Halting problem proofs refuted on the basis of software engineering

This is an explanation of a key new insight into the halting problem provided in the language of software
engineering. Technical computer science terms are explained using software engineering terms. No
knowledge of the halting problem is required.

It is based on fully operational software executed in the x86utm operating system. The x86utm
operating system (based on an excellent open source x86 emulator) was created to study the details of
the halting problem proof counter-examples at the much higher level of abstraction of C/x86.

To fully understand this paper a software engineer must be an expert in:

(a) The C programming language.

(b) The x86 programming language.

(c) Exactly how C translates into x86 (how C function calls are implemented in x86).
(d) The ability to recognize infinite recursion at the x86 assembly language level.

The computer science term “halting” means that a Turing Machine terminated normally reaching its last
instruction known as its “final state”. This is the same idea as when a function returns to its caller as
opposed to and contrast with getting stuck in an infinite loop or infinite recursion.

In computability theory, the halting problem is the problem of determining,
from a description of an arbitrary computer program and an input, whether
the program will finish running, or continue to run forever. Alan Turing proved
in 1936 that a general algorithm to solve the halting problem for all possible
program-input pairs cannot exist.

For any program H that might determine if programs halt, a "pathological”
program P, called with some input, can pass its own source and its input to

H and then specifically do the opposite of what H predicts P will do. No H

can exist that handles this case. https://en.wikipedia.org/wiki/Halting_problem

The computer science term “halting” means that a Turing Machine terminated normally reaching its last
instruction known as its “final state”. This is the same idea as when a function returns to its caller as
opposed to and contrast with getting stuck in an infinite loop or infinite recursion.

This general principle refutes conventional halting problem proofs
Every simulating halt decider that correctly simulates its input until it correctly determines that this
simulated input would never reach its final state, correctly rejects this input as non-halting.

From a purely software engineering perspective H(P,P) is required to correctly predict that its correct
and complete x86 emulation of its input would never reach the "ret" instruction of this input and H must
do this in a finite number of steps.

In computability theory, the halting problem is the problem of determining,
from a description of an arbitrary computer program and an input, whether
the program will finish running, or continue to run forever. Alan Turing proved
in 1936 that a general algorithm to solve the halting problem for all possible
program-input pairs cannot exist.

For any program H that might determine if programs halt, a "pathological”
program P, called with some input, can pass its own source and its input to

H and then specifically do the opposite of what H predicts P will do. No H

can exist that handles this case. https://en.wikipedia.org/wiki/Halting_problem

-—1--- 07/02/22 11:13:01 AM

https://en.wikipedia.org/wiki/Halting_problem
https://en.wikipedia.org/wiki/Halting_problem

HO correctly determines that Infinite_Loop() never halts

void Infinite_Loop()
HERE: goto HERE;

int mainQ)

output("Input_Halts = ", HOCCu32)Infinite_Loop));

“Infinite“Loog()SS

[00001102] (01 push ebp
[00001103] (02) 8bec mov ebp,esp
[00001105] (02) ebfe jmp 00001105
[00001107] (01) 5d pop ebp
[00001108] (01)

Size in bytes: (0007) [00001108]

_main() _

[00001192](01) 55 push ebp
00001193] (02) 8bec mov ebp,esp

[00001195] (05) 6802110000 push 00001102
[0000119a] (05) e8d3fbffff call 00000d72
[0000119f] (03) 83c404 add esp,+04
[000011a2] (01) 50 push eax
[000011a3] (05) 68a3040000 push 000004a3
[000011a8] (05) e845f3ffff call 0000042
[000011ad] (03) 83c408 add esp,+08
[000011b0] (02) 33cO Xor eax,eax
[000011b2] (01) 5d pop ebp
[000011b3] (01)

Size in bytes: (0034) [000011b3]

machine stack stack machine assembly

address address data code Tanguage
(000011927 [00101e8] [00000000] 55 push ebp
00001193][00101ef8] [00000000] 8bec mov ebp,esp

[00001195] [00101ef4] [00001102] 6802110000 push 00001102
[0000119a] [00101ef0] [0000119f] e8d3fbffff call 00000d72

HO: Begin Simulation Execution Trace Stored at:211fac

[00001102] [00211F9c] [00211fa0] 55 push ebp

[00001103] [00211f9c] [00211fa0] 8bec mov ebp,esp
[00001105] [00211f9c] [00211fa0] ebfe jmp 00001105
[00001105] [00211F9c] [00211fa0] ebfe jmp 00001105

