivial machines. Their operations follow the relations expressed in tables such
as Moore’s. The box can be imagined as having a four-step input/output cycle. Figures
4, 5, 6, and 7 show that cycle.

9. Interim (4): Non-Trivial Machines

Sequential machines have broad importance. They are cases of what Heinz von
Foerster (1984, 2003) would later call non-trivial machines. Like Moore (1956), von
Foerster (1984, p. 11) provides an example in the form of two tables. Let us use z' to
denote the state of z which occurs after y is output. The tables describe the output y
and the next state z' in terms of the input x, but for only two possible internal states z,
here dubbed I or II. Such a machine is the simplest non-trivial machine; if there was
only a single internal state, then a particular input would always evoke a particular
pre-determined, unchanging output, hence the machine would be trivial. Von Foerster
nonetheless uses the same examples of input and output for his non-trivial machine as
he uses for his trivial machine (see above): x=A, U, S,or T,and y=0or 1.

The entries in von Foerster’s two tables (von Foerster, 1984) can be re-ordered,
making four new tables, two for each of z=I and z=II. Two of the tables show y as a
function of x, and two of the tables show z' as a function of x. All four tables can be
collected. Table 2 shows that collection. The trivial machine that realizes the relation
expressing y as a function of x is the equivalent of Moore’s Output Generator, and the
trivial machine that realizes the relation expressing z' as a function of x is the
equivalent of Moore’s State Generator (Fig. 3). But von Foerster respectively calls
them the Driving Function and the State Function, respectively.

OQutput Generator

1l y=Y(2)
t

X —p | — @ —>y

State
Generator

z=Q(x-1.Z-1)

Figure 3. A Moore (1956) sequential machine. The boxes and lines and the circle represent hypothetical
mechano-electrical parts. The lines with arrows also represent the parts’ operating relations, which need
not occur simultaneously, although they are shown for illustration purposes as happening simultaneously.
The operation of the parts actually follows the cycle shown in Figs. 4, 5, 6, and 7. The internal state z
actively affects the Output Generator, which fulfils y=Y(z), and the State Generator, which fulfils
=0(x_}, z.;)- Q produces a new state z after y is output by ¥, which occurs after ¥ is prompted by the
input x (see Figs. 4, 5, 6, and 7).
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Output Generator

y=Y(z)

y 4
State ’
Generator

z=Q(x.4.2-1)

Figure 4. The operation of a Moore sequential machine. Here in Step 1 of the cycle, the internal state z is
determined by the previous input x_; and the previous state z_;, and moves to an internal register (circle).

Output Generator

y=Y(z)
?

®

‘

State
Generator

Z=Q[X-1.Z-1]

A

Figure 5. Step 2 of the cycle of a Moore sequential machine. Here, the internal state z
actively affects the Output Generator ¥ and the State Generator Q prior to input.

Von Foerster’s (1984) machine conceivably follows a four-step operational cycle
like the ones shown in Figs. 4, 5, 6, and 7 for Moore’s machine. Figures 8, 9, 10, and 11
show a hypothetical four-step operational cycle of a von Foerster machine. But the
machines of Moore (1956) and of von Foerster (1984, 2003) profoundly differ in one
particular detail. To Moore (1956), the input x has no bearing on the immediate
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resulting output y (Figs. 6 and 7), only on its successor by way of the internal state.
Moore’s y is evoked by x, but is only indirectly a function of x by way of the internal
state. In contrast, in von Foerster’s (1984, 2003) machine, x directly affects y, and x
also indirectly affects the next output, by way of the internal state.
As an example of how the von Foerster non-trivial machine works, note from
Table 2 that when z=II and an input x=U occurs then the output y=0 is evoked and the
internal state changes to z'=II, which coincidentally is the same state as before. |

Output Generator

(" y=Y(z)
T

bl - ©

v

State
Generator

z=Q(x.:.2-4)

Figure 6. Step 3 of the cycle of a Moore sequential machine. Here, x is input,
affecting the Output Generator ¥(z) and the State Generator Q(x_j, z_j).

