
Halting problem undecidability and infinitely nested simulation

The pathological self-reference of the conventional halting problem proof counter-examples
is overcome. The halt status of these examples is correctly determined. A simulating halt
decider remains in pure simulation mode until after it determines that its input will never stop
running unless its simulation is aborted. This eliminates the conventional feedback loop
where the behavior of the halt decider effects the behavior of its input.

The x86utm operating system was created so that the halting problem could be examined
concretely in the high level language of C. H is a function written in C that analyzes the x86
machine language execution trace of other functions written in C. H recognizes simple cases
of infinite recursion and infinite loops. The conventional halting problem proof counter-
example template is shown to simply be an input that does not halt.

H simulates its input with an x86 emulator until it determines that its input would never halt.
As soon as H recognizes that its input would never halt it stops simulating this input and
returns 0. For inputs that do halt H acts exactly as if it was an x86 emulator and simply runs
its input to completion and then returns 1.

 In theoretical computer science the random-access stored-program (RASP)
 machine model is an abstract machine used for the purposes of algorithm
 development and algorithm complexity theory. ...The RASP is closest of all
 the abstract models to the common notion of computer.
 https://en.wikipedia.org/wiki/Random-access_stored-program_machine

The C/x86 model of computation is known to be Turing equivalent on the basis that it maps
to the RASP model for all computations having all of the memory that they need. As long as
an C/x86 function is a pure function of its inputs the C/x86 model of computation can be
relied upon as a much higher level of abstraction of the behavior of actual Turing machines.

Simulating Halt Decider Theorem (Olcott 2020):
A simulating halt decider correctly decides that any input that never halts unless the
simulating halt decider aborts its simulation of this input is an input that never halts.
The above is verified as completely true entirely on the basis of the meaning of its words.

 the Turing machine halting problem. Simply stated, the problem is: given
 the description of a Turing machine M and an input w, does M, when started
 in the initial configuration q0w, perform a computation that eventually halts?
 (Linz:1990:317).

 In computability theory, the halting problem is the problem of determining,
 from a description of an arbitrary computer program and an input, whether
 the program will finish running, or continue to run forever.
 https://en.wikipedia.org/wiki/Halting_problem

The halting problem is always about program descriptions not running programs. This
means that it is always about the input to the halt decider not the direct execution of the
program. If the input to the simulating halt decider never halts unless the halt decider aborts
its simulation of this input then its input never halts.

 ---1--- 2021-08-30 11:16 PM

https://en.wikipedia.org/wiki/Random-access_stored-program_machine
https://en.wikipedia.org/wiki/Halting_problem

Because H only acts as a pure simulator of its input until after its halt status decision has
been made it has no behavior that can possibly effect the behavior of its input. Because of
this H screens out its own address range in every execution trace that it examines. This is
why we never see any instructions of H in any execution trace after an input calls H.

Pathological Input to a halt decider is stipulated to mean any input that was defined to do
the opposite of whatever its corresponding halt decider decides as Sipser describes:

 Now we construct a new Turing machine D with H as a subroutine. This new
 TM calls H to determine what M does when the input to M is its own description
 ⟨M⟩. Once D has determined this information, it does the opposite. (Sipser:1997:165)

When D is invoked with input ⟨D⟩ we have pathological self-reference when D calls H with ⟨D⟩
and does the opposite of whatever H returns.

Does D halt on its own machine description ⟨D⟩ ?
This question can only be correctly answered after the pathology has been removed. When
a halt decider only acts as a pure simulator of its input until after its halt status decision is
made there is no feedback loop of back channel communication between the halt decider
and its input that can prevent a correct halt status decision. In this case the halt decider is
only examining the behavior of the input. It ignores it own behavior.

The standard pseudo-code halting problem template "proved" that the halting problem could
never be solved on the basis that neither value of true (halting) nor false (not halting) could
be correctly returned form the halt decider to the confounding input.

procedure compute_g(i): // (Wikipedia:Halting Problem)
 if f(i, i) == 0 then // adapted from (Strachey, C 1965)
 return 0 // originally written in CPL
 else // ancestor of the BCPL, B and C
 loop forever // programming languages

This problem is overcome on the basis that a simulating halt decider would abort the
simulation of its input before ever returning any value to this input. It aborts the simulation of
its input on the basis that its input specifies what is essentially infinite recursion (infinitely
nested simulation) to any simulating halt decider.

Every input to a simulating halt decider that only stops running when its simulation is aborted
unequivocally specifies a computation that never halts. When input to a simulating halt
decider cannot possibly reach its final state then we know that this input never halts.

A simulating halt decider H divides all of its input into:
(1) Those inputs that never halt while H remains a pure simulator (never halting).
 H aborts its simulation of these inputs an returns 0 for never halting.

(2) Those inputs that halt while H remains a pure simulator (halting).
 H waits for its simulation of this input to complete and then returns 1 halting.

 ---2--- 2021-08-30 11:16 PM

Simulating partial halt decider H correctly decides that P(P) never halts (V1)

H analyzes the (currently updated) stored execution trace of its x86 emulation of P(P) after it
simulates each instruction of input (P, P). As soon as a non-halting behavior pattern is
matched H aborts the simulation of its input and decides that its input never halts.

The execution trace of the x86 emulation of P(P) by simulating halt decider H conclusively
proves that P never halts unless H aborts its simulation of P. This provides complete proof
that that the input to H never halts thus H(P,P)==0 is correct.

