
than fingers, let’s move on to apples, since apples are often
among the first objects used to instruct children in basic math-
ematical concepts. 

Let’s say that we have a bag of apples. Everything in the bag
is apples, and the apples in the bag are a complete set for the
system under discussion. There are a number of lines of inquiry
one may pursue to find out information about these apples. Some
of the questions posed might be descriptive. Descriptive ques-
tions can provide information about such things as the color of
the apples, how they taste, if any of them are rotten, or if they
are big or small by some subjective measure. However, if you
want to use mathematics to ask a question about the apples in
this bag, you need to impose a symmetry onto the system, which
requires ignoring these types of descriptions.

The most obvious, and common, way to impose a symmetry
onto this system is to assert that each of the objects in the bag –
each apple – is equal to exactly one unit. Now that you’ve
imposed a symmetry, you can ask all sorts of mathematical ques-
tions about the system, the bag of apples. A simple question such
as “How many apples are in the bag?” is a starting point, but it
can become as intricate as you like. For instance: “If you need
to provide lunch for 20 people and there are 10 apples in the
bag, what percentage of the people can have an apple?” Or, “If
you have 10 apples and 20 people, what is the least number of
slices you can cut the apples into in order to provide everyone
with the same number of slices?” This undoubtedly all seems
obvious, but it is crucial to understand that you can begin to use
mathematics to ask questions about a system only when you have
imposed symmetry onto that system. 

Asking mathematical questions of your bag of apples will not
give you any information about the system except insofar as it
relates to the archetype you have imposed. Imagine that a little
girl named Emma is hungry and asks you if she can have an
apple. You have a bag of apples in the refrigerator, so you reply
“Yes” and walk her to the kitchen to get one. You remove a red
apple from the bag to offer her, and Emma recoils in horror.
“That’s what witches use to poison princesses!” she shrieks: “I
only eat the green ones.” It turns out that while you thought
you had apples in the fridge, according to Emma there are zero
because she had an entirely different model in mind when she
asked for an apple. To her, the red ones do not count. 

An astute reader may notice that the word count could be
doing double duty in that last sentence: as both an indication of
inclusion/exclusion and as a tallying of units. The Online Ety-
mology Dictionary says that the word ‘count’ is derived from the
Latin word computare, which means ‘to sum up’ or ‘reckon
together’… in Old French, computare became conter, meaning
‘to add up’ or ‘to tell a story’, and over time this developed into
the word count and its modern usage. This etymological detour
illustrates the idea that we must tell a story as to how things
reckon together, or categorize, in order to add them up. In other

T
he beating heart of mathematics, its foundational
axiom, is the idea that provides it with precision and
efficacy: start with symmetry. Mathematics in its purest
form is the manipulation of symmetries through con-

ceptual origami. Through the clever and creative folding of sym-
metries, brilliant mathematicians create the sometimes beauti-
ful and often critically important constructs through which we
understand our universe. When we ask questions of the cosmos
using mathematics, we map these symmetries onto the world. 

A Handful of Digits
To better appreciate how this works, let us first look at the most
ubiquitous symbols of mathematics, commonly known as the
cardinal numbers.

Let’s start with the basics. By ‘basics’, I mean that this may ini-
tially seem so trivially, stupidly obvious that you can’t see why
anyone would bother to point it out. Hang in there, and hope-
fully it will become apparent that this is going somewhere. 

The notion we’re going to start with is fingers. Yep, that
basic. So basic that (as it’s generally assumed) the entire reason
we have a base ten number system is because humans have ten
digits on their hands. Psychologists have shown that mathe-
matical achievement in children is strongly correlated with using
their fingers and thumbs to solve math problems; so fingers and
thumbs are right there at the evolutionary inception of mathe-
matical thinking.

When someone states that they have five digits on their right
hand, there is an underlying assumption smuggled into that state-
ment that’s easy to miss: for the purpose of the counting, each of
those digits is exactly the same. To be clear, obviously no one
believes that each of their digits is identical to the others in every
way. If you switch around your thumb and middle finger there
are going to be problems in manipulating objects. The point is
that the statement “I have five digits on my right hand” creates
the category digits, and for the purpose of counting, each instan-
tiation of a digit is exactly equal. It doesn’t matter whose fingers
and thumbs we count, the order they’re counted in, or which
ones are included in the tally. We add them all up exactly the
same way, as if they were completely interchangeable. In other
words, a symmetry has been imposed onto the category of digits
in which they each individually count as one unit: in respect of
counting, they are completely interchangeable. In mathematical
jargon, each unit is translationally symmetrical with every other
unit in the system, and the system will remain invariant regard-
less of how the units are swapped around. This symmetry is the
foundational attribute that allows mathematics to function with
exactness and elegance. To ask a question using mathematics is
simply to manipulate this and other symmetries in specific ways.

