Halting problem proofs refuted on the basis of software engineering

This is an explanation of a key new insight into the halting problem provided in the language of software
engineering. Technical computer science terms are explained using software engineering terms. No knowledge of
the halting problem is required.

It is based on fully operational software executed in the x86utm operating system. The x86utm operating system
(based on an excellent open source x86 emulator) was created to study the details of the halting problem proof
counter-examples at the much higher level of abstraction of C/x86.

To fully understand this paper a software engineer must be an expert in:

(a) The C programming language.

(b) The x86 programming language.

(c) Exactly how C translates into x86 (how C function calls are implemented in x86).
(d) The ability to recognize infinite recursion at the x86 assembly language level.

The computer science term “halting” means that a Turing Machine terminated normally reaching its last instruction
known as its “final state”. This is the same idea as when a function returns to its caller as opposed to and contrast
with getting stuck in an infinite loop or infinite recursion.

In computability theory, the halting problem is the problem of determining, from a
description of an arbitrary computer program and an input, whether the program will
finish running, or continue to run forever. Alan Turing proved in 1936 that a general
algorithm to solve the halting problem for all possible program-input pairs cannot exist.

For any program H that might determine if programs halt, a "pathological" program P,
called with some input, can pass its own source and its input to H and then specifically
do the opposite of what H predicts P will do. No H can exist that handles this case.

https://en.wikipedia.org/wiki/Halting_problem

The following H and P have the above specified pathological relationship to each other. When H(P,P) correctly
determines that its input specifies a non-halting sequence of instructions the above template is refuted. All of the
conventional halting problem proofs depend on the above undecidable input template and fail without it.

typedef void (*ptr)Q;
int H(ptr p, ptr i);

void P(ptr x)

if (H(x, X))
HERE: goto HERE;
return;

int mainQ

output("Input_Halts = ", H(P, P));

When the execution trace of function P() simulated by function H() shows:

(1) Function H() is called from P().

(2) With the same parameters to H().

(3) With no instructions in P() that could escape this infinitely recursive simulation:
{index jump, conditional branch, return}

Then H(P,P) correctly predicts that its correctly simulated input would never terminate normally thus H aborts its
simulation of P and rejects this input as non-halting. (details are shown at the x86 level as Example 03).

This general principle refutes conventional halting problem proofs

Every simulating halt decider that correctly simulates its input until it correctly predicts that this simulated input
would never terminate normally (reach its final state), correctly rejects this input as non-halting.

] 07/11/22 01:24:23 PM

https://en.wikipedia.org/wiki/Halting_problem

Example 01: HO correctly determines that Infinite_Loop() never halts

¥oid Infinite_Loop()

HERE: goto HERE;

int mainQ

output("Input_Halts = ", HOC(u32)Infinite_Loop));

“Infinite“Loog()ss

[00001102] (01 push ebp
[00001103] (02) 8bec mov ebp,esp
[00001105] (02) ebfe jmp 00001105
[00001107](01) 5d pop ebp
[00001108](01) c3

Size in bytes:(0007) [00001108]

_mainQ)

[00001192](01) 55 push ebp
[00001193](02) 8bec mov ebp,esp

[00001195] (05) 6802110000 push 00001102
[0000119a] (05) e8d3fbffff call 00000d72
[0000119] (03) 83c404 add esp,+04
[000011a2] (01) 50 push eax
[000011a3] (05) 68a3040000 push 000004a3
[000011a8] (05) e845F3ffff call 0000042
[000011ad] (03) 83c408 add esp,+08

[000011b0] (02) 33c0 xor eax,eax
[000011b2](01) 5d pop ebp

[000011b3](01) c3 ret

Size in bytes:(0034) [000011b3]

machine stack stack machine assembly
address address data code language
[00001192] [00101ef8] [00000000] 55 push ebp

[00001193] [00101ef8] [00000000] 8bec mov ebp,esp
[00001195] [00101ef4] [00001102] 6802110000 push 00001102
[0000119a] [00101ef0] [0000119f] e8d3fbffff call 00000d72

HO: Begin Simulation Execution Trace Stored at:2llfac

[00001102] [00211f9c] [00211fa0] 55 push ebp
[00001103] [00211f9c] [00211fa0] 8bec mov ebp,esp
[00001105] [00211f9c] [00211fa0] ebfe jmp 00001105
[00001105] [00211f9c] [00211fa0] ebfe jmp 00001105
HO: Infinite Loop Detected Simulation Stopped
if (current->Simplified_opcode == JIMP) // IvP
if (current->Decode_Target <= current->Address) // upward
if (traced->Address == current->Decode_Target) // to this address
if (Cond1t1ona1 _Branch_count == 0) // no escape
return

