
Proof that Wittgenstein is correct about Gödel 

The conventional notion of a formal system is adapted to conform to the sound 
deductive inference model operating on finite strings. Finite strings stipulated to have 
the semantic property of Boolean true provide the sound deductive premises. Truth 
preserving finite string transformation rules provide valid the deductive inference. 
Conclusions of sound arguments are derived from truth preserving finite string 
transformations applied to true premises. 

Analytical_Knowledge defined as follows: The set of knowledge that can be 
expressed using language and verified as true entirely on the basis of stipulated 
relations between expressions of language.

Axioms, rules-of-inference, syntax, and truth conditional semantics are all fully 
integrated together into the single formalism of finite string transformation rules. 

Validity and Soundness                                 https://www.iep.utm.edu/val-snd/ 
A deductive argument is said to be  valid  if  and only if  it  takes a form that makes it
impossible  for  the  premises  to  be  true  and the  conclusion  nevertheless  to  be  false.
Otherwise, a deductive argument is said to be invalid.

A deductive argument is sound if and only if it is both valid, and all of its premises are
actually true. Otherwise, a deductive argument is unsound.

Sound_Deductive_Formalism conforms to the sound deductive inference model:
(a) True Premises are finite strings stipulated to have the semantic property of Boolean
true or are derived from truth preserving operations on such strings. 

(b) Valid Deduction is the application of truth preserving finite string transformations to
True Premises or finite strings derived from truth preserving operations on such strings. 

(c) Conclusions of a sound argument are any final or intermediate finite strings derived
from truth  preserving  finite  string  transformations applied  to  True Premises or  finite
strings derived from truth preserving operations on such strings. 

To provide a simple intuitive grasp of the Sound Deductive Formalism (SDF) we 
define a very simple formal system named Simple_Arithmetic. 

Simple_Arithmetic evaluates the infinite set of finite strings representing this 
relationship: Natural_Number “+” Natural_Number “=” Natural_Number
defined by this AWK regular expression:  /[0-9]+[\+][0-9]+[=][0-9]+/ 
to determine whether or not a formal proof exists that derives the semantic propery of 
Boolean true for the finite string.  (see appendix). 

∀F ∈ Sound_Deductive_Formalism ∀X ∈ WFF(F) (True(F, X)) ↔ Provable(F, X))
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When it is understood that every element of the set of analytical knowledge is either a 
semantic tautology (defined to be true) or deduced from semantic tautologies then we 
see that these semantic tautologies and deductive rules-of-inference can be expressed 
as relations between finite strings. 

This unifies sound deduction with formal proofs to theorem consequenes, thus making 
every element of the set of analytical knowledge provable. 

AK = Analytical_Knowledge(as defined above)
∀x ∈ AK (( AK ⊢ x)  ↔   True(AK, x))

No analytical expression of language is ever actually true unless there are a connected 
set of ideas that make it true. What-so-ever connected set of ideas that make an 
expression of language true can always be expressed as a connected set of relations 
betweeen finite strings. This connected set of relations betweeen finite strings is the 
formal proof of the orginal expression of language. 

Wittgenstein definitions of True() and False()  
‘True in Russell’s system’ means, as was said: proved in Russell’s system; and ‘false in 
Russell’s system’ means: the opposite has been proved in Russell’s system. 
(Wittgenstein 1983,118-119) Formalized by Olcott as: 

LHS := RHS means LHS is defined as the RHS
∀x (True(RS, x)  := (RS ⊢ x)) // x is a theorem of RS
∀x (False(RS, x) := (RS ⊢ ¬x)) // ¬x is a theorem of RS

Wittgenstein’s minimal essence of the 1931 Incompleteness Theorem sentence
“I have constructed a proposition (I will use ‘P’ to designate it) in Russell’s symbolism, 
and by means of certain definitions and transformations it can be so interpreted that it 
says ‘P is not provable in Russell’s system’. (Wittgenstein 1983,118-119)
Formalized by Olcott: P ↔ (RS ⊬ P)

When we sum up the results of Gödel's 1931 Incompleteness Theorem by formalizing 
Wittgenstein’s verbal specification such that this formalization meets Gödel's own 
sufficiency requirement: “Every epistemological antinomy can likewise be used for a 
similar undecidability proof.” then we can see that Gödel's famous logic sentence is only
unprovable in PA because it is untrue in PA because it specifies the logical equivalence 
to self contradiction in PA. 

Since the Wittgenstein-Olcott axiom schema define True(RS, x) as Provable(RS, x) then
¬Provable(RS, x) would be defined as ¬True(RS, x). This means that the Wittgenstein-
Olcott minimal essence of the 1931 Incompleteness Theorem <IS> The Liar Paradox. 
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The Formalized Liar Paradox says that P is materially equivalent to Not True.
The truth table shows that this is self-contradictory. 
P  ↔   ¬True(P) P  ↔  RS⊬P 
T   F       F T   F       F 
F   F       T F   F       T   

The truth table of minimal essence of the 1931 Incompleteness theorem is identical to 
the truth table of the Liar Paradox because the third columns of these truth tables are 
stipulated by the Wittgenstein-Olcott axiom schema to mean exactly the same thing. 

