
(q0) is prepended to H to copy the ⟨M⟩ input of Ĥ. The transition from (qa) to (qb) is the 
conventional infinite loop appended to the (qy) accept state of embedded_H. ⊢* indicates an 
arbitrary number of moves.

.q0 ⟨M⟩ ⊢* embedded_H ⟨M⟩ ⟨M⟩ ⊢* .qy ∞  // see diagram below for (qa) and (qb) Ĥ Ĥ

.q0 ⟨M⟩ ⊢* embedded_H ⟨M⟩ ⟨M⟩ ⊢* .qnĤ Ĥ

Analysis of Linz Halting Problem Proof

When Ĥ is applied to ⟨ ⟩     Ĥ
.q0 ⟨ ⟩ ⊢* embedded_H ⟨ ⟩ ⟨ ⟩ ⊢* .qy ∞ Ĥ Ĥ Ĥ Ĥ Ĥ
.q0 ⟨ ⟩ ⊢* embedded_H ⟨ ⟩ ⟨ ⟩ ⊢* .qn   Ĥ Ĥ Ĥ Ĥ Ĥ

computation that halts… “the Turing machine will halt whenever it enters a final state” 
(Linz:1990:234) 

Non-halting behavior patterns can be matched in N steps
⟨ ⟩ Ĥ Halting is reaching its simulated final state of ⟨ .qn⟩ Ĥ in a finite number of steps

N steps of ⟨ ⟩Ĥ  correctly simulated by embedded_H are the actual behavior of this input:
(a) Ĥ.q0 The input ⟨ ⟩Ĥ  is copied then transitions to embedded_H 
(b) embedded_H is applied to ⟨ ⟩ ⟨ ⟩Ĥ Ĥ  (input and copy) which simulates ⟨ ⟩Ĥ  applied to ⟨ ⟩Ĥ  
(c) which begins at its own simulated ⟨ .q0⟩ Ĥ to repeat the process

Simulation invariant: ⟨Ĥ⟩ correctly simulated by embedded_H never reaches its own 
simulated final state of ⟨Ĥ.qn⟩. 

Therefore when embedded_H aborts the simulation of its input and transitions to its own final 
state of Ĥ.qn it is merely reporting this verified fact.
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