
Termination Analyzer H is Not Fooled by Pathological Input D

A pair of C functions are defined such that D has the halting problem proof's
pathological relationship to simulating termination analyzer H. When H correctly
determines that D correctly simulated by H must be aborted to prevent its own
infinite execution then H is necessarily correct to reject D as specifying non-halting
behavior. This exact same reasoning is applied to the Peter Linz Turing machine
based halting problem proof.

Overview
For any program H that might determine whether programs halt, a "pathological"
program D, called with some input, can pass its own source and its input to H
and then specifically do the opposite of what H predicts D will do. No H can
exist that handles this case. https://en.wikipedia.org/wiki/Halting_problem

The x86utm operating system: https://github.com/plolcott/x86utm enables one C
function to execute another C function in debug step mode. Simulating
Termination analyzer H simulates the x86 machine code of its input (using
libx86emu) in debug step mode until it correctly determines that its input will
never stop running unless aborted.

Can D correctly simulated by H terminate normally?
00 int H(ptr x, ptr x) // ptr is pointer to int function
01 int D(ptr x)
02 {
03 int Halt_Status = H(x, x);
04 if (Halt_Status)
05 HERE: goto HERE;
06 return Halt_Status;
07 }
08
09 void main()
10 {
11 H(D,D);
12 }

Execution Trace
Line 11: main() invokes H(D,D);

keeps repeating (unless aborted)
Line 03: simulated D(D) invokes simulated H(D,D) that simulates D(D)

Simulation invariant:
D correctly simulated by H cannot possibly reach past its own line 03.

When you understand that D simulated by H cannot possibly reach past its own
line 03 (thus cannot possibly halt) no matter what H does and

you understand that it is incorrect for H to report on the behavior of its directly
executed D(D) caller then this necessitates H can abort its simulation of D and
correctly report that D specifies a non-halting sequence of configurations.

https://en.wikipedia.org/wiki/Halting_problem
https://github.com/plolcott/x86utm

Computable functions are the formalized analogue of the intuitive notion of
algorithms, in the sense that a function is computable if there exists an algorithm
that can do the job of the function, i.e. given an input of the function domain it can
return the corresponding output. https://en.wikipedia.org/wiki/Computable_function

The behavior of the simulated D(D) before H aborts its simulation is different than
the behavior of the directly executed D(D) after H has aborted its simulation.
H(D,D) must report on the behavior that it actually sees. H is not allowed to report
on the behavior of its caller.

This halt status criteria has been extensively reviewed by many people:
H sees that D is calling itself with its same input parameters and there are no
conditional branch instructions between the invocation of D and its call to
H(D,D).

I independently derived the notion of a simulating halt decider myself
March 14, 2017 at 9:05 AM (CDT) USENET Message-ID:
<e18ff0a9-7f9d-4799-9d13-55d021afaa82@googlegroups.com>
along with two different versions of correct halt status criteria:

Professor Stoddart and Professor Hehner independently derived some of basis for
my idea of a simulating halt decider. Professor Stoddart detects patholgocal self-
reference. Professor Hehner determines that the simulated input would not halt.

The following describes a method similar to the method that H determines that D is
calling itself. H actually sees that D is calling its own machine address.

Implementation of H1 requires it to determine whether it is being invoked from
within S1. In a typical compiled sequential language this information can be
deduced from the return address for the call to H, and the symbol table, which
contains information that will tell us whether this return address is within the
code body of S1. However, this information is not usually directly accessible in
the language, so we will suppose we have written assembly code level a
test In S1 which will report whether the operation that invokes it has been
invoked from within S1. (Stoddart:2017)

The following references two of the criteria that H uses to determine that D is
calling H in recursive simulation: (a) D is calling itself (b) with its same parameters.

From a programmer's point of view, if we apply an interpreter to a
program text that includes a call to that same interpreter with that same
text asargument, then we have an infinite loop. A halting program has some
of the same character as an interpreter: it applies to texts through abstract
interpretation. Unsurprisingly, if we apply a halting program to a program
text that includes a call to that same halting program with that same text
as argument, then we have an infinite loop. A mathematical version of it
cannot escape the corresponding problem: either we leave the definition of the
halting function incomplete, not saying its result when applied to its own
program, or we suffer inconsistency. If we choose incompleteness, we cannot

mailto:e18ff0a9-7f9d-4799-9d13-55d021afaa82@googlegroups.com
https://en.wikipedia.org/wiki/Computable_function

require the program version to apply to texts that invoke the halting program,
and we cannot conclude that it is incomputable. If we choose inconsistency,
then it makes no sense to propose a program version. Either way, the
incomputability argument is lost. (Hehner:2011)

Alternatively when simulating halt decider H correctly determines that D
correctly simulated by H never halts this provides the basis for a correct halt
status decision of the Halting Problem's otherwise impossible input.

Simulating (partial) halt decider applied to Peter Linz Halting Problem Proof
A simulating (partial) halt decider correctly predicts whether or not its correctly
simulated input can possibly reach its own final state and halt. It does this by
correctly recognizing several non-halting behavior patterns in a finite number of
steps of correct simulation. Inputs that do terminate are simply simulated until they
complete.

When a simulating (partial) halt decider correctly simulates N steps of its input it
derives the exact same N steps that a pure UTM would derive because it is itself a
UTM with extra features.

My reviewers cannot show that any of the extra features added to the UTM
change the behavior of the simulated input for the first N steps of simulation:
 (a) Watching the behavior doesn't change it.
 (b) Matching non-halting behavior patterns doesn't change it
 (c) Even aborting the simulation after N steps doesn't change the first N steps.