Qutput Generator

y=Y(z)
¢

© b

v

State
Generator

z=Q[x-1,z-1]

Figure 7. Step 4 of the cycle of a Moore sequential machine,
in which the Output Generator ¥(z) produces the output y.
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10. Interim (5): the Mealy Machine, a Realization of Machine as Mechano-
Electrical Device

In describing his non-trivial machine, von Foerster (1984, 2003) presents examples of
what has become known as a Mealy Machine, after George H. Mealy (1955), a
contemporary of Ashby and Moore. Mealy’s archetype machine (Mealy, 1955)

has 7 binary-valued input variables, x;, X, ..., X,,; m binary-valued output variables, y;, y;, ..., Vi §
binary-valued excitation variables, g;, 7. ..., ¢, ; and s binary-valued state variables, q;, g5, ...,
4> corresponding one-to-one with the excitation variables. (Mealy, 1955, p. 1050)

In the present notation, z={ g, q5, ..., g} and z'={ 7 G ---» G} Mealy’s choice of
the word excitation will be explained shortly. Mealy’s machines are realized as
electrical circuits, although they can contain mechano-electrical parts such as the
relays of Mealy’s era.

Table 2: Relations in von Foerster’s example of a Non-Trivial Machine.

z=1 z=1I z=1 z=1I
X |y X |y x | 2' % | =
AlO A1l Al 1 Al l
Ul1 ulo Ul I U | 1II
S 11 S10 S| I S § 1
T |G T |1 T | 1I T | II

Note: The two left-hand tables describe the Driving Function y=Y(x, z), and the two
right-hand tables describe the State Function z'=Z(x ,z), for internal states I and II.
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Driving Function

y=Y(x,z)

?

v

State Function
z'=Q(x,2)

R R R R SRR,
Figure 8. The operation of von Foerster’s Non-Trivial Machine (1984), interpreted as a cycle. The non-
trivial machine involves two trivial machines, one fulfilling the Driving Function and the other fulfilling
the State Function, the respective operational equivalents of the Output Generator and the State Generator
in Fig. 3. The register for the internal state z may also be considered a trivial machine. In the Moore
machine illustrated in Figs. 4-7, however, y is a direct function only of z; here, in contrast, y is a direct
function of both z and x. The above illustration shows Step 1 of the cycle of the von Foerster non-trivial
machine, in which the internal state z actively affects the Driving Function ¥(x, z) and the State Function
0(x, z) prior to input. This is the same as Step 2 of the Moore machine (Fig. 5), the difference in the order
being caused by Moore’s emphasis on the internal state’s dependence on the previous values of the input
x and the internal state z.

Driving Function

r’ y=Y(x,z)
?
i AN O

v

State Function
z'=Q(x,2)

Figure 9. Step 2 of the cycle of von Foerster’s non-trivial machine. Here, x is input, affecting the Driving
Function ¥(x, z) and the State Function Q(x, z).
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Driving Function

y=Y(x,2)

T

O, >
y

State Function
2z’ =Q(x,2)

Figure 10. Step 3 of the cycle of von Foerster’s non-trivial machine.
The Output Generator ¥(x, z) produces the output y.

Mealy’s machine, like those of Moore and of von Foerster, is best explained
through examples. Mealy (1955) offers several; the operating relations of one of the
simpler examples is reproduced here. Table 3 shows those relations. The input x, the
output y, and the various internal states ¢; and g; are all assigned values of 0 or 1.
Mealy explains his own use of Os and 1s as follows: he wishes to design an electrical
circuit in which “Any lead or device within the circuit may assume, at any instant of
time, only one of two conditions, such as high or low voltage, pulse or no pulse”
(Mealy, 1955, p. 1047; italics in original). A pulse may be of voltage or of current.

