
Refuting the Sipser Halting Problem Proof

The Sipser proof is refuted on the basis of showing how Turing machine H correctly decides 
reject on ⟨D,⟨D⟩⟩ input on the basis that this input specifies infinitely nested simulation. Turing 
machine D correctly decides accept on ⟨D⟩ input. 

The x86utm operating system was created so that the halting problem could be examined 
concretely in the high level abstraction of the C programming language. A simulating partial 
halt decider written in C examines the execution trace of its x86 machine language input.

#define u32 uint32_t  

int Simulate(u32 P, u32 I)
{
  ((void(*)(u32))P)(I);
  return 1; 
}

int D(u32 P)   // P is a machine address
{
  if ( H(P, P) ) 
    return 0   // reject when H accepts
  return 1;    // accept when H rejects
} 

int main() 
{   
  u32 HDD_Acceptance = H((u32)D, (u32)D); 
  u32 DD_Acceptance  = D((u32)D); 
  Output("H(D,D) Would_Halt = ", HDD_Acceptance);
  Output("D(D) Would_Halt = ",   DD_Acceptance);
}

When we understand that any computation that must have its simulation aborted to prevent 
its otherwise infinite execution is correctly rejected as non-halting then we know that the first 
line of main() does correctly reject its input as halting.

A simulating halt decider that never stops simulating its input is simply a simulator on this 
input. If H() never stopped simulating D() then it can be seen that the halting behavior of D() 
would be the same as if D() invoked Simulate() instead of H(), thus D() would never 
terminate. The above analysis is confirmed by actual execution of the above function in the 
x86utm operating system:

   (1) The first line of main() detects an infinitely repeating non-halting
        pattern on the first line of D. This line must be aborted before ever 
        returning any value to D. The first line of main() returns 0 for reject. 

   (2) The second line of main() returns 1 accept on the basis that H detects 
         an infinitely repeating non-halting pattern and returns 0 for reject. 
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                ⟨M1⟩            ⟨M2⟩             ⟨M3⟩            ⟨M4⟩ ... 
      M1  accept            accept      

      M2  accept   accept   accept   accept  

      M3  

      M4  accept   accept   
   ...

      Original Figure 4.4 

                ⟨M1⟩            ⟨M2⟩             ⟨M3⟩            ⟨M4⟩ ...  
      M1  accept   reject   accept   reject   

      M2  accept   accept   accept   accept  

      M3  reject   reject   reject   reject   

      M4  accept   accept   reject   reject   
   ...

      Original Figure 4.5 

                ⟨M1⟩            ⟨M2⟩             ⟨M3⟩            ⟨M4⟩ ...   ⟨D⟩
      M1  accept            accept             --

      M2  accept   accept   accept   accept    --

      M3                                       --

      M4  accept   accept                      --
   ... 

   D   reject   reject   accept   accept   accept
   ... 

      Figure 4.4a (Figure 4.4 with row D and actual D(⟨D⟩⟩ output added)

                ⟨M1⟩            ⟨M2⟩             ⟨M3⟩            ⟨M4⟩ ...  ⟨D⟩ ...
      M1  accept   reject   accept   reject   --

      M2  accept   accept   accept   accept   --

      M3  reject   reject   reject   reject   --

      M4  accept   accept   reject   reject   --
   ...

   D   reject   reject   accept   accept   reject
   ...

      Figure 4.5a (Figure 4.5 with row D and actual H(D, ⟨D⟩) output added)

The one requirement of the diagonalization proof that is impossible to fulfill is that 4.5a D(⟨D⟩) 
obtains its value from 4.4a D(⟨D⟩) and 4.5a D(⟨D⟩) has the opposite value as 4.4a D(⟨D⟩). 

This requirement is rejected on the basis that: 
(a) It requires an object with simultaneous mutually exclusive properties (always impossible).
(b) The actual return values of the computations supersede the diagomalization requirements 
that say what these values should be. 
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