// Simplified Linz Ĥ (Linz:1990:319)
// Strachey(1965) CPL translated to C
void P(u32 x)
{
 if (H(x, x))
 HERE: goto HERE;
}

int main()
{
 Output("Input_Halts = ", H((u32)P, (u32)P));
}

_P()
[00000c36](01) 55 push ebp
[00000c37](02) 8bec mov ebp,esp
[00000c39](03) 8b4508 mov eax,[ebp+08] // 2nd Param
[00000c3c](01) 50 push eax
[00000c3d](03) 8b4d08 mov ecx,[ebp+08] // 1st Param
[00000c40](01) 51 push ecx
[00000c41](05) e820fdffff call 00000966 // call H
[00000c46](03) 83c408 add esp,+08
[00000c49](02) 85c0 test eax,eax
[00000c4b](02) 7402 jz 00000c4f
[00000c4d](02) ebfe jmp 00000c4d
[00000c4f](01) 5d pop ebp
[00000c50](01) c3 ret
Size in bytes:(0027) [00000c50]

_main()
[00000c56](01) 55 push ebp
[00000c57](02) 8bec mov ebp,esp
[00000c59](05) 68360c0000 push 00000c36 // push P
[00000c5e](05) 68360c0000 push 00000c36 // push P
[00000c63](05) e8fefcffff call 00000966 // call H(P,P)
[00000c68](03) 83c408 add esp,+08
[00000c6b](01) 50 push eax
[00000c6c](05) 6857030000 push 00000357
[00000c71](05) e810f7ffff call 00000386
[00000c76](03) 83c408 add esp,+08
[00000c79](02) 33c0 xor eax,eax
[00000c7b](01) 5d pop ebp
[00000c7c](01) c3 ret
Size in bytes:(0039) [00000c7c]

 ---3--- 2021-08-30 11:16 PM

 machine stack stack machine assembly
 address address data code language
 ======== ======== ======== ========= =============
[00000c56][0010172a][00000000] 55 push ebp
[00000c57][0010172a][00000000] 8bec mov ebp,esp
[00000c59][00101726][00000c36] 68360c0000 push 00000c36 // push P
[00000c5e][00101722][00000c36] 68360c0000 push 00000c36 // push P
[00000c63][0010171e][00000c68] e8fefcffff call 00000966 // call H(P,P)

Begin Local Halt Decider Simulation at Machine Address:c36
[00000c36][002117ca][002117ce] 55 push ebp
[00000c37][002117ca][002117ce] 8bec mov ebp,esp
[00000c39][002117ca][002117ce] 8b4508 mov eax,[ebp+08]
[00000c3c][002117c6][00000c36] 50 push eax // push P
[00000c3d][002117c6][00000c36] 8b4d08 mov ecx,[ebp+08]
[00000c40][002117c2][00000c36] 51 push ecx // push P
[00000c41][002117be][00000c46] e820fdffff call 00000966 // call H(P,P)

[00000c36][0025c1f2][0025c1f6] 55 push ebp
[00000c37][0025c1f2][0025c1f6] 8bec mov ebp,esp
[00000c39][0025c1f2][0025c1f6] 8b4508 mov eax,[ebp+08]
[00000c3c][0025c1ee][00000c36] 50 push eax // push P
[00000c3d][0025c1ee][00000c36] 8b4d08 mov ecx,[ebp+08]
[00000c40][0025c1ea][00000c36] 51 push ecx // push P
[00000c41][0025c1e6][00000c46] e820fdffff call 00000966 // call H(P,P)
Local Halt Decider: Infinite Recursion Detected Simulation Stopped

We do not see any of the x86 instructions of H in the above execution trace because we
know that H is only acting as a pure simulator of its inputs until after it has made its halt
status decision. This means that H cannot possibly have any effect on the behavior of its
input during the above (execution trace / halt status analysis), thus H can safely ignore its
own instructions in this halt status analysis.

The infinite recursion detection criteria are met by the above execution trace:
(a) P calls H twice in sequence from the same machine address.
(b) With the same parameters: (P,P) to H.
(c) With no conditional branch or indexed jump instructions in the execution trace of P.
(d) We know that there are no return instructions in H because we know that H is in pure
simulation mode.

This conclusively proves that P never halts unless H aborts its simulation of P which proves
that the behavior of the simulation of P on input P by H meets the following criteria:

Simulating Halt Decider Theorem (Olcott 2020):
A simulating halt decider correctly decides that any input that never halts unless the
simulating halt decider aborts its simulation of this input is an input that never halts.

[00000c68][0010172a][00000000] 83c408 add esp,+08
[00000c6b][00101726][00000000] 50 push eax
[00000c6c][00101722][00000357] 6857030000 push 00000357
[00000c71][00101722][00000357] e810f7ffff call 00000386
Input_Halts = 0
[00000c76][0010172a][00000000] 83c408 add esp,+08
[00000c79][0010172a][00000000] 33c0 xor eax,eax
[00000c7b][0010172e][00100000] 5d pop ebp
[00000c7c][00101732][00000068] c3 ret
Number_of_User_Instructions(27)
Number of Instructions Executed(23721)

 ---4--- 2021-08-30 11:16 PM

Simulating partial halt decider H1 correctly decides that P(P) halts (V2)

When we create an exact copy H1 of H and invoke H1(P,P) in main() it can see that H aborts
its simulation of its input thus H1 returns 1 indicating that its input halts.

When H is the only halt decider it correctly reports that its input never halts unless it aborts
its simulation of this input. When H1 is not the same halt decider as the one that P calls then
H1 correctly reports that P halts because it can see that H aborts its simulation of P. In both
cases H is correct.

void P(u32 x)
{
 if (H(x, x))
 HERE: goto HERE;
}

int main()
{
 Output("Input_Halts = ", H1((u32)P, (u32)P));
}

x86 assembly language source-code for the above C functions.

_P()
[00000e52](01) 55 push ebp
[00000e53](02) 8bec mov ebp,esp
[00000e55](03) 8b4508 mov eax,[ebp+08]
[00000e58](01) 50 push eax
[00000e59](03) 8b4d08 mov ecx,[ebp+08]
[00000e5c](01) 51 push ecx
[00000e5d](05) e870feffff call 00000cd2 // call H
[00000e62](03) 83c408 add esp,+08
[00000e65](02) 85c0 test eax,eax
[00000e67](02) 7402 jz 00000e6b // jmp if eax == 0
[00000e69](02) ebfe jmp 00000e69 // eax != 0
[00000e6b](01) 5d pop ebp
[00000e6c](01) c3 ret
Size in bytes:(0027) [00000e6c]

_main()
[00000e72](01) 55 push ebp
[00000e73](02) 8bec mov ebp,esp
[00000e75](05) 68520e0000 push 00000e52 // push P
[00000e7a](05) 68520e0000 push 00000e52 // push P
[00000e7f](05) e88efcffff call 00000b12 // call H1
[00000e84](03) 83c408 add esp,+08
[00000e87](01) 50 push eax
[00000e88](05) 6823030000 push 00000323
[00000e8d](05) e8c0f4ffff call 00000352 // call Output
[00000e92](03) 83c408 add esp,+08
[00000e95](02) 33c0 xor eax,eax
[00000e97](01) 5d pop ebp
[00000e98](01) c3 ret // exit main()
Size in bytes:(0039) [00000e98]

 ---5--- 2021-08-30 11:16 PM

x86 Assembly Language Execution Trace of the above functions.

