
Refuting the Sipser Halting Problem Proof

The Sipser proof is refuted on the basis of showing how Turing machine H correctly decides
reject on ⟨D,⟨D⟩⟩ input on the basis that this input specifies infinitely nested simulation. Turing
machine D correctly decides accept on ⟨D⟩ input.

The x86utm operating system was created so that the halting problem could be examined
concretely in the high level abstraction of the C programming language. A simulating partial
halt decider written in C examines the execution trace of its x86 machine language input.

#define u32 uint32_t

int Simulate(u32 P, u32 I)
{
 ((void(*)(u32))P)(I);
 return 1;
}

int D(u32 P) // P is a machine address
{
 if (H(P, P))
 return 0 // reject when H accepts
 return 1; // accept when H rejects
}

int main()
{
 u32 HDD_Acceptance = H((u32)D, (u32)D);
 u32 DD_Acceptance = D((u32)D);
 Output("H(D,D) Would_Halt = ", HDD_Acceptance);
 Output("D(D) Would_Halt = ", DD_Acceptance);
}

When we understand that any computation that must have its simulation aborted to prevent
its otherwise infinite execution is correctly rejected as non-halting then we know that the first
line of main() does correctly reject its input as halting.

A simulating halt decider that never stops simulating its input is simply a simulator on this
input. If H() never stopped simulating D() then it can be seen that the halting behavior of D()
would be the same as if D() invoked Simulate() instead of H(), thus D() would never
terminate. The above analysis is confirmed by actual execution of the above function in the
x86utm operating system:

 (1) The first line of main() detects an infinitely repeating non-halting
 pattern on the first line of D. This line must be aborted before ever
 returning any value to D. The first line of main() returns 0 for reject.

 (2) The second line of main() returns 1 accept on the basis that H detects
 an infinitely repeating non-halting pattern and returns 0 for reject.

 ---1--- 2021-06-01 09:23 AM

 ⟨M1⟩ ⟨M2⟩ ⟨M3⟩ ⟨M4⟩ ...
 M1 accept accept

 M2 accept accept accept accept

 M3

 M4 accept accept
 ...

 Original Figure 4.4

 ⟨M1⟩ ⟨M2⟩ ⟨M3⟩ ⟨M4⟩ ...
 M1 accept reject accept reject

 M2 accept accept accept accept

 M3 reject reject reject reject

 M4 accept accept reject reject
 ...

 Original Figure 4.5

 ⟨M1⟩ ⟨M2⟩ ⟨M3⟩ ⟨M4⟩ ... ⟨D⟩
 M1 accept accept --

 M2 accept accept accept accept --

 M3 --

 M4 accept accept --
 ...

 D reject reject accept accept accept
 ...

 Figure 4.4a (Figure 4.4 with row D and actual D(⟨D⟩⟩ output added)

 ⟨M1⟩ ⟨M2⟩ ⟨M3⟩ ⟨M4⟩ ... ⟨D⟩ ...
 M1 accept reject accept reject --

 M2 accept accept accept accept --

 M3 reject reject reject reject --

 M4 accept accept reject reject --
 ...

 D reject reject accept accept reject
 ...

 Figure 4.5a (Figure 4.5 with row D and actual H(D, ⟨D⟩) output added)

The one requirement of the diagonalization proof that is impossible to fulfill is that 4.5a D(⟨D⟩)
obtains its value from 4.4a D(⟨D⟩) and 4.5a D(⟨D⟩) has the opposite value as 4.4a D(⟨D⟩).

This requirement is rejected on the basis that:
(a) It requires an object with simultaneous mutually exclusive properties (always impossible).
(b) The actual return values of the computations supersede the diagomalization requirements
that say what these values should be.

Sipser, Michael 1997. Introduction to the Theory of Computation. Boston: PWS Publishing
Company (165-167)

Copyright 2021 PL Olcott

 ---2--- 2021-06-01 09:23 AM