Driving Function

y=Y(x,z)

zl
State Function J

z'=Q(x,2)

Figure 11. Step 4 of the cycle of von Foerster’s non-trivial machine.
The next internal state, z', is determined by the just-given input x and
the current internal state z, and it moves to the internal register (circle).
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There is a further condition: “The behavior of the circuit may be completely
described by the consideration of conditions in the circuit at equally-spaced instants
in time” (Mealy, 1955, p. 1047, italics in original). Altogether, this statement along
with its predecessor define a synchronous circuit. Mealy clarifies this term:

(1). There is a so-called clock which supplies timing pulses to the circuit. (2). Inputs and outputs are
in the form of voltage or current pulses which occur synchronously with pulses from the clock.
(3). The repetition rate of the clock pulses may be varied, within limits, without affecting the correct
operation of the circuit, so long as input pulses remain synchronized with the clock. (Mealy, 1955,
p. 1047)

Present-day electronic devices may contain circuits that are synchronous and those
that are not, called asynchronous circuits. The distinction between synchronous and
asynchronous machines is important because it is non-trivial to the actual function
(and hence the design) of the machines.

Mealy, having given his pre-conditions, now provides

an abstract definition of a switching circuit: 4 switching circuit is a circuit with a finite number of
inputs, outputs, and (internal) states. Its present output combination and next state are determined
uniquely by the present input combination and the present state. If the circuit has one internal state,
we call it a combinational circuit; otherwise, we call it a sequential circuit. (Mealy, 1955, p. 1049;
italics in original)

We might ask what allows a present state that is physically distinguished from a next
state. Mealy’s answer is that circuits can contain delay elements, where “The unit of
delay is the interval between the start of two successive clock pulses” (Mealy, 1955,
p. 1048). The lines of electrical conductance that contain delay elements are delay
lines. The excitation variables are assigned as inputs of delay lines; the state variables
are assigned as outputs of delay lines. Therefore the input of a delay line is its output
one clock cycle later; each ¢;’s next value is g;, where both variables manifest as
pulses (indicated by 1) or not (indicated by 0).

Mealy (1955) then extends his concepts to asynchronous circuits, where

We agree (1) that no clock will be used and (2) that “I” in switching algebra will correspond to a high
voltage or current, an energized relay coil, or operated relay contacts. We must now pay careful
attention to circuit conditions at every instant of time. (Mealy, 1955, p. 1067; italics in original)

Here, the difference between a present state of 1 and a consequent next state of 1 is the
difference between a relay being operated and a relay being energized to allow
imminent operation. Further details are unnecessary here, and the reader is left to
peruse the details in Mealy (1955), heeding his admonition (Mealy, p. 1071) that
tables of relations such as Table 3 might not “always be used for both a synchronous
and an asynchronous realization of a given circuit”. Asynchronous circuits in
particular are dealt with by Huffman (1954a, 1954b), who both Moore (1956) and
Mealy (1955) cite as being highly relevant to their own work. Finally, note well that
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the relations in Table 3 represent a particular example of equations that arise from
switching algebra for the design of sequential circuits.

11. Mind as Black Box

To Moore, scientists themselves belong to systems: “The experiment may not be
completely isolated from the experimenter, i.c., the experimenter may be
experimenting on a system of which he himself is a part” (Moore, 1956, p. 133).
Hence, “The experimenter [who probes the machine] could be described as another
sequential machine, also specified in terms of its internal states, inputs, and outputs”
(Moore, 1956, p. 135). That is: “The output of the machine being experimented on
would serve as input to the experimenter and vice versa” (Moore, 1956, p. 135).

Further logic-wise (but earlier text-wise), Moore (1956, p. 132) notes that a
psychiatrist experiments on a patient, giving inputs and receiving outputs. Moore’s
Black Box is evidently the mind. As Moore declares (1956, p. 132), “The Black Box
restriction corresponds approximately to the distinction between the psychiatrist and
the brain surgeon.” Moore explains that the surgeon can alter the brain, but only the
psychiatrist can alter the mind. Modern surgeons might disagree; after all, the mind
arises from the brain, and the brain is a mechano-electrical device that is organic and
that matures with time, and that can be altered. But surgery that is intended to affect the
mind will perforce have unknown side-effects, and is usually beyond the surgeon’s
remit; such behavior-altering practices as frontal lobotomies and electroshock therapy,
for example, have long been discredited.