Because H and H1 only act as pure simulators of their input until after their halt status
decision has been made they have no behavior that can possibly effect the behavior of their
input. Because of this H and H1 screen out their own address range in every execution trace
that they examine. This is why we never see any instructions of H or H1 in this execution
trace.

Also the x86utm operating system only shows the execution user-code. It does not show the
execution of any operating system code. This is controlled by a compile time switch.

 machine stack stack machine assembly
 address address data code language
 ======== ======== ======== ========= =============
01.[00000e72][00101a94][00000000] 55 push ebp
02.[00000e73][00101a94][00000000] 8bec mov ebp,esp
03.[00000e75][00101a90][00000e52] 68520e0000 push 00000e52 // push P
04.[00000e7a][00101a8c][00000e52] 68520e0000 push 00000e52 // push P
05.[00000e7f][00101a88][00000e84] e88efcffff call 00000b12 // call H1

Begin Local Halt Decider Simulation at Machine Address:e52
06.[00000e52][00211b34][00211b38] 55 push ebp
07.[00000e53][00211b34][00211b38] 8bec mov ebp,esp
08.[00000e55][00211b34][00211b38] 8b4508 mov eax,[ebp+08]
09.[00000e58][00211b30][00000e52] 50 push eax // push P
10.[00000e59][00211b30][00000e52] 8b4d08 mov ecx,[ebp+08]
11.[00000e5c][00211b2c][00000e52] 51 push ecx // push P
12.[00000e5d][00211b28][00000e62] e870feffff call 00000cd2 // call H

Begin Local Halt Decider Simulation at Machine Address:e52
13.[00000e52][0025c55c][0025c560] 55 push ebp
14.[00000e53][0025c55c][0025c560] 8bec mov ebp,esp
15.[00000e55][0025c55c][0025c560] 8b4508 mov eax,[ebp+08]
16.[00000e58][0025c558][00000e52] 50 push eax // push P
17.[00000e59][0025c558][00000e52] 8b4d08 mov ecx,[ebp+08]
18.[00000e5c][0025c554][00000e52] 51 push ecx // push P
19.[00000e5d][0025c550][00000e62] e870feffff call 00000cd2 // call H
20.[00000e52][002a6f84][002a6f88] 55 push ebp
21.[00000e53][002a6f84][002a6f88] 8bec mov ebp,esp
22.[00000e55][002a6f84][002a6f88] 8b4508 mov eax,[ebp+08]
23.[00000e58][002a6f80][00000e52] 50 push eax // push P
24.[00000e59][002a6f80][00000e52] 8b4d08 mov ecx,[ebp+08]
25.[00000e5c][002a6f7c][00000e52] 51 push ecx // push P
26.[00000e5d][002a6f78][00000e62] e870feffff call 00000cd2 // call H
Local Halt Decider: Infinite Recursion Detected Simulation Stopped

27.[00000e62][00211b34][00211b38] 83c408 add esp,+08
28.[00000e65][00211b34][00211b38] 85c0 test eax,eax
29.[00000e67][00211b34][00211b38] 7402 jz 00000e6b
30.[00000e6b][00211b38][00000bcf] 5d pop ebp
31.[00000e6c][00211b3c][00000e52] c3 ret // return from P
32.[00000e84][00101a94][00000000] 83c408 add esp,+08
33.[00000e87][00101a90][00000001] 50 push eax
34.[00000e88][00101a8c][00000323] 6823030000 push 00000323
35.[00000e8d][00101a8c][00000323] e8c0f4ffff call 00000352 // call Output
Input_Halts = 1
36.[00000e92][00101a94][00000000] 83c408 add esp,+08
37.[00000e95][00101a94][00000000] 33c0 xor eax,eax
38.[00000e97][00101a98][00100000] 5d pop ebp
39.[00000e98][00101a9c][00000004] c3 ret // exit main()
Number_of_User_Instructions(39)
Number of Instructions Executed(626930) would be 9,357 pages of output.

 ---6--- 2021-08-30 11:16 PM

Simulating halt deciders can only see the execution trace of instructions that they simulate.
They cannot see the execution trace generated from another different simulating halt
decider. H1 only has lines 06-12 and lines 27-31 in its stored execution trace it never sees
lines 13-26 that belong to the stored execution trace of H. Because H1 has returned to
main() it does not see any lines after line 31.

Simulating halt deciders always ignore the internal behavior of all operating system
functions, the halt status of these functions is already known. Because simulating halt
deciders are themselves operating system functions they always ignore their own behavior
and the behavior of every other halt decider.

Because of the above reasons we can see that H does see that the infinite recursion criteria
is met by its input and H1 never see that this crieria is met.

Infinite recursion detection criteria:
If the execution trace of function X() called by function Y() shows:
(1) Function X() is called twice in sequence from the same machine address of Y().
(2) With the same parameters to X().
(3) With no conditional branch or indexed jump instructions in Y().
(4) With no function call returns from X().
then the function call from Y() to X() is infinitely recursive.

Because H(P,P) and H1(P,P) are distinctly different computations they can have different
behavior without contradiction.

The direct execution of P(P) shown in the next section is computationally equivalent to the
pure simulation of P(P) invoked from main() by H1 shown above. Because P already has its
own halt decider H1 never needs to abort its simulation of P(P) thus H1 stays in simulation
mode.

When H is the only halt decider (as in the prior section) then it correctly determines that it
must abort its simulation of P(P). H cannot simply wait for itself to abort its simulation of P(P)
later on because it would never be aborted if H simply waited for itself to do this. This is
computationally different than the direct invocation of P(P) in the next section.

