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abstract
The statistical technique of analysis of variance is often used by biologists as a measure of the

relative strength or importance of causal factors. I argue that it is a tool ill-suited to this purpose, on
several grounds. I suggest a superior alternative and outline its implications. I finish with a diagnosis
of the source of error—an unwitting inheritance of bad philosophy that now requires the remedy of
better philosophy.

Introduction

MORE THAN 30 YEARS AGO, Rich-
ard Lewontin wrote a seminal article

(1974) critiquing the use of analysis of vari-
ance (hereafter “ANOVA”) to license inter-
ventions. In this paper, I reinforce and ex-
tend this critique by embedding it in
contemporary philosophical analysis of
causation. Lewontin’s misgivings about in-
terventions are merely part of a range of
concerns that then emerge. My specific tar-
get will be the widespread use of ANOVA
in biology as a tool for measuring the rel-
ative strength of causal factors (or, equiva-
lently, their “importance”). I shall propose
a better-founded—and practicable—alter-
native conception of causal strength.

An underlying theme will be that philos-
ophy can help scientific practice, and also
that the misuse of ANOVA is itself a symp-

tom of philosophical ideas now widely ac-
cepted (in philosophy of science) to be
anachronistic. The benefit of being ex-
plicit about philosophical underpinnings
is, therefore, the freeing of biological prac-
tice from this unwitting inheritance.

ANOVA and Causal Strength
I shall assume a certain familiarity with

the ANOVA technique. Nevertheless, a
specific—albeit fictional—numerical illus-
tration will be helpful (Table 1). Imagine
plotting plant height (the dependent vari-
able) against two independent variables,
namely choice of fertilizer (Expensive-
Average-Cheap) and choice of plant breed
(GM-Normal-Old).

Which factor has more influence on
plant height? Intuitively, in this popula-
tion, plant height varies far more with fer-
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tilizer than with breed. ANOVA captures
this via the following (simplified) calcula-
tion, where “SS” � sum of squares:

Breed SS � 3��55 � 50�2 � �50 � 50�2

� �45 � 50�2� � 3�25 � 0 � 25� � 150

Fertilizer SS � 3��80 � 50�2 � �50 � 50�2

� �20 � 50�2� � 3�900 � 0 � 900� � 5400.

Because 5400 �150, ANOVA declares that
choice of fertilizer “explains” more of the
height variation than does choice of breed.
I am not concerned here with statistical
inference, hence no reference to error
terms.

Of course, the analysis of variance is
used in biology for more than one pur-
pose. But one such use is as a de facto
measure of degree of causal impact of in-
dependent variables on dependent ones.
For instance, in the example above
ANOVA would in effect be used to license
the claim that, in this population, choice of
fertilizer is a stronger cause of plant height
than is choice of breed.

It is worth emphasizing this latter claim
about usage: ANOVA’s own procedure
makes explicit reference to the distinction
between independent and dependent vari-
ables, the latter being seen as a function of
the former, rather than the other way
round—an asymmetry already obviously
redolent, if not directly derivative, of that
between cause and effect. It also yields a
measure of strength of association between
two variables. When one of these variables
is taken to be the cause of the other, such
a measure is normally (indeed, it can
hardly not be) interpreted as one of causal
strength—i.e., of how much impact the
cause variable has on the effect variable.

To make the claim seem plausible within
the confines of this paper, consider the
following actual subjects of ANOVA study
(Table 2). These are studies chosen by
standard textbooks precisely to illustrate

TABLE 2
Topics of actual 2-factor ANOVAs

1st independent variable
(first presumed cause)

2nd independent
variable (second
presumed cause)

Dependent variable
(presumed effect)

type of sugar treatment pH level growth of peas
density per container three different strains housefly’s developmental period
level of thyroxin injected sex of chick weight at 7 weeks
month of year 14 different varieties of

potato tuber
degree of aphid infestation

depth day of measurement a lake’s water temperature
different locations surface soil or subsoil soil pH
breed of cow age of cow butterfat percentage
nitrogen concentration variety of wood chips added yield of beet roots
length of frost-free season amount of light height of hemlock buds
quantity of nitrogen fertilizer quantity of phosphoric acid

fertilizer
yield of corn

sodium concentration potassium concentration weight of tobacco leaves

This table is taken from Northcott 2006. The individual references for the data are contained in Sokal et al 1981, 1995; Bliss
1967.