[0000119f] [00101ef8] [00000000] 83c404 add esp,+04
[000011a2] [00101ef4] [00000000] 50 push eax
[000011a3] [00101ef0] [000004a3] 68a3040000 push 000004a3
[000011a8] [00101ef0] [000004a3] e845f3ffff call 0000042
Input_Halts = 0

[000011ad] [00101ef8] [00000000] 83c408 add esp,+08
[000011b0] [00101ef8] [00000000] 33cO Xor eax,eax
[000011b2] [00101efc] [00100000] 5d pop ebp
[000011b3] [00101F00] [00000004] c3

Number of Instructions Executed(554) == 8 Pages

S - 07/11/22 01:24:23 PM

Example 02: H correctly determines that Infinite_Recursion() never halts

void Infinite_Recursion(int N)

Infinite_Recursion(N);

int mainQ)

output("Input_Halts = ", H((u32)Infinite_Recursion, 0x777));

_Infinite_Recursion()
55

[000010f2] (01) push ebp
[0000103](02) 8bec mov ebp,esg
[0000105] (03) 8b4508 mov eax, [ebp+08]
[000010¥8] (01) 50 push eax
[00001019] (05) e8Ff4ffffff call 0000102
[000010fe] (03) 83c404 add esp,+04
[00001101] (01) 5d pop ebp

[00001102] (01)
Size in bytes: (0017) [00001102]

_mainQ)
[000011b2]

[1€01) 55
[000011b3]

push ebp
mov ebp,es

[000011b5]
[000011ba]
[000011bf]
[000011c4]
[000011c7]
[000011c8]
[000011cd]

8bec
6877070000
6812100000
e8aefdffff
83c408
(01) 50
6823040000
e820f3ffff

P
push 00000777
push 000010f2
call 0000072
add esp,+08
push eax
push 000004a3
call 000004f2

[000011d2]
[000011d5] 33¢c0
[000011d7] 5d
[000011d8](01) c3
Size in bytes:(0039)

83c408 add esp,+08
Xor eax,eax

pop ebp
ret
[000011d8]

stack
data

[00000000]
[00000000]
[00000777]
[0000102]
[000011c4]

stack
address

[00101F39]
[00101F39]
[00101F35]
[00101F31]
[00101F2d]

machine
address

[000011b2]
[000011b3]
[000011b5]
[000011ba]
[000011bf]

machine

code

55 push ebp

8bec mov ebp,esp
6877070000 push 00000777
6812100000 push 0000102
e8aefdffff call 0000072

assembly
language

H: Begin Simulation Execution Trace Stored at:111fe5

00001021 [00111fd1] [00111fd5] 55 push ebp

[000010F3][00111fd1] [00111fd5] 8bec mov ebp, esB

[00001015] [00111fd1] [00111fd5] 8b4508 mov eax [ebp+08]

[0000108] [00111fcd] [00000777] 50 push // push 0x777

[000010¥9] [00111fc9] [000010fe] e8f4ffffff call 000010f2 // call Infinite_Recursion
[000010F2] [00111fc5] [00111fd1] 55 push ebp

[000010f3] [00111fc5] [00111fd1] 8bec mov ebp, esB

[000010F5] [00111fc5] [00111fd1l] 8b4508 mov eax [ebp+08]

[000010¥8] [00111fc1] [00000777] 50 ush e // push 0x777

[00001079] [00111fbd] [000010fe] e8f4ffffff ca11 000010f2 // ca11 Infinite_Recursion

H: Infinite Recursion Detected Simulation Stopped

if (current->Simplified_Opcode == CALL)
if (current->Simplified_Opcode == traced->Simplified_Opcode) // CALL
if (current->Address == traced->Address) // from same address
if (current->Decode_Target == traced->Decode_Target) // to Same Function
if (Conditional_Branch_Count == 0) // no escape

return 2;

[000011c4][00101f39] [00000000]

83c408

[000011c7] [00101f35] [00000000] 50

[000011c8] [00101f31] [000004a3]
[000011cd] [00101f31] [000004a3]
Input_Halts = 0

68a3040000
e820f3ffff

add esp,+08
push eax

push 000004a3
call 000004f2

[000011d2][00101f39][00000000] 83c408 add esp,+08
[000011d5][00101f39] [00000000] 33cO XOor eax,eax
[000011d7][00101f3d] [00000018] 5d pop ebp
[000011d8] [00101F41] [00000000] c3 ret

Number of Instructions Executed(1118) == 17 Pages

07/11/22

01:24:23 PM

Example 03:

goid P(u32 x)

H(P,P) correctly determines that its input never halts

esp
push 00001202 // push P
push 00001202 // push P
call 00001032 // call executed H

