(q0) is prepended to H to copy the $\langle M \rangle$ input of \hat{H} . The transition from (qa) to (qb) is the conventional infinite loop appended to the (qy) accept state of embedded_H. \vdash * indicates an arbitrary number of moves.

 $\hat{H}.q0 \langle M \rangle \vdash^* embedded_H \langle M \rangle \langle M \rangle \vdash^* \hat{H}.qy \infty // see diagram below for (qa) and (qb) <math>\hat{H}.q0 \langle M \rangle \vdash^* embedded_H \langle M \rangle \langle M \rangle \vdash^* \hat{H}.qn$

Analysis of Linz Halting Problem Proof

When \hat{H} is applied to $\langle \hat{H} \rangle$ $\hat{H}.q0 \langle \hat{H} \rangle \vdash^* embedded_H \langle \hat{H} \rangle \langle \hat{H} \rangle \vdash^* \hat{H}.qy \infty$ $\hat{H}.q0 \langle \hat{H} \rangle \vdash^* embedded_H \langle \hat{H} \rangle \langle \hat{H} \rangle \vdash^* \hat{H}.qn$

computation that halts... "the Turing machine will halt whenever it enters a final state" (Linz:1990:234)

Non-halting behavior patterns can be matched in N steps

 $\langle \hat{H} \rangle$ Halting is reaching its simulated final state of $\langle \hat{H}.qn \rangle$ in a finite number of steps

N steps of $\langle \hat{H} \rangle$ correctly simulated by embedded_H are the actual behavior of this input: (a) \hat{H} .g0 The input $\langle \hat{H} \rangle$ is copied then transitions to embedded H

(b) embedded H is applied to $\langle \hat{H} \rangle \langle \hat{H} \rangle$ (input and copy) which simulates $\langle \hat{H} \rangle$ applied to $\langle \hat{H} \rangle$

(c) which begins at its own simulated $\langle \hat{H}.q0 \rangle$ to repeat the process

Simulation invariant: $\langle \hat{H} \rangle$ correctly simulated by embedded_H never reaches its own simulated final state of $\langle \hat{H}.qn \rangle$.

Therefore when embedded_H aborts the simulation of its input and transitions to its own final state of \hat{H} .qn it is merely reporting this verified fact.

Linz, Peter 1990. An Introduction to Formal Languages and Automata. Lexington/Toronto: D. C. Heath and Company. (317-320)