The failure of logical equivalence shows that both P and ¬P are contradicted (false) 
(in the above formula) thus meeting the [epistemological antinomy] sufficiency condition 
that Gödel stipulated for proof equivalence: “14 Every epistemological antinomy can 
likewise be used for a similar undecidability proof.” (Gödel 1931:40)

The fact that self-contradictory sentences specified in the language of a formal system 
cannot be proven in that formal system does not make the formal system itself 
incomplete or inconsistent as long as unprovable (from axioms) is construed as untrue. 

At the most abstract level of analysis: 
Conceptual Truth is ONLY semantic relations between concepts that can always be 
expressed as[1] syntactic relations between finite strings[2] thereby logically entailing 
that truth cannot possibly ever diverge from provability.

[1] Forming an isomorphism between semantic and syntactic relations: 
∀x (True(x) ≅ Provable(x))

[2] Such as words, word phrases or predicate logic expressions.

Examples:
"one" [is a] "Integer"
"cats" [are] "Animals"
"cats" [have] "legs"
"2 + 3" [equals] "5"
"A  B" "↔" "B  A"∧ ∧

To make the above abstraction more concrete we focus on the single relation between 
concepts of [sound deduction] from the sound deductive inference model. Sound 
deduction begins with stipulated truth, applies a sequence of truth preserving 
operations, thus necessarily ends up with truth.

Truth ONLY comes from:
(1) Stipulated truth (the definitions of the meaning of words)
(2) Applying a sequence of truth preserving operations to stipulated truth.
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Truth ALWAYS comes from:
(1) Stipulated truth (the definitions of the meaning of words)
(2) Applying a sequence of truth preserving operations to stipulated truth.

When we construe a formal systems axioms to essentially be stipulated truth then this 
same formal systems theorems would also be true because they were derived by 
applying truth preserving operations to its axioms. Since this is the way that Truth really 
works we have proven that true can never diverge from provability. 

Godel, Kurt 1931. On Formally Undecidable Propositions of Principia Mathematica And Related Systems
I, page 40. Footnote 14. 

Wittenstein, Ludwig 1983. Remarks on the Foundations of Mathematics (Appendix III), 118-119. 
Cambridge, Massachusetts and London, England: The MIT Press (quoted in full below). 

Tarski, Alfred 1983. “The concept of truth in formalized languages” in Logic Semantics, 
Metamathematics. Indianapolis: Hacket Publishing Company, 275-276. 

Curry, Haskell 1977. Foundations of Mathematical Logic. New York: Dover Publications,  45

The bottom line of all this is that the only reason that G is not provable in PA is that G is not true in PA, 
because as Wittgenstein states true requires provable.

'True in Russell's system' means, as was said: proved in Russell's system; and 'false in Russell's system' 
means: the opposite has been proved in Russell's system. (Wittgenstein 1983:118)

Furthermore as Curry states True in Tarski's metatheory does not carry over to his theory as Tarski 
claims.

The terminology which has just been used implies that the elementary statements are not such that their 
truth and falsity are known to us without reference to {T}. (Curry 1977:45)

Gödel indicates the exact same inescapable contradiction that has been elaborated above.  The 
difference is that he concludes that some truths are unprovable rather than concluding that unprovable 
entails untrue. (Gödel1931:39-41). 

Copyright 2018, 2019, 2020  PL Olcott All rights reserved 
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Appendix

Curry, Haskell 1977. Foundations of Mathematical Logic. New York: Dover Publications,  45
We begin by postulating a certain non void, definite class {E} of statements, which we call elementary 
statements...

The statements of {E} are called elementary statements to distinguish them from other statements which 
we may form from them or about them in the U language...

Then the elementary statements which belong to {T} we shall call the elementary theorems of {T}; we also
say that these elementary statements are true for {T}. Thus, given {T}, an elementary theorem is an 
elementary statement which is true. A theory is thus a way of picking out from the statements of {E} a 
certain subclass of true statements… 

The terminology which has just been used implies that the elementary statements are not such that their 
truth and falsity are known to us without reference to {T}. 

Wittgenstein, Ludwig 1983. Remarks on the Foundations of Mathematics (Appendix III), 118-119. 
Cambridge, Massachusetts and London, England: The MIT Press 

8. I imagine someone asking my advice; he says: "I have constructed
a proposition (I will use 'P' to designate it) in Russell's symbolism,
and by means of certain definitions and transformations it can be so
interpreted that it says: 'P is not provable in Russell's system'. Must I
not say that this proposition on the one hand is true, and on the other
hand is unprovable? For suppose it were false; then it is true that it is
provable. And that surely cannot be! And if it is proved, then it
is proved that it is not provable. Thus it can only be true, but 
unprovable. "

  Just as we ask: " 'provable' in what system?", so we must also ask:
" 'true' in what system?" 'True in Russell's system' means, as was
said: proved in Russell's system; and 'false in Russell's system' means:
the opposite has been proved in Russell's system.-Now what does
your "suppose it is false" mean? In the Russell sense it means 'suppose
the opposite is proved in Russell's system'; if that is your assumption,
you will now presumably give up the interpretation that it is unprovable. 

