
Halting Problem Proof from Finite Strings to Final States

When we understand that every potential halt decider essentially derives a formal 
mathematical proof from its inputs to its final states previously undiscovered semantic 
details emerge. When-so-ever the potential halt decider cannot derive a formal proof 
from its input strings to its final states of Halts or Loops, undecidability has been 
decided. 

A Halting Decidability Decider H might be defined as:  
A David Hilbert formalist proof 
(in language of Turing machine descriptions) 
from the initial state of a Turing machine description H.q0 and 
its finite string inputs Wm W to final states H.halts and H.loops 
corresponding to the mathematical logic predicates: Halts() and Loops(). 

∃ H ∈ Turing_Machine_Descriptions
∀tm ∈ Turing_Machine_Descriptions 
∀i ∈ Finite_Strings 
H.Halts(tm, i)  ∨ H.Loops(tm, i)  H.Halting_Undecidable(tm, i)  

When-so-ever Turing machine H determines that no finite sequence of state transitions 
would correspond to the mathematical logic predicate Halts(tm, i) or Loops(tm, i) it 
transitions to H.Undecidable.

The formal proof involves tracing the sequence of state transitions of the input TMD as 
syntactic logical consequence inference steps in the formal language of Turing Machine 
Descriptions. 

The proof would essentially be a hypothetical execution trace** of the state transition 
sequences of the input TMD. It cannot be an actual execution trace or the halt decider 
could have non-halting behavior. **Like step-by-step mode in a debugger.

If the first element of the input finite string pair is a correct TMD then this proof must 
necessarily proceed from the specified TMD start state through all of the state 
transitions of this TMD to the halting, looping or pathological behavior of this TMD. 



The following has been adapted from material from the this book:
An Introduction to Formal Languages and Automata by Peter Linz 1990 pages 318-320 
We begin our analysis by constructing a hypothetical halt decider: H.

Figure 12.1 Turing Machine H 

The dashed lines proceeding from state (q0) are represented in the text definition as the
asterisk ⊢* wildcard character. These conventions are used to encode unspecified state 
transition sequences.

Definition of Turing Machine H (state transition sequence)
H.q0 Wm W ⊢* H.halt  // Wm is a TMD that would halt  on its input W
H.q0 Wm W ⊢* H.loop // Wm is a TMD that would loop on its input W 

The diagram and the state transition sequence indicate that H begins at its own start 
state H.q0 and is applied to finite string pair (Wm, W). 

Then it proceeds through an unspecified set of state transitions to one of its final states. 
H.halt  is the final state of H indicating that Wm is a TMD would halt on input W.  
H.loop is the final state of H indicating that Wm is a TMD would halt on input W.  

In an attempt to provide a valid counter-example proving by contradiction that a Halt 
Decider cannot possibly exist for every possible TM / Input pair we create Turing 
Machine Ĥ by making the following changes to H:

(1) Ĥ copies its input Wm a its Ĥ.q0 state and transitions to its Ĥ.qx state.

(2) Ĥ would begin to evaluate Wm Wm at its Ĥ.qx state in exactly the same way that H 
would begin to evaluate its Wm W input at its H.q0 state.

(3) States (qa) and (qb) are appended to existing final state ((halt)) such that any 
transition to state (halt) will cause Ĥ to loop. 

Since Turing Machine Ĥ is created by adapting H, it would have exactly the same 
behavior at its Ĥ.qx state as H would have at its H.q0 state.



Figure 12.3 Turing Machine Ĥ

Definition of Turing Machine Ĥ (state transition sequence)
Ĥ.q0 Wm ⊢* Ĥ.qx Wm Wm * Ĥ.halt ⊢ ∞
Ĥ.q0 Wm ⊢* Ĥ.qx Wm Wm * Ĥ.loop   ⊢

If Turing Machine H is applied to Turing Machine descriptions [Ĥ] [Ĥ] 
would H transition to H.y or H.n ? 

H [Ĥ] [Ĥ2]  // We append a “2” to the second Ĥ for clarity

Because H is performing a mathematical proof on finite strings [Ĥ] [Ĥ2] the required 
syntactic logical inference chain is simply the state transitions that [Ĥ] would make on its
input [Ĥ2]. In simplest terms H is performing a step-by-step debug trace of [Ĥ]. 

Step-by-step debug trace of what [H] would do on its input [Ĥ][Ĥ2]
(01) H begins at its start state H.q0.
(02) H begins to evaluate what [Ĥ] would do on its input [Ĥ2].

Step-by-step debug trace of what [Ĥ] would do on its input [Ĥ2]
(03) [Ĥ] would begin at its start state [Ĥ].q0
(04) [Ĥ] would make a copy of its input [Ĥ2], we will call this [Ĥ3].
(05) [Ĥ] would transition to its state [Ĥ].qx.
(06) [Ĥ] would begin to evaluate what [Ĥ2] would do on its input [Ĥ3].

Step-by-step debug trace of what [Ĥ2] would do on its input [Ĥ3]
(07) [Ĥ2] would begin at its start state [Ĥ2].q0
(08) [Ĥ2] would make a copy of its input [Ĥ3], we will call this [Ĥ4].
(09) [Ĥ2] would transition to its state [Ĥ2].qx.
(10) [Ĥ2] would begin to evaluate what [Ĥ3] would do on its input [Ĥ4].

