Refuting the Halting Problem Diagonalization Argument

Every machine that halts in a reject state is a halting computation. At least two proofs ignore this when constructing Sipser's Figure 4.5. Because these two proofs ignore this when they insert machine D in Sipser's Figure 4.5 they do so incorrectly.

When machine D is inserted in both Figure 4.4 and Figure 4.5 correctly then the contradiction goes away. Since Sipser implicitly assumes that every blank entry of Figure 4.4 is a ~halt entry Figure 4.7a makes this explicit.

	⟨M ₁⟩	(M 2)	⟨M₃⟩	(Μ ₄)	(D)
M ₁	accept	~halt	accept	~halt	reject
M ₂	accept	accept	accept	accept	reject
Mз	~halt	~halt	~halt	~halt	accept
M4	accept	accept	~halt	~halt	accept
 D	reject	reject	accept	accept	reject

Figure 4.7a (corrected figure 4.6, inserting D into figure 4.4)

	⟨M₁⟩	(Μ ₂)	⟨M₃⟩	(M₄)	(D)
M ₁	<u>accept</u>	reject	accept	reject	accept
M ₂	accept	<u>accept</u>	accept	accept	accept
Mз	reject	reject	<u>reject</u>	reject	accept
M4	accept	accept	reject	<u>reject</u>	accept
D	accept	accept	accept	accept	<u>accept</u>

Figure 4.7b (corrected figure 4.6, inserting D into figure 4.5)

Copyright 2021 PL Olcott

The following portions of pages 166-167 are directly relevant to the rebuttal. **Sipser, Michael 1997.** Introduction to the Theory of Computation. Boston: PWS Publishing Company (165-167)

166 CHAPTER 4 / DECIDABILITY

Where is the diagonalization in the proof of Theorem 4.9? It becomes apparent when you examine tables of behavior for TMs H and D. In these tables we list all TMs down the rows, M_1, M_2, \ldots and all their descriptions across the columns, $\langle M_1 \rangle$, $\langle M_2 \rangle$, ... The entries tell whether the machine in a given row accepts the input in a given column. The entry is *accept* if the machine accepts the input but is blank if it rejects or loops on that input. We made up the entries in the following figure to illustrate the idea.

	$\langle M_1 angle$	$\langle M_2 \rangle$	$\langle M_3 \rangle$	$\langle M_4 \rangle$	•••
M_1	accept		accept		
M_2	accept	accept	accept	accept	
M_3					
M_4	accept	accept			•••
:		:	:		
•			•		

FIGURE 4.4

Entry *i*, *j* is accept if M_i accepts $\langle M_j \rangle$

In the following figure the entries are the results of running H on inputs corresponding to Figure 4.4. So if M_3 does not accept input $\langle M_2 \rangle$, the entry for row M_3 and column $\langle M_2 \rangle$ is *reject* because H rejects input $\langle M_3, \langle M_2 \rangle \rangle$.

	$\langle M_1 angle$	$\langle M_2 \rangle$	$\langle M_3 \rangle$	$\langle M_4 \rangle$	• • •
M_1	accept	reject	accept	reject	
M_2	accept	accept	accept	accept	
M_3	reject	reject	reject	reject	
M_4	accept	accept	reject	reject	
:		:			
•					

FIGURE **4.5**

Entry *i*, *j* is the value of *H* on input $\langle M_i, \langle M_j \rangle \rangle$

In the following figure, we added D to Figure 4.5. By our assumption, H is a TM and so is D. Therefore it must occur on the list M_1, M_2, \ldots of all TMs. Note that D computes the opposite of the diagonal entries. The contradiction occurs at the point of the question mark where the entry must be the opposite of itself.

4.2 THE HALTING PROBLEM 167

	$\langle M_1 \rangle$	$\langle M_2 \rangle$	$\langle M_3 \rangle$	$\langle M_4 \rangle$	•••	$\langle D angle$	•••
M_1	accept	reject	accept	reject		accept	
M_2	accept	accept	accept	accept		accept	
M_3	reject	reject	reject	reject	•••	reject	•••
M_4	accept	accept	\overline{reject}	reject		accept	
÷		÷			·		
D	reject	reject	accept	accept		_?	
÷		:					۰.

FIGURE 4.6 If *D* is in the figure, a contradiction occurs at "?"