
Termination Analyzer H is Not Fooled by Pathological Input D

A pair of C functions are defined such that D has the halting problem proof's pathological 
relationship to simulating termination analyzer H. When it is understood that D correctly 
simulated by H (a) Is the behavior that H must report on and (b) Cannot possibly terminate 
normally then it is understood that D is correctly determined to be non-halting. 

We can know that D correctly simulated by H must have different behavior than D(D) directly 
executed in main() because we can see (in its execution trace shown below) exactly how 
the pathological relationship between D and H changes the behavior of D relative to H.

For any program H that might determine whether programs halt, a "pathological" program D, 
called with some input, can pass its own source and its input to H and then specifically do the 
opposite of what H predicts D will do. No H can exist that handles this case. 
https://en.wikipedia.org/wiki/Halting_problem 

"A decision problem is a yes-or-no question on an infinite set of inputs" 
https://en.wikipedia.org/wiki/Decision_problem#Definition  

Can D correctly simulated by H terminate normally?
The x86utm operating system: https://github.com/plolcott/x86utm 
is based on an open source x86 emulator. x86utm enables one C function to execute another 
C function in debug step mode. 

// The following is written in C
//
01 typedef int (*ptr)(); // pointer to int function
02 int H(ptr x, ptr y)   // uses x86 emulator to simulate its input
03
04 int D(ptr x)
05 {
06   int Halt_Status = H(x, x);
07   if (Halt_Status)
08     HERE: goto HERE;
09   return Halt_Status;
10 }
11
12 void main()
13 {
14   H(D,D);
15 }

Execution Trace
Line 14: main() invokes H(D,D); 

keeps repeating (unless aborted)
Line 06: simulated D(D) invokes simulated H(D,D) that simulates D(D)

Simulation invariant:
D correctly simulated by H cannot possibly reach past its own line 06. 

H correctly determines that D correctly simulated by H cannot possibly terminate normally on 
the basis that H recognizes a dynamic behavior pattern equivalent to infinite recursion. H 
returns 0 this basis. 

https://en.wikipedia.org/wiki/Halting_problem
https://github.com/plolcott/x86utm
https://en.wikipedia.org/wiki/Decision_problem#Definition


Addendum applied to isomorphic Peter Linz Halting Problem Proof 

A simulating (partial) halt decider correctly predicts whether or not its correctly simulated input 
can possibly reach its own final state and halt. It does this by correctly recognizing several 
non-halting behavior patterns in a finite number of steps of correct simulation. Inputs that do 
terminate are simply simulated until they complete. 

When a simulating (partial) halt decider correctly simulates N steps of its input it derives the 
exact same N steps that a pure UTM would derive because it is itself a UTM with extra 
features. 

My reviewers cannot show that any of the extra features added to the UTM change the 
behavior of the simulated input for the first N steps of simulation: 
   (a) Watching the behavior doesn't change it.
   (b) Matching non-halting behavior patterns doesn't change it
   (c) Even aborting the simulation after N steps doesn't change the first N steps.

Because of all this we can know that the first N steps of input D simulated by simulating 
(partial) halt decider H are the actual behavior that D presents to H for these same N steps.

computation that halts… “the Turing machine will halt whenever it enters a final state” 
(Linz:1990:234)

When we see (after N steps) that D correctly simulated by H cannot possibly reach its 
simulated final state in any finite number of steps of correct simulation then we have 
conclusive proof that D presents non-halting behavior to H.

A simulating (partial) halt decider must always stop its simulation and report non-halting when-
so-ever it correctly detects that its correct simulation would never otherwise stop running. All 
halt deciders compute the mapping from their inputs to an accept or reject state on the basis of
the actual behavior of this input. 

When an input is defined to have a pathological relationship to its simulator this changes the 
behavior of this input. A simulating (partial) halt decider (with a pathological relationship) must 
report on this changed behavior to prevent its own infinite execution by aborting its simulation. 

When H simulates D it creates a separate process context for D with its own memory, stack 
and virtual registers. H is able to simulate D simulating itself, thus the only limit to recursive 
simulations is RAM.

Summary of Linz Halting Problem Proof
The Linz halting problem proof constructs its counter-example input ⟨ ⟩Ĥ  on the basis of 
prepending and appending states to the original Linz H, (assumed halt decider) thus is named 
embedded_H.

Original Linz Turing Machine H 
H.q0  ⟨M⟩ w ⊢* H.qy  // Turing Machine description M and finite string w, accept state
H.q0  ⟨M⟩ w ⊢* Hqn  // Turing Machine description M and finite string w,  reject state



The Linz term “move” means a state transition and its corresponding tape head action 
{move_left, move_right, read, write}. 

(q0) is prepended to H to copy the ⟨M⟩ input of Ĥ. The transition from (qa) to (qb) is the 
conventional infinite loop appended to the (qy) accept state of embedded_H. ⊢* indicates an 
arbitrary number of moves.

.q0 ⟨M⟩ ⊢* embedded_H ⟨M⟩ ⟨M⟩ ⊢* .qy ∞  // see diagram below for (qa) and (qb) Ĥ Ĥ

.q0 ⟨M⟩ ⊢* embedded_H ⟨M⟩ ⟨M⟩ ⊢* .qnĤ Ĥ

Analysis of Linz Halting Problem Proof

When Ĥ is applied to ⟨ ⟩     Ĥ
.q0 ⟨ ⟩ ⊢* embedded_H ⟨ ⟩ ⟨ ⟩ ⊢* .qy ∞ Ĥ Ĥ Ĥ Ĥ Ĥ
.q0 ⟨ ⟩ ⊢* embedded_H ⟨ ⟩ ⟨ ⟩ ⊢* .qn   Ĥ Ĥ Ĥ Ĥ Ĥ

computation that halts… “the Turing machine will halt whenever it enters a final state” 
(Linz:1990:234) 

Non-halting behavior patterns can be matched in N steps
⟨ ⟩ Ĥ Halting is reaching its simulated final state of ⟨ .qn⟩ Ĥ in a finite number of steps

N steps of ⟨ ⟩Ĥ  correctly simulated by embedded_H are the actual behavior of this input:
(a) Ĥ.q0 The input ⟨ ⟩Ĥ  is copied then transitions to embedded_H 
(b) embedded_H is applied to ⟨ ⟩ ⟨ ⟩Ĥ Ĥ  (input and copy) which simulates ⟨ ⟩Ĥ  applied to ⟨ ⟩Ĥ  
(c) which begins at its own simulated ⟨ .q0⟩ Ĥ to repeat the process

Simulation invariant: ⟨Ĥ⟩ correctly simulated by embedded_H never reaches its own 
simulated final state of ⟨Ĥ.qn⟩. 

Therefore when embedded_H aborts the simulation of its input and transitions to its own final 
state of Ĥ.qn it is merely reporting this verified fact.

Linz, Peter 1990. An Introduction to Formal Languages and Automata. Lexington/Toronto: D. 
C. Heath and Company. (317-320)
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