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Do space and time have limits, or do they go on infinitely? Are there smallest units of space, or time, or
smallest divisions of objects, or can they be divided into infinitely many pieces? How are we to 
understand the infinities we find in mathematics? Metaphysicians since the Ancient Greeks have been 
fascinated by these questions and others about infinity.

Let us begin by considering a relatively familiar mathematical infinity. The counting numbers (1, 2, 
3....) go on infinitely: whenever you have such a number, you can always add 1. There is no greatest 
counting number, so the sequence has no end. When we consider the integers: (...-2, -1, 0, 1, 2...) we 
can see that this is a sequence that has no greatest member and also no least member—for any integer, 
no matter how low, you can always subtract 1 and get another integer. It is a sequence that is infinite in
both directions.

There are some unusual features of these infinite series. One is that a part of the series can be the same 
size as the whole. Consider the sequence of even counting numbers (2, 4, 6...) and the series of all 
counting numbers (1, 2, 3.....) The first, intuitively, only has “half” of the numbers of the second. On 
the other hand, they can be paired off one-one with each other. This is also true of the counting 
numbers and, say, the prime numbers—there are as many prime numbers as counting numbers. We can
even assign a different counting number to each of the integers without leaving any out, if we order the 
integers in the right way. To illustrate:

Counting:  1 2 3 4 5 6 7...

Even: 2 4 6 8 10 12 14...

Primes: 2 3 5 7 11 13 17...

Integers: 0 -1 1 -2 2 -3 3...

Infinite collections can be split into non-overlapping infinite sub-collections: for example dividing the 
counting numbers into the odd and even numbers. The whole does not necessarily have more members 
than a part.

These results are curious, but it is easy to get used to them. Arithmetical infinities are not the only kind 
of mathematical infinity. In Euclidean geometry, lines (as opposed to line segments) go on in each 
direction without end, as do planes. Lines can be divided into line segments of greater and greater 
lengths, without end: and indeed there can be two divisions of a line, each adding up to an infinite 
length, which do not overlap.

As well as these sorts of infinities in the numbers and in geometry, we are used to infinities “in the 
small”. Just as counting numbers can get larger and larger without end, so can fractions get smaller and 
smaller without end (just as there is no largest counting number n, there is no smallest fraction 1/n). 
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Between any two fractions there is another halfway between them, and there are infinitely
many fractions between zero and one.  

But what about infinities in the physical world? Even if mathematical infinities, of these 
familiar sorts, are well behaved, should we think the physical world can have those 
structures? Should we think that real space and time go on infinitely?

Space and Time

The first issue of infinity about space and time that occurs to many is the issue about 
whether space and time extend infinitely. The consensus these days seems to be that this 
is an issue for cosmologists more than philosophers, though some philosophers still 
object to the idea that the past even could be infinite. (This is connected to the issue of an 
infinite regress of causes, discussed in the final section.) Of more philosophical interest is
the question of whether space and time are infinitely divided: whether there are smaller 
and smaller regions or durations ad infinitum. This issue has been a traditional source of 
paradox.

Zeno of Elea is famous for a number of paradoxes about space and time, several of which
use the infinite divisibility of space and time. Exactly what Zeno’s arguments were and 
what they were intended to achieve remains a matter of controversy, so I will choose 
versions with more of an eye on illuminating issues of infinity than historical accuracy. 
Perhaps Zeno’s most famous is the paradox of Achilles and the Tortoise. Swift Achilles 
and the very slow tortoise agree to have a race, and the tortoise is given a head start. Let 
us suppose the track is 100m long, and the tortoise has a 10m head start, and let us 
suppose Achilles travels ten times faster than the tortoise. By the time Achilles has 
reached the tortoise’s starting point, the tortoise has moved on to a new point (call it p1). 
By the time Achilles reaches p1, the tortoise has advanced again to a new point (p2). And 
so on—no matter how many times Achilles reaches one of the ps, he has not yet caught 
the tortoise. He could only catch the tortoise, it seems, if he could reach the end of this 
infinite series: but the infinite series has no end. So Achilles can never catch up with the 
tortoise.

