
Halting problem undecidability and infinitely nested simulation (V3)

A simulating halt decider H bases its halt status decision on what the behavior of its input
would be if H was a UTM. H determines that its simulated input would never reach its final
state on the basis of matching infinite behavior patterns. In this case H aborts its simulation
and transitions to its final reject state. Otherwise H transitions to its accept state when its
simulation ends.

H.q0 Wm W ⊢* H.qy if UTM Wm W halts
H.q0 Wm W ⊢* H.qn if UTM Wm W does not halt

The following simplifies the syntax for the definition of the Linz Turing machine Ĥ, it is now a
single machine with a single start state. A copy of Linz H is embedded at Ĥ.qx.

.q0 ⟨ ⟩ ⊢* .qx ⟨ ⟩ ⟨ ⟩ ⊢* .qy ∞ Ĥ Ĥ Ĥ Ĥ Ĥ Ĥ

.q0 ⟨ ⟩ ⊢* .qx ⟨ ⟩ ⟨ ⟩ ⊢* .qn Ĥ Ĥ Ĥ Ĥ Ĥ Ĥ

Figure 12.3 Turing Machine Ĥ applied to ⟨Ĥ⟩

When is applied to ⟨ ⟩ Ĥ Ĥ
 Ĥ copies its input ⟨Ĥ1⟩ to ⟨Ĥ2⟩ then embedded_H simulates ⟨Ĥ1⟩ ⟨Ĥ2⟩

Then these steps would keep repeating:
 Ĥ1 copies its input ⟨Ĥ2⟩ to ⟨Ĥ3⟩ then embedded_H simulates ⟨Ĥ2⟩ ⟨Ĥ3⟩
 Ĥ2 copies its input ⟨Ĥ3⟩ to ⟨Ĥ4⟩ then embedded_H simulates ⟨Ĥ3⟩ ⟨Ĥ4⟩
 Ĥ3 copies its input ⟨Ĥ4⟩ to ⟨Ĥ5⟩ then embedded_H simulates ⟨Ĥ4⟩ ⟨Ĥ5⟩...

This shows that the simulated input to embedded_H ⟨ ⟩ ⟨ ⟩Ĥ Ĥ would never reach its final state
conclusively proving that this simulated input never halts. This enables embedded_H to
abort the simulation of its input and correctly transition to Ĥ.qn.

Because all simulating halt deciders are deciders they are only accountable for computing
the mapping from their input finite strings to an accept or reject state on the basis of whether
or not their correct simulation of this input could ever reach its final state.

embedded_H is only accountable for the behavior of its input ⟨ ⟩Ĥ applied to ⟨ ⟩Ĥ .
embedded_H is not accountable for the behavior of the computation that it is
contained within: Ĥ applied to ⟨ ⟩. Ĥ

---1--- 2022-01-31 05:42 PM

Appendix: Peter Linz Halting Problem Proof

Definition 12.1

Theorem 12.1

Let WM describe a Turing machine M = (Q, I, r, 8, qo, D, F), and
let W be any element of I +. A solution of the halting problem is a Tur­
ing machine H, which for any W M and w, performs the computation

if M applied to w halts, and

if M applied to w does not halt. Here qy and qn are both final states of H.

There does not exist any Turing machine H that behaves as required by
Definition 12.1. The halting problem is therefore undecidable.

Proof: We assume the contrary, namely that there exists an algorithm,
and consequently some Turing machine H, that solves the halting problem.
The input to H will be the description (encoded in some form) of M, say
WM, as well as the input w. The requirement is then that, given any (WM' w),
the Turing machine H will halt with either a yes or no answer. We achieve
this by asking that H halt in one of two corresponding final states, say, q y or
qn' The situation can be visualized by a block diagram like Figure 12.1. The
intent of this diagram is to indicate that, if M is started in state qo with input
(WM, w), it will eventually halt in state qy or qn' As required by Definition
12.1, we want H to operate according to the following rules:

if M applied to W halts, and

if M applied to W does not halt.

Figure 12.1

Figure 12.2

Next, we modify H to produce a Turing machine H' with the structure
shown in Figure 12.2. With the added states in Figure 12.2 we want to
convey that the transitions between state qy and the new states qa and qb are
to be made, regardless of the tape symbol, in such a way that the tape
remains unchanged. The way this is done is straightforward. Comparing H
and H' we see that, in situations where H reaches qy and halts, the modified
machine H' will enter an infinite loop. Formally, the action of H' is de­
scribed by

if M applied to w halts, and

if M applied to w does not halt.

From H' we construct another Turing machine Ii. This new machine
takes as input WM, copies it, and then behaves exactly like H'. Then the
action of Ii is such that

if M applied to WM halts, and

if M applied to WM does not halt.

Now Ii is a Turing machine, so that it will have some description in l*,
say w. This string, in addition to being the description of Ii can also be used
as input string. We can therefore legitimately ask what would happen if Ii is
applied to w. From the above, identifying M with Ii, we get

if Ii applied to w halts, and

A * 00 qow ~ if '

if Ii applied to w does not halt. This is clearly nonsense. The contradiction
tells us that our assumption of the existence of H, and hence the assump­
tion of the decidability of the halting problem, must be false. •

Linz, Peter 1990. An Introduction to Formal Languages and Automata.
LexingtonlToronto: D. C. Heath and Company. (317-320)

	Halting_problem_undecidability_and_infinitely_nested_simulation_V3_06
	Linz_Proof
	Proof_Page_01
	Proof_Page_02
	Proof_Page_03

