
Halting problem undecidability and infinitely nested simulation (V4)

A Simulating Halt Decider (SHD) computes the mapping from its input to its own accept or 
reject state based on whether or not the input simulated by a UTM would reach its final state
in a finite number of simulated steps. 

A halt decider (because it is a decider) must report on the behavior specified by its finite 
string input. This is its actual behavior when it is simulated by the UTM contained within its 
simulating halt decider while this SHD remains in UTM mode. 

It is self-evidently correct that when-so-ever a simulating halt decider must abort the 
simulation of its input to prevent its infinite simulation that this input specifies an infinite 
sequence of configurations. 

Simulating halt decider H performs a pure simulation of its input as if it was a UTM unless 
and until it detects an infinitely repeating pattern. Then it aborts the simulation of its input 
and transitions to its final reject state. Otherwise H transitions to its accept state when its 
simulation ends. 

The following simplifies the syntax for the definition of the Linz Turing machine Ĥ, it is now a 
single machine with a single start state. A copy of Linz H is embedded at Ĥ.qx 

.qĤ 0 ⟨ ⟩ ⊢* .qĤ Ĥ x ⟨ ⟩ ⟨ ⟩Ĥ Ĥ  ⊢* .qĤ y ∞ 
If the pure simulation of ⟨ ⟩ ⟨ ⟩Ĥ Ĥ  by embedded_H would reach its final state. 

.qĤ 0 ⟨ ⟩ ⊢* .qĤ Ĥ x ⟨ ⟩ ⟨ ⟩Ĥ Ĥ  ⊢* .qĤ n 
If the pure simulation of ⟨ ⟩ ⟨ ⟩Ĥ Ĥ  by embedded_H would never reach its final state. 

             
             Figure 12.3 Turing Machine Ĥ applied to ⟨Ĥ⟩

When Ĥ is applied to ⟨ ⟩Ĥ  
  Ĥ copies its input ⟨Ĥ0⟩ to ⟨Ĥ1⟩ then embedded_H simulates ⟨Ĥ0⟩ ⟨Ĥ1⟩

Then these steps would keep repeating:
  Ĥ0 copies its input ⟨Ĥ1⟩ to ⟨Ĥ2⟩ then embedded_H0 simulates ⟨Ĥ1⟩ ⟨Ĥ2⟩
  Ĥ1 copies its input ⟨Ĥ2⟩ to ⟨Ĥ3⟩ then embedded_H1 simulates ⟨Ĥ2⟩ ⟨Ĥ3⟩
  Ĥ2 copies its input ⟨Ĥ3⟩ to ⟨Ĥ4⟩ then embedded_H2 simulates ⟨Ĥ3⟩ ⟨Ĥ4⟩... 
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The above shows that the simulated input to embedded_H never reaches its own final state 
of ⟨ .qn⟩Ĥ  whether or not its simulation is aborted. 
(a) If the simulation is not aborted the above sequence never ends. 
(b) If the simulation is aborted the entire chain of recursive simulations immediately stops. 

In no case does the simulated input ⟨ ⟩Ĥ  ⟨ ⟩ Ĥ ever reach its final state ⟨ .qn⟩ Ĥ thus never meets
the Linz definition of halting: 

computation that halts … the Turing machine will halt whenever it enters a final state. 
(Linz:1990:234) Thus if embedded_H rejects its input it is necessarily correct. 

Because all halt deciders are deciders they compute the mapping from their input finite 
strings to their own accept or reject state. Halt deciders (because they are deciders) do not 
compute any mappings from non-finite string non-inputs.  

No halt decider ever determines the halt status of the computation that contains its actual 
self thus embedded_H does not compute the mapping from  ⟨ ⟩Ĥ Ĥ  because it is neither an 
input nor a finite string. 

Even Linz was confused by this. embedded_H is not supposed to report on itself or the 
computation that it is contained within. 

In the conclusion of his proof Linz said that when the copy of Linz H embedded at Ĥ.qx 
transitions to Ĥ.qn on the basis that its input: ⟨ ⟩ ⟨ ⟩Ĥ Ĥ  never halts that this forms a 
contradiction with the fact that Ĥ ⟨ ⟩Ĥ  halts. This assumes that a halt decider must compute 
the halt status of the computation that contains itself. 