TABLE 1
Fictional data for plant heights and fertilizer-breed

combinations

Expensive Average Cheap MA

GM Breed 85 55 25 55
Normal Breed 80 50 20 50
Old Breed 75 45 15 45
MA 80 50 20 Grand

Mean: 50

*“MA”� marginal average. For simplicity, I have assumed
that there are no nonadditive interactive effects, that each
cell has equal weighting, and that we are considering only two
independent variables. Nothing of importance will turn on
these assumptions.
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appropriate usage. I take them as thus to
be cases of reputable work and not unrep-
resentatively sloppy.

In each case, the choice of variables
clearly suggests particular cause and effect
relations, and so any results linking those
variables quantitatively should indeed be
interpreted as (claimed) causal strengths.
As well as being widespread, albeit often
only implicit, I shall now argue that this use
of ANOVA is also mistaken. In order to
explain why, let us first take a brief foray
into philosophy.

A Definition from Philosophy
How important is a particular cause of

an effect? To know that, we must compare
the level of effect given the presence of the
cause with what the level of effect would
have been without that cause. Generalized
and in symbols, define the strength of a
cause C with respect to an effect E to be:

E(C1 & W) � E(C0 & W). (D)

C1 is the actual level of C, C0 is a baseline
counterfactual level of C, and W represents
background conditions.

In the simplest case, C0 will just be the
absence of C. But often we are interested
in the impact of a cause relative to some
specific nonzero alternative, as I shall illus-
trate below. Moreover, the “absence” of a
cause may sometimes make little sense any-
way, as with temperature. Thus, in its right-
hand term (D) cites the general formula-
tion C0 rather than “absence of C.”

(D) is quite intuitive. For example, if
E � the height of a plant, then we might
compare E given the use of a fertilizer to E
given no fertilizer in order to define the
causal strength of that fertilizer. We could
define the causal strength of extra water-
ing similarly, in order to compare which of
the two causes—fertilizer or extra water-
ing—was the predominant cause of the
plant’s height. The formula also enables us
to define easily the impact of using one
fertilizer rather than another, simply by
setting C0 � the other fertilizer (rather
than no fertilizer at all). Notice also the
importance of the background conditions
W. For example, if W � a poor level of soil

nutrients, then the impact of adding fertil-
izer may be low. If W � a rich level of soil
nutrients, then, by contrast, the impact
may be high.

A key aspect of (D) is that it captures a
controlled experiment sensibility. We want
to compare the level of effect with and
without the cause while keeping all else equal.
For instance, it would be futile to compare
the height of a plant with and without fer-
tilizer if simultaneously we also switched to
a more nutritious soil, because, obviously,
that would now yield only the combined
impacts of the two changes. For this rea-
son, in (D) the background conditions W
must be constant across the two terms.
Strictly speaking, the background condi-
tions do in fact vary across the formula
because, as well as impacting E, the switch
from C0 to C will also change W. But for
our purposes we may ignore that technical
wrinkle here.

The formulation of (D) reflects the com-
mon emphasis in the philosophical litera-
ture on causation’s difference-making as-
pect. A cause is something that makes a
difference to its effect. Thus, naturally, the
strength of a cause is how much difference
it makes. (For some philosophical details,
see Lewis 1973, Wright et al 1992, Pearl
2000, Spirtes et al 2000, Woodward 2003,
Northcott 2006. For a recent introduction
to the ideas on causation mentioned in this
paper, geared specifically to biologists, see
Shipley 2000.) Much philosophical debate
has focused on which—if any— formula-
tion of difference-making might be an ac-
ceptable definition of causation. Other dis-
cussions have focused on exactly how
counterfactuals, such as the right-hand
term in (D), should be understood. Fortu-
nately, we need not worry about either of
these issues here. First, in biology the pu-
tative causes of an effect are usually uncon-
troversial; our concern is only with which
of these causes is stronger. Second, (D)
can be seen as a normative ideal, serving to
guide which actual data we should use as
proxies for the counterfactual terms. Given
the typical set-up of biological experi-
ments, in practice, this is usually uncontro-
versial, as I shall illustrate below.
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It is obvious that the strength of any
given cause depends on the effect we are
interested in. For instance, fertilizer may
be a powerful cause of plant growth, but a
negative cause of human growth. In our
notation, C’s causal strength is E-specific.
But notice also an important further cor-
ollary of the above discussion—namely
that, even once E is specified, there is still
no unique value for C’s causal strength.
Instead, for any given C-E pair, the associ-
ated causal strength depends also on W
and C0. Thus, the notion of causal strength
is necessarily a highly relativized and
context-specific one, a fact that will prove
significant.