H1(P,P) simulates P(P) as a slave process which executes H(P,P) as a part of this same
slave process. H(P,P) simulates P(P) as its own slave process that H1 cannot see because
each halt decider is a pure function of its own inputs. Because H1 and H are at different
machine addresses they are not the same function executed with the same data.

The fact that H1 is called first causes H1 to monitor the results of the behavior of H(P,P).
This creates a dependency of H1 on behavior of H(P,P). H(P,P) has no such dependency on
another halt decider.

 ---7--- 2021-08-30 11:16 PM

The fact that H and H1 are at different machine addresses and that H1 is called first makes
two functions with identical machine code behave differently on the exact same input.

The fact that H and H1 are at different machine address derives a key difference in their
execution trace that derives a key difference in their halt status decision.

The halt deciders look for the same function to be called with the same data twice in
sequence. H1 is never called twice. H sees a function (itself) called twice in sequence with
the same data.

Because H1 is called first and H1 is at a different machine address than H the abort
simulation criteria is not met for H1. When the abort simulation criteria is met by H(P,P) then
H1 sees that its input halts.

The fact that H and H1 are at different machines addresses and that H1 is called first makes
two functions with identical machine code behave differently on the exact same input.

 ---8--- 2021-08-30 11:16 PM

The direct execution of P(P) halts (V3)

The execution trace of the x86 emulation of P(P) by simulating halt decider H conclusively
proves that P cannot possibly ever reach its final state of 0xc3f. This provides complete
proof that that the input to H never halts thus H(P,P)==0 is correct.

// Simplified Linz Ĥ (Linz:1990:319)
// Strachey(1965) CPL translated to C

void P(u32 x)
{
 if (H(x, x))
 HERE: goto HERE;
}

int main()
{
 P((u32)P);
}

_P()
[00000c25](01) 55 push ebp
[00000c26](02) 8bec mov ebp,esp
[00000c28](03) 8b4508 mov eax,[ebp+08]
[00000c2b](01) 50 push eax // 2nd Param
[00000c2c](03) 8b4d08 mov ecx,[ebp+08]
[00000c2f](01) 51 push ecx // 1st Param
[00000c30](05) e820fdffff call 00000955 // call H
[00000c35](03) 83c408 add esp,+08
[00000c38](02) 85c0 test eax,eax
[00000c3a](02) 7402 jz 00000c3e
[00000c3c](02) ebfe jmp 00000c3c
[00000c3e](01) 5d pop ebp
[00000c3f](01) c3 ret
Size in bytes:(0027) [00000c3f]

_main()
[00000c45](01) 55 push ebp
[00000c46](02) 8bec mov ebp,esp
[00000c48](05) 68250c0000 push 00000c25 // push P
[00000c4d](05) e8d3ffffff call 00000c25 // call P(P)
[00000c52](03) 83c404 add esp,+04
[00000c55](02) 33c0 xor eax,eax
[00000c57](01) 5d pop ebp
[00000c58](01) c3 ret
Size in bytes:(0020) [00000c58]

 machine stack stack machine assembly
 address address data code language
 ======== ======== ======== ========= =============
[00000c45][001016d6][00000000] 55 push ebp
[00000c46][001016d6][00000000] 8bec mov ebp,esp
[00000c48][001016d2][00000c25] 68250c0000 push 00000c25 // push P
[00000c4d][001016ce][00000c52] e8d3ffffff call 00000c25 // call P0(P)
[00000c25][001016ca][001016d6] 55 push ebp // P0 begins
[00000c26][001016ca][001016d6] 8bec mov ebp,esp
[00000c28][001016ca][001016d6] 8b4508 mov eax,[ebp+08]
[00000c2b][001016c6][00000c25] 50 push eax // push P
[00000c2c][001016c6][00000c25] 8b4d08 mov ecx,[ebp+08]
[00000c2f][001016c2][00000c25] 51 push ecx // push P
[00000c30][001016be][00000c35] e820fdffff call 00000955 // call H0(P1,P1)

 ---9--- 2021-08-30 11:16 PM

Begin Local Halt Decider Simulation at Machine Address:c25
[00000c25][00211776][0021177a] 55 push ebp // P1 begins
[00000c26][00211776][0021177a] 8bec mov ebp,esp
[00000c28][00211776][0021177a] 8b4508 mov eax,[ebp+08]
[00000c2b][00211772][00000c25] 50 push eax // push P
[00000c2c][00211772][00000c25] 8b4d08 mov ecx,[ebp+08]
[00000c2f][0021176e][00000c25] 51 push ecx // push P
[00000c30][0021176a][00000c35] e820fdffff call 00000955 // call H1(P2,P2)

[00000c25][0025c19e][0025c1a2] 55 push ebp // P2 begins
[00000c26][0025c19e][0025c1a2] 8bec mov ebp,esp
[00000c28][0025c19e][0025c1a2] 8b4508 mov eax,[ebp+08]
[00000c2b][0025c19a][00000c25] 50 push eax // push P
[00000c2c][0025c19a][00000c25] 8b4d08 mov ecx,[ebp+08]
[00000c2f][0025c196][00000c25] 51 push ecx // push P
[00000c30][0025c192][00000c35] e820fdffff call 00000955 // call H2(P3,P3)
Local Halt Decider: Infinite Recursion Detected Simulation Stopped

In the above computation (zero based addressing) H0 aborts the P1 invocation chain.
No P(P) ever stops running unless H0 aborts its simulation of P1

Subscripts indicate that a new process context (with its own RAM, stack and registers) has
been created to simulate the virtual machine input to H. Every time H is called it creates a
new process context to simulate its inputs.

P0 and H0 are executed rather than simulated in a process context.
P1 and H1 are simulated in the same process context and are slaves to H0

P2 and H2 are simulated in the same process context and are slaves to H1

[00000c35][001016ca][001016d6] 83c408 add esp,+08
[00000c38][001016ca][001016d6] 85c0 test eax,eax
[00000c3a][001016ca][001016d6] 7402 jz 00000c3e
[00000c3e][001016ce][00000c52] 5d pop ebp
[00000c3f][001016d2][00000c25] c3 ret
[00000c52][001016d6][00000000] 83c404 add esp,+04
[00000c55][001016d6][00000000] 33c0 xor eax,eax
[00000c57][001016da][00100000] 5d pop ebp
[00000c58][001016de][00000084] c3 ret
Number_of_User_Instructions(34)
Number of Instructions Executed(23729)

(1) H does perform a pure simulation of its input until after it makes its halt status decision.