Obviously the above reasoning has gone wrong somewhere: fast runners can catch 
tortoises, even when the tortoises have a head start. We can even calculate when Achilles 
will catch the tortoise if we know their speeds: for example, if Achilles is traveling at 
10m/s, and the tortoise 1m/s, Achilles will catch up with the tortoise after 1.1111111.... 
seconds. So what went wrong with the reasoning in the previous paragraph?

Zeno himself may have wanted to use the paradox to show that motion was an illusion, 
which would provide one “solution” to the puzzle. We could try denying that there is the 
infinite sequence of points p1, p2, p3 and so on, and so deny a crucial assumption in 
Zeno’s argument. But the most popular solution to the puzzle is to allow that, after all, 
Achilles can pass through the infinitely many pn points in a finite time. Does that mean 
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that we have to postulate an infinite series with a start and a finish? (Something I imagine
Zeno would claim is just a contradiction in terms—a series with first and last members 
seems finite.) In one sense, yes, and in another sense, no. Since the infinity of points are 
all found in a line in a finite segment of space, we must be able to find a point after all of 
those points: the point where Achilles is adjacent to the tortoise comes after every point 
where he has not yet caught the tortoise up. In that sense the space where all the pn are 
found has an end. On the other hand, we do not need a last pn: that series of points will 
have no last member—it is just that as the time goes towards 1.11111... seconds, the pns 
get closer and closer together. So the pn series has no last member.

Another paradox of motion attributed to Zeno concerns the impossibility of an object 
starting motion in the first place. (Let me call this the “paradox of the arrow”, though 
names for this paradox vary.) Consider an arrow fired at a target. Before it reaches the 
target, it must reach halfway. Before that, it must reach a quarter of the way, and before 
that, an eighth, a sixteenth... etc. Before the arrow can even get halfway to where it needs 
to go, it needs to travel through an infinite number of points. But that argument did not 
require us to focus on the target (or on arrows): anything that moves at all to another 
place would first have to make it to halfway, and before that a quarter... any mover has to 
complete infinitely many motions before it can get anywhere. So, Zeno concludes, 
motion is impossible.

One interesting thing about this second paradox is that it concerns an infinite series of 
points with a clear end (reaching the target, for example), but no beginning: no matter 
how far back we go back towards the arrow’s start, there are still midpoints it must reach 
before it can get any further. There is no first one of these points the arrow can reach—to 
have moved any distance the arrow must already have passed through many points 
(infinitely many, in fact). This matches the mathematical structure of the number line. 
There is no first fraction after zero, for example: pick any rational number to be the 
“first” and we can always find another one closer to zero by halving it. The application to
physical space strikes some people as more troubling: how can an arrow start moving 
without there being a first place it moves to? But at least on the orthodox conception of 
space being made up of points at positive distances from each other, there is no such first 
place.

A third paradox of Zeno’s (which I will call the “paradox of plurality”) raises an 
interesting question about what space is like if it has infinitely many parts. Zeno invites 
us to consider what size the smallest parts are. If they are some positive, finite size, then 
when we add infinitely many of them together we will get an infinite magnitude. But if 
they are all of zero size (as points are often conceived of as being), then even adding 
together infinitely many of them will still give us zero. The first horn of the dilemma may
not strike someone as particularly worrying: maybe space is infinite in size? The problem
that makes it so uncomfortable is that the ordinary view of space has infinitely many 
points even in a finite region, such as the distance an arrow traverses to hit its target. 
Even if space as a whole is infinitely large, we do not want to say that the space on a 
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typical archery range is infinitely large! Notice the same problem arises for time—time 
seems divisible into smaller and smaller intervals, so what are we to say about the 
smallest intervals, if any?
     
Perhaps this could motivate us to reject infinitely many parts of space after all. Indeed, 
some people believe that space is “granular” and only finitely many smallest pieces of 
space can be found in a space of finite magnitude. Another, slightly subtler response, is to
say that space has infinitely many parts, but no smallest parts—regions get smaller and 
smaller ad infinitum, just as we can find smaller and smaller distances from zero along 
the number line, but there are no zero-length points underneath. Or perhaps space has 
only a potential infinity of small parts—it can be divided smaller and smaller but there 
are not already smaller and smaller regions corresponding to such divisions. Each of 
these alternatives to infinitely many zero-magnitude points will be discussed further 
below. 