To illustrate the simplicity of these basic
ideas, I shall close this section by applying
(D) to our fictional example in Table 1.
The switch from Average to Expensive fer-
tilizer, on a GM plant, increases height
from 55 to 85. Thus, Expensive fertilizer,
relative to Average fertilizer, for this effect
in these conditions, has a causal strength
of 30 units. Similarly, the causal strength of
GM relative to Normal breed is 5 units.
Indeed, formula (D) might seem so obvi-
ous and unobjectionable as to be rather
uninformative. Yet, ANOVA contravenes
this formula in multiple ways. Let us now
explore some of these contraventions and
their deleterious consequences.

Interventions
Superficially, in Table 1, ANOVA and

definition (D) agree: in this population,
fertilizer is a more important cause of plant
height than is breed. But look more close-
ly—begin by applying (D) to the group
case. (This is necessary to render (D) di-
rectly comparable with ANOVA, given that

the latter only delivers causal strength ver-
dicts for populations or groups as a whole.)
In the group case, the “cause” is not a
single application of fertilizer or single
choice of plant breed, but rather the par-
ticular distribution of such applications or
breeds in a given population. Analogously
to the individual case, and for analogous
reasons, the causal strength of such distri-
butions depends on which alternative dis-
tributions we are comparing them to.

Illustrating via our fictional example, label
the actual population’s distributions of
breeds and fertilizers respectively B1 and F1.
Suppose the average heights for particular
alternative populations are as in Table 3. The
top-left slot, i.e., the average plant height in
the B1-F1 population, we already know from
Table 1 to be 50 units (usually, we would
need to specify the distributions in more de-
tail than in Table 3, but the lack of interac-
tion effects here allows us to simplify). What
causal strengths can we read from Table 3?
Consider first the fertilizer. The causal
strength of distribution F2 relative to distri-
bution F1 is 3 units (e.g., 53 � 50 in the top
row); that of F3 relative to F1 is 7.5 units. For
breed, switching from B1 to B2 yields a score
of 2.5 units (e.g., 52.5 � 50 in the first col-
umn), whereas switching from B1 to B3
yields a score of 5 units. The key point is that
there is no univocal causal strength for either
fertilizer or breed. Rather, the values vary
depending on choice of contrast class, just as
per (D). Accordingly, we cannot say which of
the two factors has the greater causal
strength in any absolute sense. Relative to
some contrast populations, fertilizer is the
more important factor; relative to others,
breed is instead. We can also readily imagine
how results would vary with different choices

TABLE 3
Fictional group data for plant heights and fertilizer-breed combinations

Fertilizer distributions
(proportions expensive-average-cheap): F1 (1⁄3 each) F2 (0.4-0.3-0.3) F3 (1⁄2-1⁄4-1⁄4)

Breed Distributions
(Proportions GM-Normal-Old): B1 (1⁄3 each) 50 53 57.5

B2 (2⁄3-1⁄6-1⁄6) 52.5 55.5 60
B3 (1-0-0) 55 58 62.5
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of background conditions W. Yet ANOVA
yielded just the one absolute result, as we saw
earlier, inflexibly endorsing fertilizer as the
stronger cause in our actual B1-F1 popula-
tion.

Why should this inflexibility matter?
One reason is that causation, and thus
strength of causation too, is intimately
linked to interventions (this is a central
point in the philosophical literature). In
our example, should a farmer buy new fer-
tilizer or a new breed? The answer depends
crucially on the salient contrast class. If, for
a given budget, the farmer has a choice
between upgrading from F1 to F3 or from
B1 to B2, then clearly the former will have
a bigger positive impact on plant height
(7.5 rather than 2.5), i.e., investing in new
fertilizer rather than breed is preferred.
But if the choice is either F1 to F2 or B1 to
B3, a change of breed rather than fertilizer
would have the greater impact (5 rather
than 3). Overall, the farmer’s intervention
should be guided by which cause has the
greater strength, breed or fertilizer, and
this, in turn, clearly depends on the salient
contrast class, just as captured by (D)—but
not by ANOVA. ANOVA’s results therefore
do not give reliable advice regarding inter-
ventions.