(2) It can be verified that this is a pure simulation on the basis that the execution trace does
what the x86 source-code of P specifies.

(3) Because there are no control flow instructions in the execution trace that can possibly
escape the infinite recursion the execution trace proves that a pure simulation of the above
input cannot possibly ever reach its final state.

(4) Therefore H was correct when it decided that its input never halts.

The direct execution of a machine is a distinctly different computation than the
simulation of this same machine description by a simulating halt decider that can
abort its simulation of this input. This allows the execution of P(P) to halt and the
simulation of P(P) to be correctly decided as never halting without contradiction.

 ---10--- 2021-08-30 11:16 PM

Simulating partial halt decider H correctly decides that Infinite_Loop() never halts

void Infinite_Loop()
{
 HERE: goto HERE;
}

int main()
{
 u32 Input_Would_Halt2 = H((u32)Infinite_Loop, (u32)Infinite_Loop);
 Output("Input_Would_Halt2 = ", Input_Would_Halt2);
}

_Infinite_Loop()
[00000ab0](01) 55 push ebp
[00000ab1](02) 8bec mov ebp,esp
[00000ab3](02) ebfe jmp 00000ab3
[00000ab5](01) 5d pop ebp
[00000ab6](01) c3 ret
Size in bytes:(0007) [00000ab6]

_main()
[00000c00](01) 55 push ebp
[00000c01](02) 8bec mov ebp,esp
[00000c03](01) 51 push ecx
[00000c04](05) 68b00a0000 push 00000ab0
[00000c09](05) 68b00a0000 push 00000ab0
[00000c0e](05) e84dfdffff call 00000960
[00000c13](03) 83c408 add esp,+08
[00000c16](03) 8945fc mov [ebp-04],eax
[00000c19](03) 8b45fc mov eax,[ebp-04]
[00000c1c](01) 50 push eax
[00000c1d](05) 684b030000 push 0000034b
[00000c22](05) e859f7ffff call 00000380
[00000c27](03) 83c408 add esp,+08
[00000c2a](02) 33c0 xor eax,eax
[00000c2c](02) 8be5 mov esp,ebp
[00000c2e](01) 5d pop ebp
[00000c2f](01) c3 ret
Size in bytes:(0048) [00000c2f]

Execution Trace of H(Infinite_Loop, Infinite_Loop)

 machine stack stack machine assembly
 address address data code language
 ======== ======== ======== ========= =============
[00000c00][00101693][00000000] 55 push ebp
[00000c01][00101693][00000000] 8bec mov ebp,esp
[00000c03][0010168f][00000000] 51 push ecx
[00000c04][0010168b][00000ab0] 68b00a0000 push 00000ab0
[00000c09][00101687][00000ab0] 68b00a0000 push 00000ab0
[00000c0e][00101683][00000c13] e84dfdffff call 00000960

Begin Local Halt Decider Simulation at Machine Address:ab0
[00000ab0][00211733][00211737] 55 push ebp
[00000ab1][00211733][00211737] 8bec mov ebp,esp
[00000ab3][00211733][00211737] ebfe jmp 00000ab3
[00000ab3][00211733][00211737] ebfe jmp 00000ab3
Local Halt Decider: Infinite Loop Detected Simulation Stopped

 ---11--- 2021-08-30 11:16 PM

[00000c13][0010168f][00000000] 83c408 add esp,+08
[00000c16][0010168f][00000000] 8945fc mov [ebp-04],eax
[00000c19][0010168f][00000000] 8b45fc mov eax,[ebp-04]
[00000c1c][0010168b][00000000] 50 push eax
[00000c1d][00101687][0000034b] 684b030000 push 0000034b
[00000c22][00101687][0000034b] e859f7ffff call 00000380
Input_Would_Halt2 = 0
[00000c27][0010168f][00000000] 83c408 add esp,+08
[00000c2a][0010168f][00000000] 33c0 xor eax,eax
[00000c2c][00101693][00000000] 8be5 mov esp,ebp
[00000c2e][00101697][00100000] 5d pop ebp
[00000c2f][0010169b][00000050] c3 ret
Number_of_User_Instructions(21)
Number of Instructions Executed(640)

 ---12--- 2021-08-30 11:16 PM

Simulating partial halt decider H decides that Infinite_Recursion() never halts

void Infinite_Recursion(u32 N)
{
 Infinite_Recursion(N);
}

int main()
{
 u32 Input_Halts = H((u32)Infinite_Recursion, 3);
 Output("Input_Halts = ", Input_Halts);
}

_Infinite_Recursion()
[00000ac6](01) 55 push ebp
[00000ac7](02) 8bec mov ebp,esp
[00000ac9](03) 8b4508 mov eax,[ebp+08]
[00000acc](01) 50 push eax
[00000acd](05) e8f4ffffff call 00000ac6
[00000ad2](03) 83c404 add esp,+04
[00000ad5](01) 5d pop ebp
[00000ad6](01) c3 ret
Size in bytes:(0017) [00000ad6]

_main()
[00000c46](01) 55 push ebp
[00000c47](02) 8bec mov ebp,esp
[00000c49](01) 51 push ecx
[00000c4a](02) 6a03 push +03
[00000c4c](05) 68c60a0000 push 00000ac6
[00000c51](05) e810fdffff call 00000966
[00000c56](03) 83c408 add esp,+08
[00000c59](03) 8945fc mov [ebp-04],eax
[00000c5c](03) 8b45fc mov eax,[ebp-04]
[00000c5f](01) 50 push eax
[00000c60](05) 6857030000 push 00000357
[00000c65](05) e81cf7ffff call 00000386
[00000c6a](03) 83c408 add esp,+08
[00000c6d](02) 33c0 xor eax,eax
[00000c6f](02) 8be5 mov esp,ebp
[00000c71](01) 5d pop ebp
[00000c72](01) c3 ret
Size in bytes:(0045) [00000c72]