And by 'this interpretation' I understand the translation into
this English sentence.-If you assume that the proposition is provable
in Russell's system, that means it' is true in the Russell sense, and the
interpretation "P is not provable" again has to be given up. If you
assume that the proposition is true in the Russell sense, the same thing
follows. Further: if the proposition is supposed to be false in some
other than the Russell sense, then it does not contradict this for it to
be proved in Russell's system. (What is called "losing" in chess may
constitute winning in another game.) 

---5---



Tarski, Alfred 1983. “The concept of truth in formalized languages” in Logic Semantics, 
Metamathematics. Indianapolis: Hacket Publishing Company, 275-276. 

According to Thesis A we can construct, on the basis of the 
enriched metatheory, a correct definition of truth concerning 
all the sentences of the theory studied. 
… 
  The formulas (8) and (9) together express the fact that x is an 
undecidable sentence; moreover from (7) it follows that x is a 
true sentence. 

  By establishing the truth of the sentence x we have eo ipso 
-by reason of (2)-also proved x itself in the metatheory. 
Since, moreover, the metatheory can be interpreted in the 
theory enriched by variables of higher order (cf. p. 184) and 
since in this interpretation the sentence x, which contains no 
specific term of the metatheory, is its own correlate, the proof of 
the sentence x given in the metatheory can automatically be 
carried over into the theory itself: the sentence x which is 
undecidable in the original theory becomes a decidable sentence 
in the enriched theory. 

Godel, Kurt 1931. On Formally Undecidable Propositions of Principia Mathematica And Related Systems
I, page 40-41. 

We now obtain an undecidable proposition of the system PM, i.e. a proposition A, for which
neither A nor not-A are provable, in the following manner:
...
                                                           S = R(q)
holds for some determinate natural number q. We now show that the proposition [R(q); q]13 is
undecidable in PM. For: supposing the proposition [R(q); q] were provable, it would also be
correct; but that means, as has been said, that q would belong to K, i.e. according to (1), Bew
[R(q); q] would hold good, in contradiction to our initial assumption. If, on the contrary, the
negation of [R(q); q] were provable, then n ε K , i.e. Bew [R(q); q] would hold good. [R(q);
q] would thus be provable at the same time as its negation, which again is impossible.

The analogy between this result and Richard’s antinomy leaps to the eye; there is also
a close relationship with the “liar” antinomy,14 since the undecidable proposition [R(q); q]
states precisely that q belongs to K, i.e. according to (1), that [R(q); q] is not provable. We
are therefore confronted with a proposition which asserts its own unprovability.15

14 Every epistemological antinomy can likewise be used for a similar undecidability proof.

15 In spite of appearances, there is nothing circular about such a proposition, since it begins by
asserting the unprovability of a wholly determinate formula (namely the q-th in the alphabetical 
arrangement with a definite substitution), and only subsequently (and in some way by accident) does it 
emerge that this formula is precisely that by which the proposition was itself expressed.
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/****************************************************************************
This code snippet demonstrates [truth conditional semantics] for the subset 
of analytic knowledge involving “=” relational expressions of the arithmetic 
operation of “+” applied to finite strings OF ASCII digits of arbitray length
representing natural numbers. 

  Truth-conditional semantics is an approach to semantics of natural 
  language that sees meaning (or at least the meaning of assertions) 
  as being the same as, or reducible to, their truth conditions. 
  https://en.wikipedia.org/wiki/Truth-conditional_semantics 

The finite string transformation rules specified by this source-code provide 
the means to formally prove whether a finite string of the language of the 
Simple_Arithmetic formal system has the semantic property of Boolean true.   

This AWK regular expression: specifies the entire language of the 
Simple_Arithmetic Sound Deductive Formalist formal system:   
/[0-9]+[\+][0-9]+[=<>][0-9]+/ 
****************************************************************************/

char AddWithCarry(char D1, char D2, char& Carry)
{
  char SUM   = ADD_Digit[D1][D2];      
  if (Carry == '1' && SUM == '9')
  { 
    SUM   = '0'; 
    Carry = '1'; 
  }
  else if (Carry == '1' && SUM < '9')
  {
    SUM   = ADD_Digit[SUM][Carry]; 
    Carry = ADD_Carry[D1][D2];   
  }
  else // Carry == '0' 
    Carry = ADD_Carry[D1][D2];   
  return SUM; 
} 

std::string Add(std::string& OP1, std::string& OP2)
{
std::string SUM;  
  char Carry = '0'; 
  for (int N = OP1.length() - 1; N >= 0; N--)
    SUM += AddWithCarry(OP1[N], OP2[N], Carry); 
  if (Carry == '1')
    SUM += '1'; 
  std::reverse(SUM.begin(), SUM.end());
  return SUM; 
}

//
// (Proven && True) || (Unproven && Untrue)
//
bool ProveInput(std::string& OP1,std::string& OP2,
                std::string& SUM, char Relational_OP)
{
  std::string RESULT;
  RESULT = Add(OP1, OP2); 
  return (RESULT == SUM);
} 
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