There is another answer available to someone who wants to maintain the orthodoxy of a 
space of points without positive finite size. This relies on the kind of infinity of points 
postulated in contemporary theories of space. According to standard theories of space, 
space is a continuum. It is dense (between any two points there is another), and complete, 
in a “no gaps” sense (which has a variety of technical characterisations). Space has a 
structure like that of the real numbers, rather than just that of the rationals: there are 
lengths of √2 metres and π metres as well as lengths expressible as ratios of integers.

Surprisingly, while the rational numbers and the real numbers are both infinite, there are 
strictly more real numbers than rational numbers: the real numbers cannot be put in a 
one-one correspondence with the rational numbers. There are, in fact, many sizes of 
infinity in mathematics (infinitely many, in fact!) The size corresponding to the real 
numbers is often known as continuum-many, while the size associated with the rationals 
(which is the same as for the counting numbers) is known as countably-many.

When adding the sizes of finitely many non-overlapping regions together at once, the 
obvious thing to do is to assume the resulting larger region has the size which is the sum 
of the sizes of the smaller regions. A straightforward extension of this procedure covers 
adding countably-many sizes together, and indeed on the standard picture the metric on 
space is countably-additive. But it is less straightforward to extend this to the case of 
“adding” continuum-many regions—it cannot be done as limits of longer and longer 
finite sequences of addition, for example. When we want to know the size of a region 
made up of continuum-many distinct smaller regions, we cannot “add” the smaller sizes. 
Instead, the size of the large region is specified by a measure on the smaller regions, not 
by “addition”.

Adolf Grünbaum (Grünbaum 1967) famously pointed out that this gives contemporaries 
another kind of response to Zeno’s paradox of plurality. Zeno claimed that if we put 
together lots of things of size zero, the resulting size will be zero. But if we take a 
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measure of a set of continuum-many size-zero points, the measure need not be zero. We 
can agree with Zeno that additions of zero (even countably-infinite additions) always 
give zero, and nevertheless hold that a space made up of enough size-zero points is not 
itself of size zero.

The mathematical tools to make this distinction were not properly clarified until the 
twentieth century, so it is no surprise that Zeno did not consider this response. Suppose 
Zeno objected that this was mere mathematical trickery—we are still getting positive 
magnitude from putting together things of zero magnitude, even if the “putting together” 
is not addition. How is this any improvement? In response, we could say that the intuition
that “putting together zeros” gives you zero is an intuition we have about addition—and 
we have conceded addition does work this way. There are coherent models of measure 
theory that show us another way of “putting together”. Of course, that by itself would not 
show that we can put together spatial points and get non-zero-sized spatial regions: but it 
does tend to undercut Zeno’s argument that we could not get regions of non-zero finite 
size if we started from points.

A host of contemporary puzzles about the infinite divisibility of space and time, and what
possibilities there are if actual infinities of objects are possible have flowered in the 
second half of the twentieth century. These puzzles often go under the heading of “new 
Zeno”. They include Thomson’s Lamp (see the discussion reprinted in Salmon 1970), 
Hilbert’s Hotel (Gamow 1946), and many fascinating scenarios introduced by José 
Benardete (Benardete 1964). Some have thought these raise new problems for the actual 
infinite (Craig 1979), but many have just drawn the conclusion that actual infinities can 
be used to generate surprising thought-experiments.
 

Alternatives to Continuous Space and Time

There are a number of alternatives to the view that space and time are made up of 
infinitely many points. You could believe that space and time are granular, and that there
are minimum lengths and durations. If there are minimum lengths and times, the 
arguments of Zeno’s given do not get off the ground: there is no guarantee that there will 
be any “halfway points” for the arrow to pass through, for example. (Consider an arrow 
that is only three spatial minima away from its target.) While the tortoise will have 
moved on from some places that it was when Achilles reaches him, there will be no 
guarantee that the tortoise will have moved on from all of them. (If Achilles moves 10 
minima every time the tortoise moves 1, for example, if Achilles starts off 5 minima 
behind the tortoise will not have moved when Achilles comes up level.)