Execution Trace of H(Infinite_Recursion, 3)

 machine stack stack machine assembly
 address address data code language
 ======== ======== ======== ========= =============
[00000c46][001016fa][00000000] 55 push ebp
[00000c47][001016fa][00000000] 8bec mov ebp,esp
[00000c49][001016f6][00000000] 51 push ecx
[00000c4a][001016f2][00000003] 6a03 push +03
[00000c4c][001016ee][00000ac6] 68c60a0000 push 00000ac6
[00000c51][001016ea][00000c56] e810fdffff call 00000966

 ---13--- 2021-08-30 11:16 PM

Begin Local Halt Decider Simulation at Machine Address:ac6
[00000ac6][0021179a][0021179e] 55 push ebp
[00000ac7][0021179a][0021179e] 8bec mov ebp,esp
[00000ac9][0021179a][0021179e] 8b4508 mov eax,[ebp+08]
[00000acc][00211796][00000003] 50 push eax
[00000acd][00211792][00000ad2] e8f4ffffff call 00000ac6
[00000ac6][0021178e][0021179a] 55 push ebp
[00000ac7][0021178e][0021179a] 8bec mov ebp,esp
[00000ac9][0021178e][0021179a] 8b4508 mov eax,[ebp+08]
[00000acc][0021178a][00000003] 50 push eax
[00000acd][00211786][00000ad2] e8f4ffffff call 00000ac6
Local Halt Decider: Infinite Recursion Detected Simulation Stopped

_Infinite_Recursion() calls itself recursively with the same input. It has no escape from this
infinite recursion. H recognizes this infinite behavior pattern, aborts its simulation of
_Infinite_Recursion() and reports that this input never halts.

[00000c56][001016f6][00000000] 83c408 add esp,+08
[00000c59][001016f6][00000000] 8945fc mov [ebp-04],eax
[00000c5c][001016f6][00000000] 8b45fc mov eax,[ebp-04]
[00000c5f][001016f2][00000000] 50 push eax
[00000c60][001016ee][00000357] 6857030000 push 00000357
[00000c65][001016ee][00000357] e81cf7ffff call 00000386
Input_Halts = 0
[00000c6a][001016f6][00000000] 83c408 add esp,+08
[00000c6d][001016f6][00000000] 33c0 xor eax,eax
[00000c6f][001016fa][00000000] 8be5 mov esp,ebp
[00000c71][001016fe][00100000] 5d pop ebp
[00000c72][00101702][00000068] c3 ret
Number_of_User_Instructions(27)
Number of Instructions Executed(1240)

Infinite recursion detection criteria:
If the execution trace of function X() called by function Y() shows:
(1) Function X() is called twice in sequence from the same machine address of Y().
(2) With the same parameters to X().
(3) With no conditional branch or indexed jump instructions in Y().
(4) With no function call returns from X().
then the function call from Y() to X() is infinitely recursive.

 ---14--- 2021-08-30 11:16 PM

Simulating partial halt decider H decides that Factorial(3) halts

int Factorial(int n)
{
 Output("Factorial(n)",n);
 if (n > 1)
 return n * Factorial(n - 1);
 else
 return 1;
}

int main()
{
 Output("Input_Halts = ", H(Factorial, 3));
}

_Factorial()
[00000de2](01) 55 push ebp
[00000de3](02) 8bec mov ebp,esp
[00000de5](03) 8b4508 mov eax,[ebp+08]
[00000de8](01) 50 push eax
[00000de9](05) 6813030000 push 00000313
[00000dee](05) e85ff5ffff call 00000352
[00000df3](03) 83c408 add esp,+08
[00000df6](04) 837d0801 cmp dword [ebp+08],+01
[00000dfa](02) 7e17 jng 00000e13
[00000dfc](03) 8b4d08 mov ecx,[ebp+08]
[00000dff](03) 83e901 sub ecx,+01
[00000e02](01) 51 push ecx
[00000e03](05) e8daffffff call 00000de2
[00000e08](03) 83c404 add esp,+04
[00000e0b](04) 0faf4508 imul eax,[ebp+08]
[00000e0f](02) eb07 jmp 00000e18
[00000e11](02) eb05 jmp 00000e18
[00000e13](05) b801000000 mov eax,00000001
[00000e18](01) 5d pop ebp
[00000e19](01) c3 ret
Size in bytes:(0056) [00000e19]

_main()
[00000ea2](01) 55 push ebp
[00000ea3](02) 8bec mov ebp,esp
[00000ea5](02) 6a03 push +03
[00000ea7](05) 68e20d0000 push 00000de2
[00000eac](05) e821feffff call 00000cd2
[00000eb1](03) 83c408 add esp,+08
[00000eb4](01) 50 push eax
[00000eb5](05) 6823030000 push 00000323
[00000eba](05) e893f4ffff call 00000352
[00000ebf](03) 83c408 add esp,+08
[00000ec2](02) 33c0 xor eax,eax
[00000ec4](01) 5d pop ebp
[00000ec5](01) c3 ret
Size in bytes:(0036) [00000ec5]

 ---15--- 2021-08-30 11:16 PM

 machine stack stack machine assembly
 address address data code language
 ======== ======== ======== ========= =============
...[00000ea2][00101ae7][00000000] 55 push ebp
...[00000ea3][00101ae7][00000000] 8bec mov ebp,esp
...[00000ea5][00101ae3][00000003] 6a03 push +03
...[00000ea7][00101adf][00000de2] 68e20d0000 push 00000de2
...[00000eac][00101adb][00000eb1] e821feffff call 00000cd2