// push P

if (H(x, x))
HERE: goto HERE;
return;
int main(Q)
output("Input_Halts = ", H((u32)P, (u32)P));
PO]
[00001202](01) 55 push ebp
[00001203](02) 8bec mov ebp,esp
[00001205] (03) 8b4508 mov eax, [ebp+08]
[00001208] (01) 50 push eax
[00001209] (03) 8b4d08 mov ecx, [ebp+08]
[0000120c] (01) 51 push ecx
[0000120d] (05) e820feffff call 00001032
[00001212] (03) 83c408 add esp,+08
[00001215](02) 85c0 test eax,eax
[00001217] (02) 7402 jz 0000121b
[00001219](02) ebfe jmp 00001219
[0000121b] (01) 5d pop ebp
[0000121c] (01) ret
Size in bytes: (0027) [0000121c]
_main() _
[00001222](01) 55 push ebp
[00001223](02) 8bec mov ebp,esp
[00001225] (05) 6802120000 push 00001202
[0000122a] (05) 6802120000 push 00001202
[0000122F] (05) e8fefdffff call 00001032
[00001234](03) 83c408 add esp,+08
[00001237](01) 50 push eax
[00001238] (05) 68b3030000 push 000003b3
[0000123d] (05) e8cOfLffff call 00000402
[00001242](03) 83c408 add esp,+08
[00001245](02) 33c0 Xor eax,eax
[00001247](01) 5d pop ebp
[00001248](01) c3 ret
Size in bytes:(0039) [00001248]
machine stack stack machine assembly
address address data code language
[00001222] [00102001] [00000000] 55 push ebp
[00001223] [0010200f] [00000000] 8bec mov ebp
[00001225] [0010200b] [00001202] 6802120000
[0000122a] [00102007] [00001202] 6802120000
[0000122] [00102003] [00001234] e8fefdffff
Begin Simulation Execution Trace Stored at:2120c3
Address_of_H:1032 i
[00001202] [002120af] [002120b3] 55 push ebp
[00001203] [002120af] [002120b3] 8bec mov ebp,esp
[00001205] [002120af] [002120b3] 8b4508 mov eax, [ebp+08]
[00001208] [002120ab] [00001202] 50 push eax
[00001209] [002120ab] [00001202] 8b4d08 mov ecx, [ebp+08]
[0000120c] [002120a7] [00001202]
[0000120d] [002120a3] [00001212]

51 push ecx // push P
e820feffff call 00001032 // call emulated H
Infinitely Recursive Simulation Detected Simulation Stopped

H knows its own machine address and on this basis it can easily

examine its stored execution_trace of P (see above) to determine:

(a) P is calling H with the same arguments that H was called with.

(b) No instructions in P could possibly escape this otherwise infinitely recursive emulation.

(c) H aborts its emulation of P before its call to H is emulated.

[00001234] [0010200f] [00000000]

83c408

[00001237] [0010200b] [00000000] 50

[00001238] [00102007] [000003b3]
[0000123d] [00102007] [000003b3]
Input_Halts = 0

[00001242][0010200f][00000000]
[00001245][0010200f] [00000000]
[00001247][00102013] [00100000]
[00001248] [00102017] [00000004]

68b3030000
e8cOf1lffff

83c408
33c0
5d

c3
Number of Instructions Executed(870) / 67 =

S

07/11/22

add esp,+08
push eax

push 000003b3
call 00000402

From a purely software engineering
perspective (anchored in the semantics of
the x86 language) it is proven that H(P,P)

add esp,+08 correctly predicts that its correct and
or apn complete x86 emulation of its input would
pop ebp . . .
never reach the "ret" instruction (final state)
s pages of this input. Copyright 2022 PL Olcott
01:24:23 PM

Example 04: An impossible program: Strachey(1965)
The Computer Journal, Volume 7, Issue 4, January 1965, Page 313,
https://doi.org/10.1093/comjnl/7.4.313

typedef void (*ptr)(;
// rec routine P

// 8L :if T[P] go to L
// Return §

void Strachey_PQ)

L: if (T(Strachey_P)) goto L;
return;

int mainQ)

output("Input_Halts = ", T(Strachey_P));

_Strachey_P()

[000012a6](01) 55 push ebp
[000012a7](02) 8bec mov ebp,esp
[000012a9] (05) 68a6120000 push 000012a6
[000012ae] (05) e833fcffff call 00000ee6
[000012b3](03) 83c404 add esp,+04

[000012b6] (02) 85c0 test eax,eax
[000012b8] (02) 7402 jz 000012bc
[000012ba](02) ebed jmp 000012a9
[000012bc] (01) 5d pop ebp
[000012bd] (01)

Size in bytes: (0024) [000012bd]

_main()