Can you see the infinite recursion?

H [Ĥ] [Ĥ] specifies an infinitely recursive evaluation sequence. Every HP proof by 
contradiction depends this same infinite recursion. What no one ever noticed before is 
that the debug trace by the halt decider must abort its evaluation long before it ever 
reaches the appended infinite loop. 



Because of this every TMD in the infinitely recursive sequence is defined in terms of H 
each would reject the whole sequence as semantically incorrect before even beginning 
any halting evaluation, and transition to H.loop. 

The following two paragraphs require the original Linz definition of H 
H.q0 Wm W ⊢* H.qy  // Wm is a TMD that would halt  on its input W
H.q0 Wm W ⊢* H.qn  // else

As further evidence that infinitely recursive evaluation sequence has been overlooked 
we only need to know that every TMD always requires its own TM / Input pair. For any 
finite sequence of input H could always decide halting. 

If Ĥ did not copy its input and instead simply took two inputs then the Halting Decision 
would be easy. Ĥ would transition to its Ĥ.qy state because Ĥ2 would transition to its  
Ĥ2.qn state on null input. This would cause H to transition to its H.qn state deciding 
halting for [Ĥ] [Ĥ2].  

If we assume that a halting decidability decider could use something like the Prolog 
predicate unify_with_occurs_check/2 to detect and report the infinite recursive 
evaluation sequence of H(Ĥ, Ĥ2), then an actual halt decider might be defined as 
follows: 

What happens if  H decides infinite recursion at the recursion depth of three?
Ĥ2 aborts Ĥ3 and transitions to  Ĥ2.loop. 
which causes Ĥ1 to transition to Ĥ1.halt and loop.
which causes   Ĥ to transition to Ĥ.loop. 
which causes   H to transition to H.halt. // thus H has decided halting for (Ĥ, Ĥ2)

What happens if  H decides infinite recursion at the recursion depth of two?
Ĥ1 aborts Ĥ2 and transitions to  Ĥ1.loop. 
which causes Ĥ to transition to Ĥ.halt and loop.
which causes   H to transition to H.loop. // thus H has decided halting for (Ĥ, Ĥ2)

What happens if  H decides infinite recursion at the recursion depth of one?
Ĥ aborts Ĥ2 and transitions to  Ĥ.loop. 
which causes H to transition to H.halt.   // thus H has decided halting for (Ĥ, Ĥ2)

Copyright 2004, 2006, (2012 through 2018) Pete Olcott   



Turing Machine Description Language 
(Generalized from: TM, The Turing Machine Interpreter by David S. Woodruff) 
The following is space delimited 'quintuples', each one of which is a five-symbol Turing 
Machine instruction. It is written in AWK regular expression syntax: 

1) Initial State
2) Current Tape Symbol
3) Next State
4) Write Tape Symbol
5) Move Tape Head Left or Right

--1--        --2--      --3--       --4--      --5--  
[0-9]+ [\x20-\x7e] [0-9]+ [\x20-\x7e] [LR] 

If we make a fixed number of (hexadecimal) states then The UTM could simply hold a 
sorted list of std::strings. A sorted list would allow state transitions to occur by binary 
search. This would allow a very simple DFA based syntax checker. 

The tape could be constructed using a std::vector. Binary Zero end markers would be in 
the tape alphabet and not the input alphabet. These trigger memory reallocation to 
enlarge the tape. 

Clocksin and Mellish 2003, Programming in Prolog Using the ISO Standard Fifth 
Edition Chapter 10 The Relation of Prolog to Logic, page 254.

Finally, a note about how Prolog matching sometimes differs from the unification 
used in Resolution. Most Prolog systems will allow you to satisfy goals like:

equal(X, X).

?- equal(foo(Y), Y).

that is, they will allow you to match a term against an uninstantiated subterm of 
itself. In this example, foo(Y) is matched against Y, which appears within it. As a result, 
Y will stand for foo(Y), which is foo(foo(Y)) (because of what Y stands for), which is 
foo(foo(foo(Y))), and so on. So Y ends up standing for some kind of infinite structure. 
Note that, whereas they may allow you to construct something like this, most Prolog 
systems will not be able to write it out at the end. According to the formal definition 
of Unification, this kind of “infinite term” should never come to exist. Thus Prolog 
systems that allow a term to match an uninstantiated subterm of itself do not act 
correctly as Resolution theorem provers. In order to make them do so, we would have 
to add a check that a variable cannot be instantiated to something containing itself. 
Such a check, an occurs check, would be straightforward to implement, but would 
slow down the execution of Prolog programs considerably. Since it would only affect 
very few programs, most implementors have simply left it out [1].

[1] The Prolog standard states that the result is undefined if a Prolog system attempts 
to match a term against an uninstantiated subterm of itself, which means that 
programs which cause this to happen will not be portable. A portable program should 
ensure that wherever an occurs check might be applicable the built-in predicate 
unify_with_occurs_check/2 is used explicitly instead of the normal unification operation 
of the Prolog implementation. As its name suggests, this predicate acts like =/2 except 
that it fails if an occurs check detects an illegal attempt to instantiate a variable.