Begin Local Halt Decider Simulation at Machine Address:de2
...[00000de2][00211b87][00211b8b] 55 push ebp
...[00000de3][00211b87][00211b8b] 8bec mov ebp,esp
...[00000de5][00211b87][00211b8b] 8b4508 mov eax,[ebp+08]
...[00000de8][00211b83][00000003] 50 push eax
...[00000de9][00211b7f][00000313] 6813030000 push 00000313
---[00000dee][00211b7f][00000313] e85ff5ffff call 00000352
Factorial(n)3
...[00000df3][00211b87][00211b8b] 83c408 add esp,+08
...[00000df6][00211b87][00211b8b] 837d0801 cmp dword [ebp+08],+01
...[00000dfa][00211b87][00211b8b] 7e17 jng 00000e13
...[00000dfc][00211b87][00211b8b] 8b4d08 mov ecx,[ebp+08]
...[00000dff][00211b87][00211b8b] 83e901 sub ecx,+01
...[00000e02][00211b83][00000002] 51 push ecx
...[00000e03][00211b7f][00000e08] e8daffffff call 00000de2
...[00000de2][00211b7b][00211b87] 55 push ebp
...[00000de3][00211b7b][00211b87] 8bec mov ebp,esp
...[00000de5][00211b7b][00211b87] 8b4508 mov eax,[ebp+08]
...[00000de8][00211b77][00000002] 50 push eax
...[00000de9][00211b73][00000313] 6813030000 push 00000313
---[00000dee][00211b73][00000313] e85ff5ffff call 00000352
Factorial(n)2
...[00000df3][00211b7b][00211b87] 83c408 add esp,+08
...[00000df6][00211b7b][00211b87] 837d0801 cmp dword [ebp+08],+01
...[00000dfa][00211b7b][00211b87] 7e17 jng 00000e13
...[00000dfc][00211b7b][00211b87] 8b4d08 mov ecx,[ebp+08]
...[00000dff][00211b7b][00211b87] 83e901 sub ecx,+01
...[00000e02][00211b77][00000001] 51 push ecx
...[00000e03][00211b73][00000e08] e8daffffff call 00000de2
...[00000de2][00211b6f][00211b7b] 55 push ebp
...[00000de3][00211b6f][00211b7b] 8bec mov ebp,esp
...[00000de5][00211b6f][00211b7b] 8b4508 mov eax,[ebp+08]
...[00000de8][00211b6b][00000001] 50 push eax
...[00000de9][00211b67][00000313] 6813030000 push 00000313
---[00000dee][00211b67][00000313] e85ff5ffff call 00000352
Factorial(n)1
...[00000df3][00211b6f][00211b7b] 83c408 add esp,+08
...[00000df6][00211b6f][00211b7b] 837d0801 cmp dword [ebp+08],+01
...[00000dfa][00211b6f][00211b7b] 7e17 jng 00000e13
...[00000e13][00211b6f][00211b7b] b801000000 mov eax,00000001
...[00000e18][00211b73][00000e08] 5d pop ebp
...[00000e19][00211b77][00000001] c3 ret
...[00000eb1][00101ae7][00000000] 83c408 add esp,+08
...[00000eb4][00101ae3][00000001] 50 push eax
...[00000eb5][00101adf][00000323] 6823030000 push 00000323
---[00000eba][00101adf][00000323] e893f4ffff call 00000352
Input_Halts = 1
...[00000ebf][00101ae7][00000000] 83c408 add esp,+08
...[00000ec2][00101ae7][00000000] 33c0 xor eax,eax
...[00000ec4][00101aeb][00100000] 5d pop ebp
...[00000ec5][00101aef][000000c8] c3 ret
Number_of_User_Instructions(51)
Number of Instructions Executed(3714)

 ---16--- 2021-08-30 11:16 PM

Strachey's Impossible Program

To the Editor,
The Computer Journal.

 An impossible program

Sir,
A well-known piece of folk-lore among programmers
holds that it is impossible to write a program which can
examine any other program and tell, in every case, if it
will terminate or get into a closed loop when it is run.
I have never actually seen a proof of this in print, and
though Alan Turing once gave me a verbal proof (in a
railway carriage on the way to a Conference at the
NPL in 1953), I unfortunately and promptly forgot the
details. This left me with an uneasy feeling that the
proof must be long or complicated, but in fact it is so
short and simple that it may be of interest to casual
readers. The version below uses CPL, but not in any
essential way.

Suppose T[R] is a Boolean function taking a routine
(or program) R with no formal or free variables as its
argument and that for all R, T[R] — True if R terminates
if run and that T[R] = False if R does not terminate.
Consider the routine P defined as follows

 rec routine P
 §L:if T[P] go to L
 Return §

If T[P] = True the routine P will loop, and it will
only terminate if T[P] = False. In each case T[P] has
exactly the wrong value, and this contradiction shows
that the function T cannot exist.

 Yours faithfully,
 C. STRACHEY.
Churchill College,
Cambridge.

Strachey, C 1965. An impossible program The Computer Journal, Volume 7, Issue 4,
January 1965, Page 313, https://doi.org/10.1093/comjnl/7.4.313

 ---17--- 2021-08-30 11:16 PM

https://doi.org/10.1093/comjnl/7.4.313

Peter Linz Ĥ applied to the Turing machine description of itself: ⟨Ĥ⟩

The following simplifies the syntax for the definition of the Linz Turing machine Ĥ, it is now a
single machine with a single start state. A simulating halt decider is embedded at .qxĤ .

.q0 ⟨Ĥ Ĥ1⟩ ⊢* .qx ⟨Ĥ Ĥ1⟩ ⟨Ĥ2⟩ ⊢* .qy ∞ Ĥ
if the simulated ⟨Ĥ1⟩ applied to ⟨Ĥ2⟩ halts, and

.q0 ⟨Ĥ Ĥ1⟩ ⊢* .qx ⟨Ĥ Ĥ1⟩ ⟨Ĥ2⟩ ⊢* .qn Ĥ
if the simulated ⟨Ĥ1⟩ applied to ⟨Ĥ2⟩ does not halt

 Figure 12.3 Turing Machine Ĥ applied to ⟨Ĥ⟩

 Ĥ applied to ⟨ ⟩ Ĥ is exactly analogous to int main() { P((u32)P); } (shown above).
.qx Ĥ applied to ⟨ ⟩ ⟨ ⟩ Ĥ Ĥ is exactly analogous to H(P,P) called from main() { P((u32)P); }

When or Ĥ P are directly executed their behavior may not be the same as when they are
simulated by a simulating halt decider that can abort their simulation. That a pair of
computations are not equivalent allows them to have opposite behavior without
contradiction.