Table 3: An Example of Relations in a Mealy Sequential Machine.

a1 92 x q, q, y
0 0 0 1 0 1
0 0 1 1 0 1
0 1 0 0 0 0
0 | 1 0 0 0
1 0 0 1 1 0
] 0 1 0 1 0
1 1 0 0 0 0
1 1 1 0 1 0

Note: This single table expresses both the Driving Function y=¥(x, z) and the State
Function z'=Z(x,z). Recall that z consists of g; and ¢, and that z' likewise consists
of g; and g,. The three left-hand columns describe all possible combinations of
7={q}, 9>} and x, and the right-hand three columns describe the consequent values
of yand z'={ gq;, g,} for one particular imagined electrical circuit.
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Regardless, for a sequential machine to be a mind, it would need to be capable of
an enormous number of possible operations. Many of those operations, if not all,
would be learned. How many such operations are possible? The answer is
“surprisingly many,” but the necessary explanation is elaborate and must be left to
later work.

12. How a Further-External Observer Would Interact With the System

Section 7 introduced the question of whether the observer of any Black Box can give
input, and record output, without changing the box’s possible output to the next input.
That is, can the Black Box be observed without being perturbed and, likewise, can a
Black Box’s output be observed by, but not perturb, the observer? The above review of
the concept of machines allows these questions to be answered.

Consider the following thought experiment, which may be considered a proof-by-
negation. Recall now the system that is the White Box of Fig. 2. Let us assume that the
Black Box can be probed by its observer without being perturbed. Let us further (but
only momentarily) assume that understanding something does not require perturbing
it. Suppose also that the observer remains unperturbed by the output from the Black
Box. Altogether, the BlackBox/observer system is unaltered by its internal
interactions. Hence, the degree to which the observer and the Black Box understand
cach other will be limited only by the number of possible inputs from each to the
other. The Black Box and its observer can fully whiten each other in time. They are
trivial machines.

Imagine now a further-external observer who interacts with the system that is the
White Box of Fig. 2. If the core Black Box and its observer are indeed trivial
machines, then if the system that they form is probed by a further-external observer,
the latter can ignore the box’s immediate observer and directly interrogate the box.
This direct access applies by induction to all further-outward observers. And
Glanville did illustrate this exact situation (Glanville, 1982; illustration omitted). The
combination of any observer with the core Black Box forms a system that is no
different than the combination of any other observer with the core Black Box, unless
the observers themselves differ.

Consider now the alternative. Imagine that the core Black Box cannot be probed
by its immediate observer without being perturbed, and that, similarly, the immediate
observer cannot receive output from the core Black Box without changing. Box and
observer are now non-trivial machines. But a non-trivial machine concatenated with a
non-trivial machine is, perforce, a non-trivial machine. That is, the core Black Box
and its immediate observer are now truly entangled; no further-outward observer can
tell them apart and hence ignore the immediate observer. The core BlackBox/observer
system, Glanville’s White Box (Fig. 2), is now a Black Box to any further-external
observer. Figure 12, inspired by Glanville (2009b, p. 164), illustrates this situation.
The concatenation of the further-external observer with the core BlackBox/observer
system constitutes a new system which is perforce a non-trivial machine, regardless of
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whether or not the further-external observer himself is a non-trivial machine. Probing
the core BlackBox/observer system through input would perturb it.

It follows that the system comprising the core BlackBox/observer system and the
further-external observer is itself a Black Box to any yet-further-external observer. It
can be perturbed by that observer, who can only infer, but not know with certainty,
what or who is inside it. Glanville (2009a, p. 1) notes that “each Black Box is
potentially made up of a recursion of Black Boxes (and observers)”. Figure 13 shows
this recursion. Glanville (2009a, p. 1) implies that in “a recursion of Black Boxes (and
observers),” none of the observers know of each other’s existence.