Lewontin (1974) also emphasizes this
conclusion, or, more particularly, that the
findings of ANOVA cannot be extrapo-
lated beyond the generating sample. In
fact, they are also unreliable even within
that sample, as I shall discuss in the coming
sections. Lewontin appeals to norms of re-
action as a better guide to interventions, as
these will yield the quantity of effect for
different values of a given input. Because
they are calculated for fixed background
conditions W, these reaction functions in
effect replicate the controlled experiment
procedure endorsed by (D). More gener-
ally, knowledge of norms of reaction en-
ables a whole range of causal strengths to
be calculated immediately. Notice though
that any given norm of reaction will only
hold for one particular set of background
conditions W, and, therefore, will not nec-
essarily be a reliable guide to interventions

if W alters (e.g., due to changed levels of
oxygen or acidity).

Notice also that ANOVA is unable to
address the intervention issue via its own
incorporation of a comparative approach.
For instance, referring back to Table 3, it
might be thought that by comparing ANO-
VA’s results for causal strength from the
B1-F1 population with its results from the
B2-F1 population, we would thereby get a
guide to the impact of substituting breed
distribution B2 for breed distribution B1.
But, as well as being quite unmotivated
within the ANOVA procedure, this maneu-
ver simply does not work. In more compli-
cated examples, the weighting to place on
each counterfactual term is an intricate cal-
culation requiring (D)’s controlled exper-
iment sensibility. Typically, this calculation
also requires asymmetric weightings across
the cells in the table, which is problematic
for ANOVA.

In general (although not for the figures
in our simple numerical example), we
would also obtain different results for
causal strength if, for instance, the GM
breed was proportionally more common
among those plants treated with some
rather than other fertilizers, because of the
possibility of nonadditive breed-fertilizer
interaction effects. This would count as a
further strike for (D) over ANOVA, al-
though, for simplicity, I ignore the possi-
bility here. ANOVA’s systematically poor
handling of nonadditive interactions is a
central theme of Lewontin (1974). (D), by
contrast, deals with them naturally and eas-
ily (Northcott 2006).

Group versus Individual
Often we may be interested in single

causal strengths, such as those associated
with an individual plant rather than with a
whole population. As noted already, (D)
can capture individual or group causal
strengths according to interest, whereas
ANOVA can yield results only at the popu-
lation level. This has interesting implica-
tions for the truism that it makes no sense
to apportion causal responsibility between
genes and environment for an individual’s
phenotypic trait, given the continuous inter-
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action of the two causal factors. Notice that,
notwithstanding its orthodoxy, there is good
reason to doubt the truth of this truism.

Consider an individual plant from the top-
left cell of Table 1. Quantitative degrees of
causal responsibility for the 85-unit height of
this plant can sensibly be assigned to fertil-
izer and to breed. The key is that there is no
single canonical apportionment of such re-
sponsibility; rather, all will vary with choice of
contrast class. But then, as we have seen, all
apportionments of causal responsibility so
vary. It implies nothing unusual about the
plant case in particular.

Simultaneously, we can make sense of
the orthodox view—namely that, since
genes and environment, crudely under-
stood, are both clearly necessary for any
plant height at all, it makes no sense to
assign either factor more responsibility
than the other. I think this stems from an
implicit selection of contrast classes of ab-
sence. That is, we imagine a plant “without
genes” (i.e., no plant at all) and “without
environment” (i.e., no oxygen or water,
perhaps), and, whatever those phrases
mean, they presumably imply no plant
growth and, hence, zero height. Thus, rel-
ative to these contrast classes, (D) tells us
that both genes and environment have
causal strengths of: (the plant’s actual
height) – (zero height) � the plant’s ac-
tual height. In this case, the causal
strengths of genes and environment are
entirely symmetric. But in other cases, with
different choices of contrast class and back-
ground conditions, this will not be so.
Therefore, in Table 1, it may make perfect
sense to declare a top-left cell plant’s ge-
notype (i.e., GM breed) to be more re-
sponsible for its height than is its environ-
ment (i.e., Expensive fertilizer).