When we define Ĵ to be exactly like Ĥ except that it has a UTM at Ĵ.qx instead of a
simulating halt decider then we can see that Ĵ applied to ⟨Ĵ⟩ never halts.

 copies its input ⟨Ĵ Ĵ1⟩ to ⟨Ĵ2⟩ then simulates this input Ĵ1 with its input ⟨Ĵ2⟩
which copies its input ⟨Ĵ2⟩ to ⟨Ĵ3⟩ then simulates this input Ĵ2 with its input ⟨Ĵ3⟩
which copies its input ⟨Ĵ3⟩ to ⟨Ĵ4⟩ then simulates this input Ĵ3 with its input ⟨Ĵ4⟩ ...

Because it is obvious that Ĵ on input ⟨Ĵ⟩ remains in infinitely nested simulation thus never
halts it can be easily understood that Ĥ on input ⟨Ĥ⟩ would have this same (never halting)
behavior while the simulating halt decider at Ĥ.qx continues to remain in pure simulation
(UTM) mode.

Even though this repeating pattern is more complex (because it copies its input) than the
above x86 example of int main() { H((u32)P, (u32)P); } it is still a repeating pattern that
can be recognized by a simulating halt decider.

 ---18--- 2021-08-30 11:16 PM

The transition from Ĥ.qx to Ĥ.q0 expresses the gist of the idea of infinitely nested simulation.
It is not the conventional notion of a state transition within the same machine instance.

 Figure 12.4 Turing Machine Ĥ applied to ⟨Ĥ⟩ input

(a) While the simulating halt decider at Ĥ.qx remains in pure simulation (UTM) mode its input
⟨Ĥ1⟩ ⟨Ĥ2⟩ never halts.

(b) Every computation that never halts while its simulating halt decider remains in pure
simulation (UTM) mode is a computation that never halts.

Simulating Halt Decider Theorem (Olcott 2020):
A simulating halt decider correctly decides that any input that never halts unless the
simulating halt decider aborts its simulation of this input is an input that never halts.

 the Turing machine halting problem. Simply stated, the problem is: given
 the description of a Turing machine M and an input w, does M, when started
 in the initial configuration q0w, perform a computation that eventually halts?
 (Linz:1990:317).

In order to show that the above definition has been satisfied we only have to show that halt
decider .qxĤ does correctly decide whether or not its input description ⟨Ĥ1⟩ of a Turing
machine would halt on its input ⟨Ĥ2⟩.

Just like the fact that int main() { H(P,P); } correctly decides that its input never halts even
though int main() { P(P); } does halt the input to Ĥ.qx ⟨Ĥ1⟩ ⟨Ĥ2⟩ is correctly decided as never
halting even though Ĥ applied to ⟨Ĥ1⟩ halts.

The fact that Ĥ applied to ⟨Ĥ⟩ transitions to its final state of Ĥ.qn and halts does not nullify
the fact that Ĥ.qx ⟨Ĥ⟩ ⟨Ĥ⟩ correctly decides that its input never halts. Distinctly different
computations can have different behavior without contradiction.

The execution of Ĥ.qx is the outer-most instance of what would otherwise be an infinite set
of nested simulations. It is the only instance of Ĥ.qx that is not under the dominion of another
instance of Ĥ.qx. This makes this outermost instance computationally distinct from the inner
instances.

Copyright 2016-2021 PL Olcott

 ---19--- 2021-08-30 11:16 PM

Strachey, C 1965. An impossible program The Computer Journal, Volume 7, Issue 4,
January 1965, Page 313, https://doi.org/10.1093/comjnl/7.4.313

Linz, Peter 1990. An Introduction to Formal Languages and Automata. Lexington/Toronto:
D. C. Heath and Company. (318-320)

Sipser, Michael 1997. Introduction to the Theory of Computation. Boston: PWS Publishing
Company (165-167)

 ---20--- 2021-08-30 11:16 PM

https://doi.org/10.1093/comjnl/7.4.313

318

Theorem 12.1

Figure 12.1

~ 12 Limits of Algorithmic Computation

There does not exist any Turing machine H that behaves as required by
Definition 12.1. The halting problem is therefore undecidable.

Proof: We assume the contrary, namely that there exists an algorithm,
and consequently some Turing machine H, that solves the halting problem.
The input to H will be the description (encoded in some form) of M, say
WM, as well as the input w. The requirement is then that, given any (WM, w),

the Turing machine H will halt with either a yes or no answer. We achieve
this by asking that H halt in one of two corresponding final states, say, qy or
qn' The situation can be visualized by a block diagram like Figure 12.1. The
intent of this diagram is to indicate that, if M is started in state qo with input
(WM, w), it will eventually halt in state qy or qn' As required by Definition
12.1, we want H to operate according to the following rules:

if M applied to W halts, and

if M applied to w does not halt.

Figure 12.2

~ 12.1 Some Problems that Cannot Be Solved by Turing Machines 319

Next, we modify H to produce a Turing machine H' with the structure
shown in Figure 12.2. With the added states in Figure 12.2 we want to
convey that the transitions between state qy and the new states qa and qb are
to be made, regardless of the tape symbol, in such a way that the tape
remains unchanged. The way this is done is straightforward. Comparing H
and H' we see that, in situations where H reaches qy and halts, the modified
machine H' will enter an infinite loop. Formally, the action of H' is de
scribed by

if M applied to w halts, and

if M applied to w does not halt.
From H' we construct another Turing machine N. This new machine

takes as input WM, copies it, and then behaves exactly like H'. Then the
action of N is such that

if M applied to W M halts, and

if M applied to WM does not halt.

320 ~ 12 Limits of Algorithmic Computation

Now Ii is a Turing machine, so that it will have some description in I*,
say w. This string, in addition to being the description of Ii can also be used
as input string. We can therefore legitimately ask what would happen if Ii is
applied to w. From the above, identifying M with Ii, we get

if Ii applied to w halts, and

A * 00 qow r iI '

if Ii applied to w does not halt. This is clearly nonsense. The contradiction
tells us that our assumption of the existence of H, and hence the assump
tion of the decidability of the halting problem, must be false. •

	Halting_problem_undecidability_and_infinitely_nested_simulation_43
	Linz_Proof