13. At the Core of Any Black Box There Are Two (or More) White Boxes,
Required to Stay In

The title of Glanville’s landmark paper of 1982 was “Inside every White Box
There are Two Black Boxes Trying to Get Out.” Figure 14 (upper) shows this
arrangement when the observer himself is a Black Box. But the arguments above
suggest a new interpretation. Let us presume that the core Black Box is a non-trivial
machine, composed of concatenated trivial machines. Then, no matter how many
nested layers of Black Boxes and observers might occur Russian-Doll fashion within
any Black Box (Fig. 13), the latter Box has an utter core containing a Black Box
which consists of two (or more) White Boxes, boxes that are required to stay in,
providing a mechanism—observed by an observer who, if he’s a Black Box himself,
also consists of two (or more) White Boxes, and so on. Figure 14 schematizes the old
versus new approaches to the relation of White Boxes to Black Boxes.

14. Summary and Conclusions

No-one can directly observe their own mind, or anyone else’s. Here, we attempt to
understand the mind indirectly, through the concepts of the Black Box and its
observer. Ranulph Glanville proselytized these concepts after W. Ross Ashby. Ashby’s
Black Box differs crucially from an engineer’s or a physicist’s black box, insofar as it
is un-openable. But Glanville pushes further, taking the Black Box to be an
explanatory principle, nonetheless having a mechanism. These notions well-
characterize the mind. There are other parallels. The Black Box is interrogated by an
observer, who presents stimuli to the Black Box, the inputs, and who records the
stimulus-evoked responses, the outputs. This resembles a naive initial impression of
psychiatry and psychology; the reality of all these things is, of course, more
complicated. Through input/output interactions with the Black Box, the observer
obtains what Glanville calls a functional description, one which whitens the Black
Box. Likewise, however, the Black Box may whiten the observer—after all, the output
from one is the input to the other. Altogether, the Black Box and its observer form a
self-illuminating system, called a White Box, having different properties from either
the Black Box or the observer alone. The White Box is nonetheless black to any
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further-external observer. Let us therefore call this White Box the greater Black Box,
and realize that it may be probed by a further-external observer.

To develop the notion of Black Box as mind, the present paper explores the
concept of the machine, a mechano-electrical device. As imagined by von Foerster,
however, a product of a mechano-electrical basis—an abstract product having
functional properties, such as the Glanville Black Box—can itself be a machine.
Consider the mind, therefore, as such a machine; consider consciousness, perception,
remembering, calculating, and reason-based decision-making (amongst other
characteristics) as the machine’s functional properties. Von Foerster recognizes two
types of machines: trivial, and non-trivial.

Ashby notes that a physical machine can have internal configurations, called
states; we may, likewise, assume that the products of physical machines—such as
conceptual machines, such as Black Boxes—can also have states, states that cannot be
returned-to at will. Given this realization, we may ask whether the observer of any
Black Box can give input, and record output, without changing the Box’s possible
output to the next input. That is, can the Black Box be observed without being
perturbed? Likewise, can a Black Box’s output be observed by, but not perturb, the
observer?

Perturbable machines were envisioned by Turing, who conceived of a machine
whose input and/or output can change the response to the next input. Turing’s machine
exemplifies a sequential machine. One class of sequential machines was described by
Moore: An input evokes an output, one determined only by the present internal state.
That state then changes to another state, determined by whatever was the input and the
internal state; hence, each internal state represents a capability to do something to the
inputs. Moore’s sequential machine is composed of two trivial machines, plus a
register of the current internal state; the register is also a trivial machine. The totality,
however, is a non-trivial machine. Being non-predictable, the whole is now more than
the sum of its trivial parts.

A mind, like a machine, can be imagined as having numerous states, which allow a
broad range of behaviors. Those states can change (and their number can increase)
through learning. For example, our response to a stimulus (such as an event, or a
question) can differ from our previous response, and in unexpected ways. In sum, the
mind is a non-trivial machine, an abstract entity having a mechano-electrical basis; it
is a Black Box, an explanatory principle.