ANOVA represents one way of recogniz-
ing the sense in which genes and environ-
ment can be said to make asymmetric con-
tributions to a trait. But a philosophically
well-grounded account of causal strength
likewise enables us to separate, where ap-
propriate, the contributions of genes and
environment. And this can be done in the
case of individuals just as much as in the
case of groups. (See Northcott 2006 for

fuller discussion of the issues in this sec-
tion.)

Relative versus Absolute
So far, we have been assuming an abso-

lute conception of causal strength, but
there is an alternative, relative conception.
We may illustrate this distinction by refer-
ence to a medical example. How important
a cause of heart attacks is a bad diet? Ac-
cording to the relative understanding, this
question should be interpreted as asking:
Does diet have a greater impact than other
causes of heart attacks? Such an under-
standing is associated with significance
tests. These must first measure what pro-
portion of total “noise,” so to speak, a fac-
tor is responsible for before then deciding
whether such a proportion can reasonably
be assigned to mere chance. When based
upon the absolute understanding, by con-
trast, the question should be interpreted as
asking: How important a cause is diet in its
own right? This second understanding is
associated with Galilean idealization. We
are concerned with isolating the impact of
one factor alone, having abstracted it away
from background noise.

(D) is a measure of absolute causal
strength, but is easily adjusted to capture
the relative version, as follows:

[E(C1 & W) � E(C0 & W)] / E(C1 & W).

This yields, as desired, a factor’s causal
strength relativized to the total level of effect.
ANOVA, by contrast, is inflexibly committed
only to the relative conception. By definition,
it evaluates the variance due to one indepen-
dent variable relative to the total variance of
the dependent variable. The issue is essen-
tially one of inflexibility. Looking at Table 2,
although we might sometimes be interested
in relative causal strength, it is obvious that
often we are not. So, in all the latter cases,
use of ANOVA is fundamentally inappropri-
ate (Northcott 2005).

Variance versus Levels
Suppose I were interested not in maxi-

mizing average plant height, but instead in
minimizing the variance of plant height.
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Perhaps I am supplying a firm that, for
some reason, greatly values product unifor-
mity. Turning again to Table 2, it seems
rare that this will be the focus of our inter-
est; nevertheless, perhaps it might be in
this case. (D) is able to reflect such an
interest straightforwardly in this instance,
simply by defining the effect of variable E
to be the variance of plant height rather
than the height itself. (As Massimo Pigli-
ucci suggested to me, perhaps this would
be useful when measuring the strengths of
causes of phenotypic plasticity, if the latter
is defined as across-environment variance.)
Note that, variance being defined only with
respect to populations rather than individ-
uals, this version of (D) adjusted to a focus
on variances will no longer be applicable to
individual cases. It is no coincidence that
ANOVA, being precommitted to variances
rather than levels, is only ever applicable to
group rather than singleton cases.

The real problem with ANOVA here is
again its inflexibility. In particular, it is com-
mitted to tracking causal strength with re-
spect to variance rather than level of effect.
This follows from its definition. To illustrate,
imagine Table 1 adjusted so that the variance
of the fertilizers’ marginal averages was re-
duced, even while keeping their mean un-
changed. This would result in ANOVA grant-
ing fertilizer a lower score for causal strength
than before, even though the average impact
of fertilizer on plant height was unchanged.
The reason is that ANOVA is sensitive to
variance—not level—of effect. This would
be fine if variance was what we were inter-
ested in. But, again, it is obvious just from
looking at Table 2 of actual ANOVA applica-
tions, that often we are interested in level
rather than variance. Accordingly, in all such
cases ANOVA must be an inappropriate tool
for measuring causal strength.

Conclusion: Philosophy Bad
and Good

The economist John Maynard Keynes fa-
mously remarked that “practical men, who
believe themselves to be quite exempt from

any intellectual influence, are usually the
slaves of some defunct economist” (1936:
383). Alas, sometimes defunct philoso-
phers too. One hundred years ago, early
positivism frowned on the notion of causa-
tion, seeing it as mystical metaphysics with
no place in modern science. This distrust
strongly influenced the formulation of sta-
tistical measures of strength of association
such as ANOVA (Pearl 2000).