[00001346](01) 55 push ebp
[00001347] (02) 8bec mov ebp,esp

[000013497(05) 68a6120000 push 000012a6
[0000134e](05) e893FfbFFff call 00000ee6
[00001353]€03) 83c404 add esp,+04
[000013567(01) 50 push eax
[000013577(05) 6817050000 push 00000517
[0000135c] €05) e805F2fFFF call 00000566
[00001361](03) 83c408 add esp,+08

[00001364](02) 33cO Xor eax,eax

[00001366] (01) 5d pop ebp

[00001367](01) c3 ret

Size in bytes:(0034) [00001367]

machine stack stack machine assembly
address address data code Tlanguage
[00001346] [0010221b] [00000000] 55 push ebp
[00001347][0010221b] [00000000] 8bec mov ebp, esp

[00001349] [00102217] [000012a6] 6826120000 push 000012a6
[0000134e][00102213] [00001353] e893fbffff call 00000ee6

T: Begin Simulation Execution Trace Stored at:1122c7
Address_of_T:ee6 i i
[000012a6] [001122b7] [001122bb] 55 push ebp

[000012a7] [001122b7] [001122bb] 8bec mov ebp,esp
[00001229] [001122b3] [000012a6] 6826120000 push 000012a6
[000012ae] [001122af] [000012b3] e833fcffff call 00000ee6

T: Infinitely Recursive Simulation Detected Simulation Stopped

T knows its own machine address and on this basis it can easily

examine its stored execution_trace of Strachey_ P (see above) to determine:

(a) Strachey_P is calling T with the same arguments that T was called with.

(b) No instructions in Strachey_P could possibly escape this otherwise infinitely recursive emulation.
(c) T aborts its emulation of Strachey_P before its call to T is emulated.

[000013537[0010221b] [00000000] 83c404 add esp,+04
[00001356]1[00102217] [00000000] 50 push eax
[00001357][00102213] [00000517] 6817050000 push 00000517
[0000135¢][00102213] [00000517] e805f2ffff call 00000566
Input_Halts = 0

[00001361][0010221b] [00000000] 83c408 add esp,+08
[00001364][0010221b] [00000000] 33c0 Xor eax,eax
[00001366] [0010221f] [00000018] 5d pop ebp
[00001367] [00102223] [00000000] c3

Number of Instructions Executed(538) == 8 Pages

5 07/11/22 01:24:23 PM

https://doi.org/10.1093/comjnl/7.4.313

Appendix (Simulating halt decider applied to Peter Linz proof)

The following is the same idea a shown above this time it is applied to the Peter Linz Halting
Problem proof. It can only be undertood within the context of this proof.

A simulating halt decider (SHD) computes the mapping from its inputs to its own final states on
the basis of the behavior of its correctly simulated input.

All of the conventional halting problem counter-example inputs are simply rejected by a
simulating halt decider as non-halting because they fail to meet the Linz definition of halting:

computation that halts ... the Turing machine will halt whenever it enters a final state.
(Linz:1990:234)

USENET comp.theory: On 4/11/2022 3:19 PM, Malcolm McLean wrote:
> PQO's idea is to have a simulator with an infinite cycle detector.

> You would achieve this by modifying a UTM, so describing it as

> a "modified UTM", or "acts like a UTM until it detects an infinite

> cycle", is reasonable. And such a machine is a fairly powerful

> halt decider. Even if the infinite cycle detector isn't very

> sophisticated, it will still catch a large subset of non-halting

> machines.

The following simplifies the syntax for the definition of the Linz Turing machine H.
There is no need for the infinite loop after H.qy because it is never reached. The halting criteria
has been adapted so that it applies to a simulating halt decider (SHD).

A.qo (A) -* H (A) (A) -* A.qy
If the correctly simulated input (H) (H) to H would reach its own final state of (H.qy) or (H.qn).

A.qo (A) —* H (A) (A) -* A.gn
If the correctly simulated input (H) (H) to H would never reach its own final state of (H.qy) or (H.gn).

When H is applied to (H) // subscripts indicate unique finite strings
H copies its input (Fo) to (H1) then H simulates (Ho) (H1)

Then these steps would keep repeating: (unless their simulation is aborted)
o copies its input (A1) to (H2) then Ho simulates (H1) (H)

H1 copies its input (Hz) to (Hs) then H1 simulates (Hz) (Hs)

H2 copies its input (A3) to (Ha) then H2 simulates (Hz) (Ha)...

Since we can see that the simulated input: (Fo) to H would never reach its own final state of
(Ho.qy) or (Ho.qn) we know that it is non-halting.

Linz, Peter 1990. An Introduction to Formal Languages and Automata. Lexington/Toronto: D.
C. Heath and Company. (317-320)

——b--- 07/11/22 01:24:23 PM

