Refuting the Sipser Halting Problem Diagonalization Argument

Every machine that halts in a reject state is a halting computation. When machine D is inserted into Figure 4.5 deriving Figure 4.6 the fact that a reject state is a halting computation is ignored. This makes the values at $\langle D_i \langle M_1 \rangle \rangle$ and $\langle D_i \langle M_1 \rangle \rangle$ in Figure 4.6 incorrect. When machine D is inserted into both Figure 4.4 and Figure 4.5 correctly (figures 4.4b and 4.5a respectively) the contradiction is eliminated.

```
\langle M_1 \rangle
                  \langle M_2 \rangle
                                \langle M_3 \rangle
                                            ⟨M₄⟩ . . .
     accept
M_1
                                accept
     accept
                                accept
M_2
                   accept
                                             accept
Мз
M₄ accept
                  accept
Original Figure 4.4
      \langle M_1 \rangle
                  \langle M_2 \rangle
                                \langle M_3 \rangle
                                            ⟨M₄⟩ . . .
                  ~halt
M₁ accept
                               accept
                                             ~halt
                                             accept
M<sub>2</sub> accept
                  accept
                               accept
M₃ ~halt
                  ~halt
                               ~halt
                                             ~halt
                                             ~halt
M₄ accept
                  accept
                               ~halt
. . .
Figure 4.4a (converted from Figure 4.4 making ~halt assumption explicit)
      \langle M_1 \rangle
                  \langle M_2 \rangle
                                \langle M_3 \rangle
                                            ⟨M₄⟩ . . .
                   reject
                                             reject
M_1
     <u>accept</u>
                               accept
                               accept
                                             accept
M<sub>2</sub> accept
                  <u>accept</u>
M₃ reject
                                             reject
                   reject
                                <u>reject</u>
M₄ accept
                  accept
                               reject
                                             reject
Original Figure 4.5 (underlining added)
                  \langle M_2 \rangle
                                \langle M_3 \rangle
                                            (M<sub>4</sub>) . . .
      \langle M_1 \rangle
                                                         ⟨D⟩ . . .
     accept
                  ~halt
                                accept
                                             ~halt
M_1
                                                          DC
M<sub>2</sub> accept
                  accept
                               accept
                                             accept
                                                          DC
M₃ ~halt
                  ~halt
                               ~halt
                                             ~halt
                                                          DC
                               ~halt
                                             ~halt
                                                          DC
M_4
     accept
                  accept
      reject
                   reject
                                accept
                                             accept
                                                          reject
D
Figure 4.4b (Insert D into Figure 4.4a)
      \langle M_1 \rangle
                   \langle M_2 \rangle
                                \langle M_3 \rangle
                                            ⟨M₄⟩ . . .
                                                         ⟨D⟩ . . .
M₁ accept
                   reject
                               accept
                                             reject
                                                          DC
M<sub>2</sub> accept
                               accept
                                             accept
                                                          DC
                  accept
M₃ reject
                  reject
                               reject
                                             reject
                                                          DC
M<sub>4</sub> accept
                  accept
                               reject
                                             <u>reject</u>
                                                          DC
     accept
                   accept
                                accept
                                             accept
D
                                                          accept
Figure 4.5a (Insert D into Figure 4.5)
```

The above refutation of the Sipser diagonalization proof applies to all halting problem diagonalization proofs. Sipser was chosen as a widely available and very clear proof.

The Sipser proof was the basis for this superb lecture by Professor Dan Gusfield of UC Davis:

L15: Proof by Diagonalization that ATM (Halting Problem) is Not Decidable Dec 12, 2012 https://www.youtube.com/watch?v=jM6osxSX9GA

Copyright 2021 PL Olcott

The following portions of pages 166-167 are directly relevant to the rebuttal. **Sipser, Michael 1997.** Introduction to the Theory of Computation. Boston: PWS Publishing Company (165-167)

Where is the diagonalization in the proof of Theorem 4.9? It becomes apparent when you examine tables of behavior for TMs H and D. In these tables we list all TMs down the rows, M_1, M_2, \ldots and all their descriptions across the columns, $\langle M_1 \rangle, \langle M_2 \rangle, \ldots$ The entries tell whether the machine in a given row accepts the input in a given column. The entry is *accept* if the machine accepts the input but is blank if it rejects or loops on that input. We made up the entries in the following figure to illustrate the idea.

	$\langle M_1 angle$	$\langle M_2 angle$	$\langle M_3 \rangle$	$\langle M_4 angle$	
M_1	accept		accept		
$\overline{M_2}$	accept	accept	accept	accept	
M_3					
M_4	accept	accept			• • •
			•		
:					

FIGURE **4.4** Entry i, j is accept if M_i accepts $\langle M_i \rangle$

In the following figure the entries are the results of running H on inputs corresponding to Figure 4.4. So if M_3 does not accept input $\langle M_2 \rangle$, the entry for row M_3 and column $\langle M_2 \rangle$ is reject because H rejects input $\langle M_3, \langle M_2 \rangle \rangle$.

	$\langle M_1 angle$	$\langle M_2 \rangle$	$\langle M_3 angle$	$\langle M_4 angle$	• • •
M_1	accept	reject	accept	reject	
M_2	accept	accept	accept	accept	
M_3	reject	reject	reject	reject	
M_4	accept	accept	reject	reject	
:		;			

FIGURE 4.5 Entry i, j is the value of H on input $\langle M_i, \langle M_j \rangle \rangle$

In the following figure, we added D to Figure 4.5. By our assumption, H is a TM and so is D. Therefore it must occur on the list M_1, M_2, \ldots of all TMs. Note that D computes the opposite of the diagonal entries. The contradiction occurs at the point of the question mark where the entry must be the opposite of itself.

4.2 THE HALTING PROBLEM 167

	$\langle M_1 angle$	$\langle M_2 angle$	$\langle M_3 angle$	$\langle M_4 \rangle$		$\langle D angle$	
M_1	accept	reject	accept	reject		accept	
M_2	\overline{accept}	accept	accept	accept		accept	
M_3	reject	\overline{reject}	reject	reject	• • •	reject	• • •
M_4	accept	accept	\overline{reject}	reject		accept	
:		:			٠		
D	reject	reject	accept	accept		- 5	
:		:					٠

FIGURE 4.6 If *D* is in the figure, a contradiction occurs at "?"