Nowadays, as we have seen, ANOVA is a
standard tool in biology for measuring de-
gree of causal impact of one variable upon
another. But its anachronistically anti-
causal origins have left it ill-suited to this
latter purpose. Its form still reflects its in-
heritance, failing to incorporate the requi-
site controlled experiment sensibility, even
though (at least in the domain of biology)
philosophy has long since dropped that
original hostility to causation. It is for this
reason that ANOVA is formulated purely
in terms of actual data, and essentially just
tracks patterns of correlation within that
data. Similar criticisms apply to related sta-
tistical measures, such as r2, heritability,
and others—all defined, broadly speaking,
in terms of ratios of variances of actual data
(Northcott 2005; Pigliucci and Kaplan
2006). Such statistical techniques are con-
sequently all unsatisfactory measures of
causal strength. Some other techniques in
common use, such as odds and risk ratios,
and randomized trials, are better.

But now more up-to-date philosophy can
repay the debt by showing us that there is no
substitute for a flexible, context-sensitive
concept of causal strength. This requires
comparison of the actual level of effect with
a counterfactual one informed by the appro-
priate controlled experiment sensibility.
Variables C and E must be treated asym-
metrically, reflecting the asymmetry of cause
and effect. Although ANOVA cannot pro-
vide this, we can easily define a formula that
does, namely (D). Of course, by definition
counterfactuals such as (D)’s right-hand
term are not directly observable. As men-
tioned earlier, (D), therefore, serves as a nor-
mative ideal rather than a direct measure,
guiding which proxy actual data we should
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use instead. As we have seen, that, in turn,
can prove an intricate, highly context-
specific operation. ANOVA’s crude one-size-
fits-all formula cannot pass muster.

Ironically, often the relevant actual data
will turn out to be drawn from exactly the
same set that ANOVA operates on. For ex-
ample, plant trials typically take care to
control for other causes of height, such as
quantity of water or soil acidity, and have
large numbers of plants per plot so as to
minimize the impact of occasional con-
founders such as infestation. The point is
that (D) mandates better use than ANOVA
of this very same data.

If, by contrast, data are not well con-
trolled for confounds, then it may be that
causal strengths cannot be reliably esti-
mated from them. In such circumstances,
our best bet is to look for other data that
are better controlled, or perhaps we might
disaggregate the existing data in suitable
ways. Yet ANOVA would offer no guidance
for, nor even recommendation of, such es-
sential procedures.

Still, given that (D) necessarily involves
the evaluation of counterfactuals whereas
ANOVA, by contrast, is defined purely from
actual data, is not ANOVA at least preferable
on epistemological grounds? But I think this
assumes an unwarrantedly pessimistic view of
our ability to evaluate the relevant counter-
factuals. On the account presented in this
paper, the method of controlled experi-
ment—surely the gold standard of science if
anything is—itself assumes the ability to eval-
uate counterfactuals (see also Woodward
2003 on this point). In this respect, the pro-
cedures endorsed by (D) are no different
from those underpinning the paradigm suc-
cesses of physical science. Therefore, on pain
of writing off the latter, the objection is not
compelling. Indeed, one might turn the ar-
gument around. For many causal strengths,

very little new data are needed for their cal-
culation—often just two cells in a table, as we
have seen. Even for group strengths, in effect
the data requirement is often less than a
whole table, depending on exactly which
group strength is being calculated. By con-
trast, ANOVA requires the entire table of
data and so is often much more epistemo-
logically demanding than (D). The issue of
data requirement would then become an-
other point against ANOVA.

It may be that many biologists already har-
bor some suspicions of ANOVA as a measure
of causal strength. After all, when using it
they often intelligently manipulate their
choice and design of experiments, and apply
common sense so as to avoid obviously ab-
surd conclusions. But the telling point is the
very need for such manipulations in the first
place. If in practice we are forced to stray
away from strict adherence to ANOVA, then
it cannot be a satisfactory definition of causal
strength. For this reason perhaps, ANOVA is
often not cited as such explicitly. Yet as we
saw in Table 2, it is used as such implicitly.

In conclusion, I believe that science and
philosophy can influence each other to mu-
tual benefit. Indeed, many of the philosoph-
ical theories of causation appealed to in this
paper have themselves been influenced by
scientific practice. In return, philosophy can
sometimes aid science. This is especially true
of topics such as causation, whose explicit
investigation has been much more the prov-
ince of the former than of the latter. In par-
ticular, in the case of ANOVA and causal
strength, let biology now be beholden to phi-
losophy that is good rather than defunct.
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