HO: Infinite Loop Detected Simulation Stopped

if (current->Simplified_Opcode == IMP) // IvMP
if (current->Decode_Target <= current->Address) // upward
if (traced->Address == current->Decode_Target) // to this address

if (Conditional_Branch_Count == 0) // no escape
return 1;
[0000119f] [00101ef8] [00000000] 83c404 add esp,+04
[000011a2] [00101ef4] [00000000] 50 push eax

[000011a3][00101ef0] [000004a3] 68a3040000 push 000004a3
[000011a8] [00101ef0] [000004a3] e845f3ffff call 000004f2
Input_Halts = 0

[000011ad] [00101ef8] [00000000] 83c408 add esp,+08
[000011b0] [00101ef8] [00000000] 33cO Xor eax,eax
[000011b2] [00101efc] [00100000] 5d pop ebp
[000011b3] [00101F00] [00000004] c3 ret

Number of Instructions Executed(554) == 8 Pages

-2 07/02/22 11:13:01 AM

H correctly determines that Infinite_Recursion() never halts

void Infinite_Recursion(int N)

Infinite_Recursion(N);

int mainQ)

output("Input_Halts = ", H((u32)Infinite_Recursion, 0x777));

_Infinite_Recursion()
[0000102] (01) 55
8bec mov ebp,es

[0000103] E
[000010f5] 8b4508 mov eax, [ebp+08]
[000010f8] (01) 50 push eax
[00001019] e8f4ffffff call 0000102
[000010fe] (03) 83c404 add esp,+04
(00001101] 5d pop ebp
[00001102] (01)

Size in bytes: (0017) [00001102]

_main() _
[000011b2]
[000011b3]
[000011b5]
[000011ba]
[000011bf]
[000011c4]
[000011c7]
[000011c8]
[000011cd]
[000011d2]
[000011d5]

push ebp

(01) 55

8bec
6877070000
6812100000
e8aefdffff
83c408
(01) 50
6823040000
e820f3Ffff
83c408

push ebp
mov ebp,esp
push 00000777
push 0000102
call 00000f72
add esp,+08
push eax
push 000004a3
call 000004f2
add esp,+08

i 33c0 Xor eax,eax
[000011d7]

[5d pop ebp
[000011d8] (01) c3
Size in bytes:(0039) [000011d8]

machine
address

stack
address

stack
data

machine assembly

Tlanguage

[000010f2]
[000010f3]

[0000108]
[00001019]

[000011b2]
[000011b3]
[000011b5]
[000011ba]
[000011bf]

H: Begin Simulation

[0000105]
[0000108]
[0000109]
[000010f2]
[000010f3]
[000010f5]

[0010139]
[0010139]
[00101F35]
[00101F31]
[00101f2d]

[00111Fd1]
[00111Fd1]
[00111Fd1]
[00111fcd]
[00111fc9]
[00111fc5]
[00111Fc5]
[00111Fc5]
[00111Fc1]
[00111fbd]

[00000000]
[00000000]
[00000777]
[0000102]
[000011c4]

code

55 push ebp

8bec mov ebp,esp
6877070000 push 00000777
6812100000 push 000010f2
e8aefdffff call 0000072

Execution Trace Stored at:111fe5

[00111Fd5]
[00111Fd5]
[00111Fd5]
[00000777]
[000010Fe]
[00111Fd1]
[00111Fd1]
[00111Fd1]
[00000777]
[000010fe]

55 push ebp
8bec mov ebp,esg
8b4508 mov eax,[e p+08]

50 push e // push 0x777
§§f4ffffff call 000010f2 // call Infinite_Recursion
8bec

push ebp
8b4508
push 0x777

mov ebp,esB

mov eax, [ebp+08]

50 ush e //

e8f4ffffff ca11 000010f2 // ca11 Infinite_Recursion

H: Infinite Recursion Detected Simulation Stopped

if (current->simplified_Opcode == CALL)

if (current->Simplified_Opcode == traced->Simplified_Opcode) // CALL
if (current->Address == traced->Address) / from same address
if (current->Decode_Target == traced->Decode_Target) // to Same Function
if (Conditional_Branch_Count == 0) // no escape
return 2;

