
Simulating (partial) Halt Deciders Defeat the Halting Problem Proofs

A simulating halt decider correctly predicts whether or not its correctly simulated input can
possibly reach its own final state and halt. It does this by correctly recognizing several non-
halting behavior patterns in a finite number of steps of correct simulation. Inputs that do
terminate are simply simulated until they complete.

When a simulating halt decider correctly simulates N steps of its input it derives the exact
same N steps that a pure UTM would derive because it is itself a UTM with extra features.

My reviewers cannot show that any of the extra features added to the UTM change the
behavior of the simulated input for the first N steps of simulation:

• Watching the behavior doesn't change it.
• Matching non-halting behavior patterns doesn't change it
• Even aborting the simulation after N steps doesn't change the first N steps.

Because of all this we can know that the first N steps of input D simulated by simulating halt
decider H are the actual behavior that D presents to H for these same N steps.

computation that halts… “the Turing machine will halt whenever it enters a final state”
(Linz:1990:234)

When we see (after N steps) that D correctly simulated by H cannot possibly reach its
simulated final state in any finite number of steps of correct simulation then we have
conclusive proof that D presents non-halting behavior to H.

Summary of Linz Halting Problem Proof

The Linz halting problem proof constructs its counter-example input ⟨ ⟩Ĥ on the basis of
prepending and appending states to the original Linz H, (assumed halt decider) thus is named
embedded_H.

Original Linz Turing Machine H
H.q0 ⟨M⟩ w ⊢* H.qy // Turing Machine description M and finite string w, reject state
H.q0 ⟨M⟩ w ⊢* Hqn // Turing Machine description M and finite string w, accept state

(q0) is prepended to H to copy the ⟨ ⟩Ĥ input of Ĥ. The transition from (qa) to (qb) is the
conventional infinite loop appended to the (qy) accept state of embedded_H. ⊢* indicates an
arbitrary number of moves.

The Linz term “move” means a state transition and its corresponding tape head action
{move_left, move_right, read, write}.

.q0 ⟨M⟩ ⊢* embedded_H ⟨M⟩ ⟨M⟩ ⊢* .qy ∞Ĥ Ĥ

.q0 ⟨M⟩ ⊢* embedded_H ⟨M⟩ ⟨M⟩ ⊢* .qnĤ Ĥ

---1--- 2023-04-12 01:14 PM

Analysis of Linz Halting Problem Proof

When Ĥ is applied to ⟨ ⟩Ĥ

.q0 ⟨ ⟩ ⊢* embedded_H ⟨ ⟩ ⟨ ⟩ ⊢* .qy ∞ Ĥ Ĥ Ĥ Ĥ Ĥ

.q0 ⟨ ⟩ ⊢* embedded_H ⟨ ⟩ ⟨ ⟩ ⊢* .qn Ĥ Ĥ Ĥ Ĥ Ĥ

(q0) The input ⟨ ⟩Ĥ is copied then transitions to (qx)
(qx) embedded_H is applied to ⟨ ⟩Ĥ ⟨ ⟩Ĥ (input and copy)
which simulates ⟨ ⟩Ĥ applied to ⟨ ⟩Ĥ which begins at its own (q0) to repeat the process.

This process continues to repeat until embedded_H recognizes the repeating pattern and
aborts its simulation of ⟨ ⟩Ĥ ⟨ ⟩Ĥ . embedded_H can see the same repeating pattern that we see.

computation that halts… “the Turing machine will halt whenever it enters a final state”
(Linz:1990:234)

Every "rebuttal" simply ignores this key fact
⟨ ⟩Ĥ ⟨ ⟩Ĥ correctly simulated by embedded_H cannot possibly reach its own simulated final state
of ⟨ .qn⟩Ĥ and halt in any finite number of steps of correct simulation.

Linz, Peter 1990. An Introduction to Formal Languages and Automata. Lexington/Toronto: D.
C. Heath and Company. (317-320)

---2--- 2023-04-12 01:14 PM

Concrete Rebuttal of Halting Theorem with fully operational software

Simulating halt decider H correctly predicts whether or not D correctly simulated by H can
possibly reach its own final state in any finite number of correctly simulated steps. It does this
by correctly recognizing several non-halting behavior patterns in a finite number of steps of
correct simulation. Inputs that do terminate are simply simulated until they complete.

01 int D(int (*x)())
02 {
03 int Halt_Status = H(x, x);
04 if (Halt_Status)
05 HERE: goto HERE;
06 return Halt_Status;
07 }
08
09 void main()
10 {
11 H(D,D);
12 }

We form an isomorphism to the Linz Turing Machine analysis in the C programming language.
It has the key required element that D attempts to do the opposite of whatever value H returns.

For any program H that might determine whether programs halt, a "pathological" program D,
called with some input, can pass its own source and its input to H and then specifically do the
opposite of what H predicts D will do. No H can exist that handles this case.
https://en.wikipedia.org/wiki/Halting_problem

As was proved above in the Linz example the first N steps of input D correctly simulated by
simulating halt decider H are the actual behavior that D presents to H for these same N steps.

When H correctly determines (after N simulated steps) that D correctly simulated by H cannot
possibly reach its own final state on line 6 and halt then H has conclusive proof that D presents
non-halting behavior to H.

Here is the sequence if H would never abort it simulation
main() calls H(D,D) that simulates D(D) at line 11
keeps repeating: simulated D(D) calls simulated H(D,D) that simulates D(D) at line 03 ...

This proves that D correctly simulated by H cannot possibly reach its own simulated final state
at line 6 and halt in any finite number of steps of correct simulation.

When H aborts its simulation and returns 0 it is only affirming this verified fact.

H(D,D) fully operational in x86utm operating system: https://github.com/plolcott/x86utm

Source-code of several different partial halt deciders and their sample input.
https://github.com/plolcott/x86utm/blob/master/Halt7.c

---3--- 2023-04-12 01:14 PM

https://github.com/plolcott/x86utm/blob/master/Halt7.c
https://github.com/plolcott/x86utm
https://en.wikipedia.org/wiki/Halting_problem

	Every "rebuttal" simply ignores this key fact