Because of all this we can know that the first N steps of input D simulated by
simulating (partial) halt decider H are the actual behavior that D specifies to H for
these same N steps.

computation that halts… “the Turing machine will halt whenever it enters a final
state” (Linz:1990:234)

When we see (after N steps) that D correctly simulated by H cannot possibly reach
its simulated final state in any finite number of steps of correct simulation then we
have conclusive proof that D presents non-halting behavior to H.

A simulating (partial) halt decider must always stop its simulation and report non-
halting when-so-ever it correctly detects that its correct simulation would never
otherwise stop running. All halt deciders compute the mapping from their inputs to
an accept or reject state on the basis of the actual behavior specified by this input.

When an input is defined to have a pathological relationship to its simulator this
changes the behavior of this input. A simulating (partial) halt decider (with a
pathological relationship) must report on this changed behavior to prevent its own
infinite execution by aborting its simulation.

Summary of Linz Halting Problem Proof
The Linz halting problem proof constructs its counter-example input ⟨ ⟩Ĥ on the
basis of prepending and appending states to the original Linz H, (assumed halt
decider) thus is named embedded_H.

Original Linz Turing Machine H
H.q0 ⟨M⟩ w ⊢* H.qy // M applied to w halts
H.q0 ⟨M⟩ w ⊢* Hqn // M applied to w does not halt

The Linz term “move” means a state transition and its corresponding tape head
action {move_left, move_right, read, write}.

(q0) is prepended to H to copy the ⟨M⟩ input of Ĥ. The transition from (qa) to (qb) is
the conventional infinite loop appended to the (qy) accept state of embedded_H.
⊢* indicates an arbitrary number of moves.

.q0 ⟨M⟩ ⊢* embedded_H ⟨M⟩ ⟨M⟩ ⊢* .qy ∞ Ĥ Ĥ

.q0 ⟨M⟩ ⊢* embedded_H ⟨M⟩ ⟨M⟩ ⊢* .qnĤ Ĥ

Analysis of Linz Halting Problem Proof --- Copy of ⟨ ⟩Ĥ simulated with ⟨ ⟩Ĥ

When is applied to ⟨ ⟩ Ĥ Ĥ
.q0 ⟨ ⟩ ⊢* embedded_H ⟨ ⟩ ⟨ ⟩ ⊢* .qy ∞ Ĥ Ĥ Ĥ Ĥ Ĥ
.q0 ⟨ ⟩ ⊢* embedded_H ⟨ ⟩ ⟨ ⟩ ⊢* .qn Ĥ Ĥ Ĥ Ĥ Ĥ

Simulating Partial Halt Decider Applied to Linz Proof
Non-halting behavior patterns can be matched in N steps. The simulated ⟨ ⟩Ĥ halts
only it when reaches its simulated final state of ⟨ .qn⟩Ĥ in a finite number of steps.

Execution trace of applied to ⟨ ⟩ Ĥ Ĥ
(a) Ĥ.q0 The input ⟨ ⟩Ĥ is copied then transitions to embedded_H
(b) embedded_H applied ⟨ ⟩ ⟨ ⟩Ĥ Ĥ (input and copy) simulates ⟨ ⟩Ĥ applied to ⟨ ⟩Ĥ
(c) which begins at its own simulated ⟨ .q0⟩Ĥ to repeat the process

Simulation invariant: ⟨ ⟩Ĥ correctly simulated by embedded_H never reaches its
own simulated final state of ⟨ .qn⟩Ĥ .

Therefore when embedded_H aborts the simulation of its input and transitions to

its own final state of .qnĤ it is merely reporting this verified fact.

Conclusion
We have shown a 100% fully operational concrete example of a simulating
termination analyzer applied to a pair of C functions that have the Halting
Problem's pathological relationship to each other.

When it is understood that D correctly simulated by H cannot possibly halt and that
H is reporting on the behavior of this correctly simulated input then H is correct to
abort its simulation of D and report that this input does not halt.

The exact same reasoning applies to the Peter Linz Halting Problem proof. When

embedded_H is applied to ⟨ ⟩ ⟨ ⟩Ĥ Ĥ it transitions to Ĥ.qn indicating that its correctly

simulated input cannot possibly reach its own simulated final state of ⟨ .qn⟩.Ĥ

References
[1] Steffen Winterfeldt and others libx86emu (x86 emulation library)
1996-2017 https://github.com/wfeldt/libx86emu

[2] P Olcott, 2023. The x86utm operating system:
https://github.com/plolcott/x86utm
Several fully operational simulating termination analyzers with sample inputs.

[3] Bill Stoddart. The Halting Paradox
20 December 2017
https://arxiv.org/abs/1906.05340
arXiv:1906.05340 [cs.LO]

[4] E C R Hehner. Problems with the Halting Problem, COMPUTING2011
Symposium on 75 years of Turing Machine and Lambda-Calculus, Karlsruhe
Germany, invited, 2011 October 20-21; Advances in Computer Science and
Engineering v.10 n.1 p.31-60, 2013
https://www.cs.toronto.edu/~hehner/PHP.pdf

[5] Linz, Peter 1990. An Introduction to Formal Languages and Automata.
Lexington/Toronto: D. C. Heath and Company. (317-320)

https://www.cs.toronto.edu/~hehner/PHP.pdf
https://arxiv.org/abs/1906.05340
https://github.com/plolcott/x86utm
https://github.com/wfeldt/libx86emu