Like Moore, von Foerster provides an example of a non-trivial machine. But the
machines of Moore and of von Foerster profoundly differ; in Moore’s machine, the
input has no bearing on the immediately-resulting output, only on its successor, by way
of the internal state. In von Foerster’s machine, however, the input directly affects the
output, as well as indirectly affecting the next output by way of the internal state. This
characterizes a Mealy machine, a concept realized in electrical circuits; in the Mealy
machine, the present output combination and the next state are determined uniquely
by the present input combination and the present state.
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According to Moore, the experimenter probing a sequential machine could himself
be described as a sequential machine, also specified in terms of internal states, inputs,
and outputs; the output of the machine which is being experimented-upon would serve
as input to the experimenter, and vice versa.

Given all this, we can now address the question of whether the observer of any
Black Box can provide input, and record output, without changing the Box’s possible
output to the next input; and in so doing, we can explore whether the Black Box leaves
its own observer unperturbed. Consider what happens if the observer of any Black Box
can provide input, and record output, without changing the Box’s possible output to the
next input, and likewise that the Black Box leaves its own observer unperturbed. If so,
the observer’s knowledge of the Black Box, and the Black Box’s knowledge of its
observer, will be limited only by the variety of the inputs from each to the other. The
Black Box and its observer are now trivial machines. They will mutually discover this
in time, as they whiten each other through input and output.

g
T

The BlackBox/observer system,
‘black’ from the outside

X

Further-External Observer

Figure 12. The core BlackBox/observer system as a Black Box
from the viewpoint of a further-external observer.

Now consider the contrary. That is, imagine a non-trivial machine that is the Black
Box. Imagine another non-trivial machine that is the observer. The BlackBox/observer
duo continually alter each other as each receives inputs and produces outputs.
Altogether, then, the BlackBox/observer duo form a new non-trivial machine. In this
case, no further-external observer can differentiate the Black Box from its immediate
observer; the internal observer cannot be recognized, and hence cannot be bypassed.
The BlackBox/observer duo is now truly a system.

This system, the greater Black Box, is a non-trivial machine that will change when
probed by the further-external observer. That is, the further-external observer and the
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greater Black Box altogether constitute a new system, which itself is a Black Box and
a non-trivial machine. Likewise, this new system changes when probed by a yet-
further-external observer. This may continue, in an expanding series of Black Boxes
and their observers.

Finally, note well that conscious, wilful (intentional) behavior implics a Black
Box that is a non-trivial machine, but that the converse need not be true. We will also
reject the notion that brains or minds are algorithms or that brains or minds are
computers.

Glanville’s seminal paper (1982) was titled “Inside Every White Box There Are
Two Black Boxes Trying to Get Out.” But at the utter core of any Black Box we must
expect to find mechanism—something equivalent to two (or more) White Boxes,
which are required to stay in. Remember that the operation of non-trivial machines
such as Black Boxes is not random, but that the operation may nonctheless be
difficult, perhaps impossible, for an observer to comprehend. As such, the operation of
Black Boxes—or of ensembles of them—may seem emergent. The mind, too, seems
emergent (Nizami, 2015, 2017, 2018), such that ensembles of White Boxes and Black
Boxes may be the ultimate source of the mind.
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Yet-Further-External Observer

Figure 13. From the viewpoint of a yet-further-external observer, the greater system shown in Fig. 12 is a
Black Box; and so on, with each further-outwards Black Box having its own immediate observer. Note
well that the Black Box is the presumed product of a mechanism, so that the pictured boundary of any
Black Box (and any consequent White Box) is operational but not necessarily physical.
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Old (Glanville] Picture

New (Sequential Machines) Picture

O,

Figure 14. White Boxes versus Black Boxes. (Upper) The Glanville (1982) view that “Inside Every
White Box There Are Two Black Boxes Trying to Get Out.” (Lower) The new view that at the utter core
of any Black Box there are two (or more) White Boxes, required to stay in.
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