
Refuting Tarski and Gödel with a Sound Deductive Formalism 

The conventional notion of a formal system is adapted to conform to the sound 
deductive inference model operating on finite strings. Finite strings stipulated to have 
the semantic value of Boolean true provide the sound deductive premises. Truth 
preserving finite string transformation rules provide the deductive inference. Sound 
deductive conclusions are the result of these finite string transformation rules. 

The {domain of discourse} of the Sound Deductive Formalism (SDF) is the body of 
Analytical_Knowledge defined as follows: The set of knowledge that can be 
expressed using language and verified as true entirely on the basis of stipulated 
relations between expressions of language.

Validity and Soundness  https://www.iep.utm.edu/val-snd/ 
A deductive argument is said to be  valid  if  and only if  it  takes a form that makes it
impossible  for  the  premises  to  be  true  and the  conclusion  nevertheless  to  be  false.
Otherwise, a deductive argument is said to be invalid.

A deductive argument is sound if and only if it is both valid, and all of its premises are
actually true. Otherwise, a deductive argument is unsound.

It seems self-evident that any formal system conforming to the above Sound Deductive 
Inference Model (SDIM) that applies truth preserving finite string transformation rules to 
a set of finite strings that are stipulated to have the semantic value of Boolean true 
would have a universal Truth(X) predicate on the basis of its universal Provable(X) 
predicate thus refuting both Tarski and Gödel for the domain of discourse of 
Analytical_Knowledge.

To provide a simple intuitive grasp of the Sound Deductive Formalism (SDF) we 
define a very simple formal system named Simple_Arithmetic. 

All that Simple_Arithmetic does is evaluate relational_expressions comprised of a pair 
of arithmetic_expressions. These expressions have the exact same syntax as the “C” 
programming language.  The arithmetic_expressions are limited to the operations of 
addition and multiplication of unsigned integer literals comprised entirely of the ASCII 
digits [0-9]. 

The only divergence from the “C” standard is that these unsigned integer literals are of 
arbitrary length and all arithmetic operations are performed directly on these strings of 
ASCII digits.  This formal system would have a single Boolean Evaluate() function.

Evaluate(“((((2 + 3) * 7) + 9) == 44)”) evaluates to true which indicates that a set of finite
string transformation rules derives: “44” from: “(((2 + 3) * 7) + 9)” thus satisfying: “==”.

---1---

https://www.iep.utm.edu/val-snd/


In other words the finite string transformation rules that evaluate that the above 
expression to true are the formal proof that the above expession is true. 

Axioms, rules-of-inference, syntax, and truth conditional semantics are all fully 
integrated together into the single operation of finite string transformation rules. 

When a finite string X evaluates to True(X) we know that it has been proven true on the 
basis of finite string transformation rules. This also ensures that X was a WFF. 

When a finite string X evaluates to ~True(X) we know that it is not provable the basis of 
finite string transformation rules. This might be because X was not a WFF. 

---2---


	Validity and Soundness https://www.iep.utm.edu/val-snd/