Minimum spaces and times do bring with them puzzles of their own, however. Are 
speeds restricted to certain values, n minima of space per m minima of time? If someone 
moves 2 spatial minima per minimum of time, do they “jump”? After all, there is no 
instant of time for them to be in the middle space minimum. Shapes are also puzzling 
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without continuous space. In standard geometry, the ratio of the hypotenuse of a right 
angled triangle to the sides is often irrational: for example, when a right angled triangle 
has two sides of 1 metre, the hypotenuse will be √2 metres. But in a discrete space, it is 
hard to see how to get distances like √2 metres. Indeed, if we model discrete triangles by 
drawing a grid, and represent distances by the number of adjacent squares different 
squares are apart, then we get odd results if we draw a right-angled “triangle” with short 
sides of e.g. 5 squares long. If we allow squares that touch at a vertex to be adjacent, then 
the hypotenuse is 5 squares long! And if we insist that squares are adjacent only if they 
share a side, then the hypotenuse is 10 squares long! A model of space that treats 5√2 
metres as being either 5 metres or 10 metres comes with a serious cost. There are more 
sophisticated models of granular space: Forrest 1995 has an interesting though very 
technical discussion of a more plausible option. 

What if space has smaller and smaller regions in it, but it never grounds out in 
components of zero size (or parts without size at all, if you prefer to treat points as 
lacking volume altogether)? This picture of space is often called “gunky”, connected to 
“gunk”, the technical term for an object such that all of its proper parts have proper parts 
(i.e. parts other than themselves). The paradox of plurality, as presented, is blocked at the 
beginning: there are no “smallest parts” of space, on this view. The gunky view of space 
can allow that space has infinitely many parts of more than zero size, but they only add 
up to a finite amount, because there are not infinitely many non-overlapping parts of the 
same finite size. In one metre of space, you can find 10 non-overlapping parts of 10cm, 
or100 of 1cm or 1000 of 0.1 cm... but when you add up non-overlapping parts of the 
same size, you never get more than 1m. Since there are infinitely many parts, the gunk 
theorist has to agree that the arrow passes through an infinite sequence of distances 
before it hits the target, and that Achilles must run through infinitely many distances to 
catch the tortoise. The gunk theorist is a friend of infinity. Gunky space has been less 
discussed than its main rivals, but one worry about it is discussed under “infinite regress 
arguments”, below.

Another option is to say that the infinite divisibility of space is only a “potential infinity”.
Insisting that infinities in the world are only “potential” is a tradition that goes back to 
Aristotle, and it is safe to say that this was the dominant tradition in the West until the 
twentieth century. A “potential infinity” could mean one of two things. The first is that 
there is, in fact, only a finitude, but it is just that this finite collection could be increased 
or could be extended. For example, one way for the counting numbers to be potentially 
infinite in this way would be if only finitely many of them exist but we can always extend
the collection of counting numbers by adding one. Another way, less connected to us and 
our adding activities, would be to think that there were only as many numbers as objects 
but that the highest number could have been larger, without finite limit, if extra objects 
had existed.

The other way to think about potential infinities is to think that there is indeed an infinite 
collection (regions of space, counting numbers, etc.), but that many members of that 
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collection only have potential existence: they are not yet “actualised”. For example, an 
Aristotelian might think that a point only has actual existence when it is a boundary of a 
real thing (e.g. when it is at the tip of the arrow)—those points at places where 
boundaries could be, but are not at the moment, could be considered potential existents. 
This version of potential infinities is not very popular today, since most philosophers 
dislike drawing this sort of distinction between kinds of existence.

Insisting that the divisibility of time or space is only potentially infinite is often offered as
a solution to Zeno’s challenges. It deals with the paradox of plurality: if space is not made
up of any merely potential parts, either because there aren’t any potential parts (on the 
first view), or they lack the “actual” existence needed to make up actual space (on the 
second), then the question of how these small bits can make up something finite does not 
arise. How potential infinities are supposed to address the paradox of the arrow is less 
clear. Aristotle seemed to deny that the “halfway points” the arrow had to pass through 
had actual existence. But completing an infinite series of passing through points with 
potential existence seems just as problematic. And if we interpret the claim that the 
halfway points have only “potential existence” as the claim that there are no halfway 
points at all (though there could be), we have to answer awkward questions about why 
the arrow does not ever get halfway to its target, since there’s no halfway for it to get to. 
Saying infinities are only potential still leaves plenty of problems to deal with. 

