
Refuting the Sipser Halting Problem Diagonalization Argument

Every machine that halts in a reject state is a halting computation. When machine D is inserted
into Figure 4.5 deriving Figure 4.6 the fact that a reject state is a halting computation is
ignored. This makes the values at ⟨D,⟨M1⟩⟩ and ⟨D,⟨M2⟩⟩ in Figure 4.6 incorrect. When machine
D is inserted into both Figure 4.4 and Figure 4.5 correctly (figures 4.4b and 4.5a respectively)
the contradiction is eliminated.

 ⟨M1⟩ ⟨M2⟩ ⟨M3⟩ ⟨M4⟩ ...
 M1 accept accept

 M2 accept accept accept accept

 M3

 M4 accept accept
 ...

 Original Figure 4.4

 ⟨M1⟩ ⟨M2⟩ ⟨M3⟩ ⟨M4⟩ ...
 M1 accept ~halt accept ~halt

 M2 accept accept accept accept

 M3 ~halt ~halt ~halt ~halt

 M4 accept accept ~halt ~halt
 ...

 Figure 4.4a (converted from Figure 4.4 making ~halt assumption explicit)

 ⟨M1⟩ ⟨M2⟩ ⟨M3⟩ ⟨M4⟩ ...
 M1 accept reject accept reject

 M2 accept accept accept accept

 M3 reject reject reject reject

 M4 accept accept reject reject
 ...

 Original Figure 4.5 (underlining added)

 ⟨M1⟩ ⟨M2⟩ ⟨M3⟩ ⟨M4⟩ ... ⟨D⟩ ...
 M1 accept ~halt accept ~halt DC

 M2 accept accept accept accept DC

 M3 ~halt ~halt ~halt ~halt DC

 M4 accept accept ~halt ~halt DC
 ...
 D reject reject accept accept reject
 ...

 Figure 4.4b (Insert D into Figure 4.4a)

 ⟨M1⟩ ⟨M2⟩ ⟨M3⟩ ⟨M4⟩ ... ⟨D⟩ ...
 M1 accept reject accept reject DC

 M2 accept accept accept accept DC

 M3 reject reject reject reject DC

 M4 accept accept reject reject DC
 ...
 D accept accept accept accept accept
 ...

 Figure 4.5a (Insert D into Figure 4.5)

 ---1--- 2021-05-31 09:01 AM

 ---2--- 2021-05-31 09:01 AM

166 CHAPTER 4 / DECIDABILITY

Where is the diagonalization in the proof of Theorem 4.9? It becomes ap
parent when you examine tables of behavior for TMs Hand D. In these tables
we list all TMs down the rows, Ml, M 2 , ••• and all their descriptions across the
columns, (M1), (M2), ••. The entries tell whether the machine in a given row
accepts the input in a given column. The entry is accept if the machine accepts
the input but is blank if it rejects or loops on that input. We made up the entries
in the following figure to illustrate the idea.

(M1) (M2) (M3) (M4)
Ml accept accept
M2 accept accept accept accept
M3
M4 accept accept

FIGURE 4.4
Entry i, j is accept if Mi accepts (Mj)

In the following figure the entries are the results of running H on inputs cor
responding to Figure 4.4. So if M3 does not accept input (M2), the entry for row
M3 and column (M2) is reject because H rejects input (M3, (M2)).

(M1) (M2) (M3) (M4)
Ml accept reject accept reject
M2 accept accept accept accept
M3 reject reject reject reject
M4 accept accept reject reject

FIGURE 4.5
Entry i, j is the value of H on input (Mi , (Mj))

In the following figure, we added D to Figure 4.5. By our assumption, H is a
TM and so is D. Therefore it must occur on the list M 1 , M2, ... of all TMs. Note
that D computes the opposite of the diagonal entries. The contradiction occurs
at the point of the question mark where the entry must be the opposite of itself.

4.2 THE HALTING PROBLEM

(M1) (M2) (M3) (M4) (D)
Ml accept reject accept reject accept
M2 accept accept accept accept accept
M3 reject reject reject reject reject
M4 accept accept reject reject accept

D reject reject accept accept -?-

FIGURE 4.6
If D is in the figure, a contradiction occurs at "?"

167

The above portions of pages 166-167 are directly relevant to the rebuttal. (fair use)
Sipser, Michael 1997. Introduction to the Theory of Computation. Boston: PWS Publishing

Appendix
#define u32 uint32_t

int Simulate(u32 P, u32 I)
{
 ((void(*)(u32))P)(I);
 return 1;
}

int D(u32 P) // P is a machine address
{
 if (H(P, P))
 return 0 // reject when H accepts
 return 1; // accept when H rejects
}

int main()
{
 H((u32)D, (u32)D);
}

We can know that simulating halt decider H must stop simulating its input because if H did not
stop simulating its input then D would have the same halting behavior as if D called Simulate
instead of H.

The above analysis is confirmed by actual execution of the above function in the x86utm
operating system. H detects an infinitely repeating non-halting pattern that never reaches the
second line of D. Because the execution of D would be infinite if D did not abort its simulation
H can stop simulating D and decide not halting.

X86utm was designed so that halting problem computations can be examined concretely at the
high level of abstraction of the C programming language. The x86utm operating system
provides a DebugStep() function to allow any C function to execute the x86 machine language
of another C function in debug step mode. Because these C functions are executed in
separate process contexts they do not interfere with each other.

The partial halt decider H invokes an x86 emulator to execute its input D in debug step mode.
The input is the machine address of the input x86 function cast to a 32-bit unsigned integer.

H examines the complete execution trace of D immediately after each x86 instruction of D is
simulated. As soon as the partial halt decider H recognizes a non-terminating behavior pattern
of D it aborts the simulation of D and reports not-halting.

Simulating halt decider H(D,D) rejects its input as a halting computation on the basis that
H(D,D) specifies infinitely nested simulation to H unless H aborts its simulation of D(D).

Copyright 2021 PL Olcott

 ---3--- 2021-05-31 09:01 AM