The First Fruits of Mathematical Knowledge
To illustrate the point with objects perhaps a little less peculiar
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words, we create a categorical prototype and then map that onto
the system we want to count. So by Emma’s reckoning, green
apples were the only type in the category she was counting.
That’s okay, because it isn’t just Emma who doesn’t think all
apples are the same. Grocery stores feel the same way.

Numbers Speed Away Indiscretely
Until this point we have been considering symmetries involving
discrete objects – fingers or apples as separate units, equal but
isolated from the other units in the system. The grocery store
does not look at apples this way at all. The symmetry they map
onto the system is a continuous measurement of weight, in which
the number of discrete apples is irrelevant. When you bring your
bag of ten apples to the counter to pay for them, you’re charged
for the weight of all of the apples combined: the total amount
of apple, not the tally of discrete units.

There is a particular conceptual difference between these dis-
crete and continuous measurements that benefits from a closer
look. When counting apples, while it is not always obvious that
the symmetry between units is a conceptual contrivance, it is
obvious that each unit is discrete. With continuous measure-
ments, the issue becomes somewhat inverted. Conceptually, each
unit of a continuous measurement is perfectly symmetrical in a
way that discrete objects are not. A gram of weight or a meter
of length is exactly the same as every other gram or meter regard-
less of the system the measurement is mapped onto. The sym-
metry is perfect, but now it is the discreteness which is illusory.
As Georg Cantor demonstrated at the end of the nineteenth cen-
tury, the numbers between one and two (or between any speci-
fied numbers, in fact) comprise an uncountable infinity. For
example, when trying to pick a place to begin counting, you can
always add another zero right after the decimal in 1.01 to get
the new number 1.001; you can similarly always add another
nine at the end of 1.9 before you get to two, and so on ad infini-
tum. In this respect, a unit of measurement is only as discrete as
the number of decimal places one choses to measure, in an infi-
nite continuum of uncountable numbers. 

Consider the speedometer on a car. A speedometer measures
how fast the vehicle is moving at a particular instant in time. It
will be read as either kilometers or miles per hours depending
on where you are in the world, but the units of measurement
are an arbitrary convenience: they could be cubits per turn of
the sandglass. The point is that in terms of both the time and
distance measured, the number derived is only as precise as the
measurement taken. If your car shows how fast you are travel-
ling to one decimal place, and displays a reading of 55.2 mph,
that’s not precisely the speed you are travelling. You are actu-
ally going 55.2…. out to some unknown decimal place on an infi-
nite continuum mph. (Well, it is conceivable that you are going
exactly 55.2 mph, but there is absolutely no way of knowing that
without taking an infinitely precise measurement, which is not
possible.) To be fair, it doesn’t really matter if you’re going 55.2
mph or 55.223067 mph. No one cares, not even a particularly
pernickety traffic cop. Indeed, in order to catapult spacecraft
into the farthest reaches of the Solar System with unbelievable
precision, NASA only calculates pi out to fifteen decimal places.
So for all practical purposes, the lack of discreetness in mea-
surement is inconsequential because we can know things with

enough precision to ask any questions of our universe we can
presently conceive. But the vagueness is always there beneath
the surface, lurking, haunting the minds of mathematicians and
philosophers alike. 

The Magic of Mathematics
The realm in which mathematics seems truly magical is when
its conceptual symmetries are mapped onto systems that turn
out to be symmetrical themselves. When physicists refer to the
elegance and beauty of an equation, this is down to this seem-
ingly supernatural marriage of the conceptual abstraction of
perfect symmetry in mathematics with the observed reality onto
which this abstraction is mapped. When this happens, as the
great mathematician Emmy Noether famously proved, we have
stumbled across one of the fundamental laws of nature.
Noether’s Theorem states that whenever there is a symmetry
in a physical system, there is an associated conservation law –
such as the law of conservation of energy, or the law of conser-
vation of electric charge. These are the laws of physics which
provide the predictability and order we need to navigate an oth-
erwise impossibly complex and chaotic world. 

Just as a perfect square of paper provides the initial frame-
work for an origami artist to fold delightfully elegant and com-
plex shapes, to start with symmetry is the inceptive essence of
mathematics. With this realization comes the awareness that
when a question begins with a perfect symmetry the mystifying
precision of math becomes tautological: the answers gleaned
from a mathematically posed question cannot help but reflect
the underlying perfect construction upon which the question
was formed. By continuing to ask questions with this unparal-
leled conceptual tool, brilliant thinkers will continue to push
the frontiers of human knowledge to reach a more profound
understanding of our universe.
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