One interesting philosophical issue is which of the alternatives correctly describe space 
and time, or spatial and temporal things. But another interesting issue is which of these 
alternatives are coherent. If only one of these alternatives is coherent, (e.g. some finitists 
have suggested that only the granular view is possible), then surprisingly we can tell 
without having to investigate the world some important information about the ultimate 
structure of space and time. Or at least the only investigation we need to do is to notice 
that some things move, and other elementary observations of our everyday world. To 
decide whether there is a scientific question about whether the world contains continuous 
space, for example, we need to be as clear as we can about what the alternatives would 
amount to. 

Infinite Regresses in Metaphysics

Infinities are often discussed when “infinite regress arguments” are deployed to try to 
prove metaphysical conclusions. Perhaps the most famous infinite regress arguments are 
arguments for the existence of a “first cause”: arguments often employed in an attempt to 
prove the existence of God. It is doubtful that a proof that there is a “first cause” would 
help very much in making the case for the existence of God—why suppose a first cause 
would be intelligent, or powerful, or beneficent, or have any other attributes commonly 
attributed to deities? But leaving aside theological concerns, the question of whether there
is a first cause is interesting in its own right, and it would be surprising if armchair 
reflection about causation could establish that much about the origin of the universe.
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There are dozens, if not hundreds, of versions of cosmological arguments. A simple form 
of the regress argument might go like this:

1.    Every natural thing has a cause.
2.    The chain of causes cannot go back infinitely.
3.   There can be no causal loops.
4.   Therefore every chain of causation must have a first cause at its beginning.

Presumably this “first cause” must be something that does not fall under the 
generalisation at (1): God is often offered as a candidate first cause that does not itself 
need a cause. Both premises 1 and 3 can be disputed, of course. Premise 1 is probably 
disputed more than premise 3: the idea that the Big Bang, or for that matter random 
quantum fluctuations, could “just happen” in an uncaused way remains a popular view.

For our purposes, though, the most interesting premise is 2. Why not think that there is a 
succession of cause and effect stretching back into the past without end? Of course, we 
might have specific evidence from cosmology that the world had a beginning (e.g. the 
Big Bang). But is there any principled philosophical reason to reject an infinite regress of 
cause and effect?

Two have traditionally been offered. One is the belief that there cannot be an “actual 
infinity”, but only a potential infinity (see above). If the past is “actual”, and we had an 
infinite regress of causes, we would have an infinite series of actual causes and effects 
already in existence. Those who claim actual infinities are incoherent will reject an actual
infinity of past causes. Of course, this reasoning is only as good as that which supports 
rejecting actual infinities. (Interestingly, Aristotle himself, despite his rejection of actual 
infinities, did not object to an infinity of past causes. Aristotle seems to have thought that 
the past was not “actual” any more in the relevant sense: only the present was.)

The second reason to reject an infinite regress of cause and effect is that there is 
something incoherent in this infinite chain of dependence. The intuition that “the buck 
must stop somewhere” is hard to argue for. A defender of the claim could suggest that 
when we explain an effect by reference to its cause, for example, that explanation is 
somehow incomplete unless we explain the cause’s occurrence as well: and if that in turn 
is explained by reference to a further cause, a further explanation is called for... and 
somehow there is something unsatisfactory unless that sequence comes to an end.

Of course, it is hard to see how such a sequence could end if we do insist that each cause 
is an unsatisfactory explanation until it itself is explained: any “first cause” will have this 
problem, and postulating a god as a first cause will not make the problem go away. 
Indeed, the challenge of trying to explain a god or that god’s existence can seem even 
more intractable than explaining the Big Bang. Theists interested in using this sort of 
argument usually have some special pleading about how God is his own cause or 
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explanation in the way that ordinary events and things are not, or that God is a necessary 
being and necessary beings do not need a further cause or explanation.