[000011c4] [00101f39] [00000000] 83c408
[000011c7] [00101f35] [00000000] 50
[000011c8] [00101f31] [000004a3] 68a3040000
[000011cd] [00101f31] [000004a3] e820f3ffff
Input_Halts = 0

add esp,+08
push eax

push 000004a3
call 000004f2

[000011d2][0010139] [00000000] 83c408 add esp,+08
[000011d5][00101f39] [00000000] 33cO Xor eax,eax
[000011d7][00101f3d] [00000018] 5d pop ebp

[000011d8] [00101f41] [00000000] ¢ ret

Number of Instructions Executed(1118) = 17 Pages

-3 07/02/22 11:13:01 AM

H correctly determines that P() never halts

void P(u32 x)

if (H(x, x))
HERE: goto HERE;
return;
int main()
output("Input_Halts = ", H((u32)P, (u32)P));
—PQ i
[00001202](01) 55 push ebp
[00001203] (02) 8bec mov ebp,esg
[00001205] (03) 8b4508 mov eax, [ebp+08]
[00001208] (01) 50 push eax
[00001209] (03) 8b4d08 mov ecx, [ebp+08]
[0000120c] (01) 51 push ecx
[0000120d] (05) e820feffff call 00001032
[00001212] (03) 83c408 add esp,+08
[00001215] (02) 85c0 test eax,eax
[00001217] (02) 7402 jz 0000121b
[00001219] (02) ebfe jmp 00001219
[0000121b] (01) pop ebp
[0000121¢] (01) 3 ret
Size in bytes:(0027) [0000121c]
_main()
[00001222](01) 55 push ebp
=00001223_(02) 8bec mov ebp,esp
[00001225] (05) 6802120000 push 00001202
[0000122a] (05) 6802120000 push 00001202
[0000122F] (05) e8fefdffff call 00001032
[00001234] (03) 83c408 add esp,+08
[00001237](01) 50 push eax
[00001238] (05) 68b3030000 push 000003b3
[0000123d] (05) e8cOf1ffff call 00000402
[00001242] (03) 83c408 add esp,+08
[00001245] (02) 33cO0 Xor eax,eax
[00001247](01) 5d pop ebp
[00001248] (01) ¢3 ret
Size in bytes:(0039) [00001248]
machine stack stack machine assembly
address address data code Tanguage
000012221 [0010200f] [00000000] 55 push ebp
00001223] [0010200f] [00000000] 8bec mov ebp,esp

[00001225] [0010200b] [00001202] 6802120000 push 00001202 // push P
[0000122a] [00102007] [00001202] 6802120000 push 00001202 // push P
[0000122] [00102003] [00001234] e8fefdffff call 00001032 // call executed H

Begin Simulation Execution Trace Stored at:2120c3
Address_of _H:1032

000012027 [002120af] [002120b3] 55 push ebp

[00001203] [002120af] [002120b3] 8bec mov ebp,esB

[00001205] [002120af] [002120b3] 8b4508 mov eax, [ebp+08]
[00001208] [002120ab] [00001202] 50 push eax // push P

[00001209] [002120ab] [00001202] 8b4d08 mov ecx, [ebp+08]
[0000120c] [002120a7] [00001202] 51 push ecx // push P
[0000120d][002120a3][00001212] e820feffff call 00001032 // call emulated H
Infinitely Recursive Simulation Detected Simulation Stopped

H knows its own machine address and on this basis it can easily

examine its stored execution_trace of P (see above) to determine:

(a) P is calling H with the same arguments that H was called with.

(b) No instructions in P could possibly escape this otherwise infinitely recursive emulation.
(c) H aborts its emulation of P before its call to H is emulated.

[000012347[0010200f]1[00000000] 83c408 add esp,+08
[00001237][0010200b] [00000000] 50 push eax
[00001238] [00102007] [000003b3] 68b3030000 push 000003b3
[0000123d] [00102007] [000003b3] e8cOflffff call 00000402
Input_Halts = 0

[00001242][0010200f] [00000000] 83c408 add esp,+08
[00001245] [0010200f] [00000000] 33cO Xor eax,eax
[00001247]1[00102013] [00100000] 5d pop ebp
[00001248] [00102017] [00000004] c

Number of Instructions Executed(870) / 67 = 13 pages

Copyright 2022 PL Olcott

-—-4--- 07/02/22 11:13:01 AM

