Defining a Decidability Decider

By extending the notion of a Well Formed Formula to include syntactically formalized rules for rejecting semantically incorrect expressions we recognize and reject expressions that have the semantic error of Pathological self-reference(Olcott 2004). The foundation of this system requires the notion of a BaseFact that anchors the semantic notions of True and False. When-so-ever a formal proof from BaseFacts of language L to a closed WFF X or ~X of language L does not exist X is decided to be semantically incorrect.

A language L is a set of finite strings of characters from a defined alphabet specifying relations to other finite strings. These finite strings could be tokenized as single integer values.

A Relation is the same as a Predicate from Predicate Logic, essentially a Boolean valued function.

A BaseFact is an expression X of (formal or formalized natural) language L that has been assigned the semantic property of True by making it a member of the collection named: BaseFacts. (Similar to a math Axiom).

- (1) BaseFacts that contradict other BaseFacts are prohibited.
- (2) BaseFacts must specify Relations between Things.

Finite string Expression X expresses relation R of language L.

The above is the complete specification for a BaseFact.

To verify that an expression X of language L is True or False only requires a syntactic logical consequence inference chain (formal proof) from one or more BaseFacts to X or ~X. (Backward chaining reverses this order).

```
True(L, X) \leftrightarrow ∃\Gamma ⊆ BaseFacts(L) Provable(\Gamma, X) False(L, X) \leftrightarrow ∃\Gamma ⊆ BaseFacts(L) Provable(\Gamma, \simX)
```

Sentence (mathematical logic)

In mathematical logic, a sentence of a predicate logic is a boolean-valued well-formed formula with no free variables. A sentence can be viewed as expressing a proposition, something that must be true or false. The restriction of having no free variables is needed to make sure that sentences can have concrete, fixed truth values: As the free variables of a (general) formula can range over several values, the truth value of such a formula may vary.

```
Defining a Generic Decidability Decider:

∀L ∈ Formal_Systems

∀X ∈ Closed-WFF(L)

~True(L, X) ∧ ~False(L, X) → Incorrect(L, X)
```

Copyright 2018 (and many other years since 1997) Pete Olcott