Other metaphysical infinite regress arguments also rely on the idea that chains of 
dependence must ground out somewhere. Some people think that wholes depend on their 
parts—once you have the parts and the relations between them, nothing more is needed 
for the whole, whether we are talking about heaps of sand, tables and chairs, or human 
bodies. Some of them are tempted by a regress argument against the view that there is 
gunk (see above). If an object (or a region of space or duration of time) is made up of 
parts, and they are made up of parts, and so on for ever then the whole structure will not 
“ground out” in ultimate parts that themselves have no proper parts. (Objects without 
proper parts are often called simples or atoms, though this use of “atom” is to be 
distinguished from the word’s use in chemistry.)  It should be clear how the infinite 
regress argument would go.

If there is gunk, then the parts of objects have (proper) parts, and they have (proper) parts,
and so on ad infinitum, without ever reaching a level of ultimate parts.
But this chain of dependence must ground out—it cannot go on for ever.
Therefore there is no gunk.

Here it is not infinity per se that is the problem: many of those who think gunk is 
impossible do believe in the possibility of an object made up of infinitely many simples 
(and so “infinitely divisible” in at least one good sense). It is rather the neverending chain
of parthood that is supposed to be the problem.

Others will want to deny that there is dependence of a whole on its parts. For example, 
one might think that the whole and its parts are equally well existing objects, and while 
they stand in a particularly intimate relationship it does not follow that either is dependent
on the other. Others may even want to think that parts sometimes, or always, depend on 
their wholes, and not vice-versa. (Those who think dependence runs both ways will at 
least believe in the sort of dependence necessary for the argument above.)

Still others may be happy to concede that wholes depend on their parts, but be happy with
infinite chains of dependence that do not “ground out” in partless parts that do not 
depend, in this way, on anything else. In the “first cause” case, many are happy with the 
idea that there could be neverending chains of causal dependence that do not stop with an
uncaused cause. In the gunk case, many are happy with chains of part-whole dependence 
that do not “ground out” in partless parts (i.e. parts with no proper parts). Getting beyond 
this unease to a consideration that will convince their opponents, on the other hand, is a 
goal that has remained elusive.    

Other Topics
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There are a number of other places in metaphysics where infinities play an important role,
though there will be space to do little more than mention these topics. Readers who find 
these tastes particularly interesting can follow up the further references given. In no 
particular order, other philosophical issues involving infinity include:

Are there infinitesimal magnitudes? An infinitesimal is less than any positive real 
number, but greater than zero. (Consistent mathematical models of infinitesimals have 
been developed, but they are not part of classical mathematics.) If infinitesimals have 
applications in the real world (e.g. there are infinitesimal distances or masses or objective
chances), what impact does that have on standard theories (e.g. of space, time, or 
chance?)

Some philosophers want to defend strict finitism: the view that there are not, and could 
not be, infinitely many objects. Strict finitists sometimes want to argue that there is 
something wrong with the concept of infinity, others just that it is unnecessary. One 
interesting question pursued by strict finitists is how much of our ordinary mathematical 
practice can be recaptured if there are only finitely many numbers or mathematical sets.

There are issues about infinities and abstract objects. How many possible worlds and 
possibilities are there? How many propositions are there? Presumably there are at least 
infinitely many of each, if they exist at all. But coming up with principles about the 
cardinality of these things is not straightforward.

Infinities come in different sizes. What is the largest size like, if there is one? (If there is 
not one, why does everything all together not get a size?) Georg Cantor, who first proved 
that there are infinities of different sizes, believed that there was a greatest infinity, the 
Absolute Infinite, which was not entirely understandable by us. Some contemporary 
“class theorists” believe that there are proper classes, collections too big to be sets. If 
proper classes are all of the same size, this would be the largest size.

Is God infinite? If so, in what sense? In some relatively mundane sense (e.g. being 
located at infinitely many locations in space or time, or being able to employ forces of 
infinite magnitude, or to do infinitely many different kinds of things), or in a special 
sense, or in both? If God is infinite in some distinctive sense, how is that sense related to 
the other mathematical and physical senses of infinity discussed here? 
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