As long as it is verified that the simulated input to embedded_H cannot reach its final state 
then we know that this simulated input cannot meet the Linz definition of halting. 

As long as we know that this simulated input cannot meet the Linz definition of halting we 
know that this input specifies a non-halting sequence of configurations. 

As long as we know that this input  specifies a non-halting sequence of configurations then 
we know that embedded_H would be correct to reject this input. 

The behavior of ⟨ ⟩ ⟨ ⟩Ĥ Ĥ  simulated outside of  Ĥ must be computationally equivalent to the 
direct execution of  Ĥ applied to ⟨ ⟩ Ĥ yet not the same as ⟨ ⟩ ⟨ ⟩Ĥ Ĥ  simulated inside of .Ĥ  

The directly executed Ĥ applied to ⟨ ⟩Ĥ  is the first invocation of infinite recursion that only 
terminates normally because of its one-way dependency relationship on embedded_H 
aborting the second invocation of this otherwise infinite recursion. 

When embedded_H simulates ⟨ ⟩ ⟨ ⟩Ĥ Ĥ  some steps of Ĥ have already been executed. This 
shows that  Ĥ applied to ⟨ ⟩Ĥ  specifies a different sequence of configurations than ⟨ ⟩ ⟨ ⟩Ĥ Ĥ  
simulated by embedded_H. 
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Appendix: Peter Linz Halting Problem Proof 

Definition 12.1 

Theorem 12.1 

Let WM describe a Turing machine M = (Q, I, r, 8, qo, D, F), and 
let W be any element of I +. A solution of the halting problem is a Tur­
ing machine H, which for any W M and w, performs the computation 

if M applied to w halts, and 

if M applied to w does not halt. Here qy and qn are both final states of H. 

There does not exist any Turing machine H that behaves as required by 
Definition 12.1. The halting problem is therefore undecidable. 

Proof: We assume the contrary, namely that there exists an algorithm, 
and consequently some Turing machine H, that solves the halting problem. 
The input to H will be the description (encoded in some form) of M, say 
WM, as well as the input w. The requirement is then that, given any (WM' w), 
the Turing machine H will halt with either a yes or no answer. We achieve 
this by asking that H halt in one of two corresponding final states, say, q y or 
qn' The situation can be visualized by a block diagram like Figure 12.1. The 
intent of this diagram is to indicate that, if M is started in state qo with input 
(WM, w), it will eventually halt in state qy or qn' As required by Definition 
12.1, we want H to operate according to the following rules: 

if M applied to W halts, and 

if M applied to W does not halt. 



Figure 12.1 

Figure 12.2 

Next, we modify H to produce a Turing machine H' with the structure 
shown in Figure 12.2. With the added states in Figure 12.2 we want to 
convey that the transitions between state qy and the new states qa and qb are 
to be made, regardless of the tape symbol, in such a way that the tape 
remains unchanged. The way this is done is straightforward. Comparing H 
and H' we see that, in situations where H reaches qy and halts, the modified 
machine H' will enter an infinite loop. Formally, the action of H' is de­
scribed by 

if M applied to w halts, and 

if M applied to w does not halt. 



From H' we construct another Turing machine Ii. This new machine 
takes as input WM, copies it, and then behaves exactly like H'. Then the 
action of Ii is such that 

if M applied to WM halts, and 

if M applied to WM does not halt. 

Now Ii is a Turing machine, so that it will have some description in l*, 
say w. This string, in addition to being the description of Ii can also be used 
as input string. We can therefore legitimately ask what would happen if Ii is 
applied to w. From the above, identifying M with Ii, we get 

if Ii applied to w halts, and 

A * 00 qow ~ if ' 

if Ii applied to w does not halt. This is clearly nonsense. The contradiction 
tells us that our assumption of the existence of H, and hence the assump­
tion of the decidability of the halting problem, must be false. • 

Linz, Peter 1990. An Introduction to Formal Languages and Automata. 
LexingtonlToronto: D. C. Heath and Company. (317-320) 
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