Rebutting the Sipser Halting Problem Proof V2

A simulating halt decider correctly predicts what the behavior of its input would be if this
simulated input never had its simulation aborted. It does this by correctly recognizing several
non-halting behavior patterns in a finite number of steps of correct simulation.

When simulating halt decider H correctly predicts that the conventional counter-example input
to the halting theorem never halts (because it remains stuck in recursive simulation) this input
ceases to prove the halting theorem.

MIT Professor Michael Sipser has agreed that the following verbatim paragraph is correct
(he has not agreed to anything else in this paper):

(a) If simulating halt decider H correctly simulates its input D until H correctly determines that
its simulated D would never stop running unless aborted then (b) H can abort its simulation of
D and correctly report that D specifies a non-halting sequence of configurations.

We start with Sipser's definitions of H and D:
On input (M, w), where M is a TM and w is a string, H halts and accepts
if M accepts w. Furthermore, H halts and rejects if M fails to accept w.
In other words, we assume that H is a TM, where
H(Mw) = {accept if M acceptsw
{reject if M does not accept w
Now we construct a new Turing machine D with H as a subroutine. This new
TM calls H to determine what M does when the input to M is its own description
(M). Once D has determined this information, it does the opposite. That is, it
rejects if M accepts and accepts if M does not accept.
D(M)) = {accept if M does not accept (M)
{reject if M accepts (M) (Sipser 1997:165)

We encode the Sipser D and define the behavior of Sipser H as C functions.

int Sipser_b(int (*M) ()
if (HH(M, M))
return 0;
return 1;
}nt main(Q

Sipser_D(Sipser_D);

H returns 0 to Sipser_D on the basis that Sipser_D correctly simulated by H would remain
stuck in recursive simulation unless H aborts its simulation of Sipser_D.

Diagonal proof: Correctly predict what | will say when | will always say the opposite of
whatever you predict. If you correctly predict that | will say nothing then this too is correct.

Sipser, Michael 1997. Introduction to the Theory of Computation. Boston: PWS Publishing
Company (165-167)

_Sipser_bD(Q)
55

// push
// call

Sipser_D
Sipser_D

// move arg to eax
ush Sipser_D
// move arg to ecx
push Sipser_D
// call H

// begin Sipser_D

// move arg to eax
// push Sipser_D
// move arg to ecx
// push Sipser_D
// call H

// begin Sipser_D

// move arg to eax
/ push Sipser_D
// move arg to ecx

// push Sipser_D

[00001e84] push ebp
[00001e85] 8bec mov ebp,esB
[00001e87] 8b4508 mov eax, [ebp+08]
[00001e8a] 50 push eax
[00001e8b] 8b4d08 mov ecx, [ebp+08]
[00001e8e] 51 push ecx
[00001e8f] e8a0f5ffff call 00001434
[00001e94] 83c408 add esp,+08
[00001e97] 85c0 test eax,eax
[00001e99] 7404 jz 00001e9f
[00001e9b] 33c0 XOor eax,eax
[00001e9d] eb05 jmp 00001lea4
[00001e9f] b801000000 mov eax, 00000001
[00001ea4] 5d pop ebp
00001ea5 c3
Size in bytes:(0034) [00001ea5]
_mainQ
[00001eb4] 55 push ebp
[00001eb5] 8bec mov ebp,esp
[00001eb7] 68841e0000 push 00001e84
[00001ebc] e8c3ffffff call 00001e84
[00001ecl] 83c404 add esp,+04
[00001ec4] 33cO Xor eax,eax
[00001ec6] 5d pop ebp
[00001ec7] c3 ret
Size in bytes: (0020) [0000lec7]
machine stack stack machine assembly
address address data code Tanguage
[00001eb4] [00103244] [00000000] 55 push ebp
[00001eb5] [00103244] [00000000] 8bec mov ebp,esp
[00001eb7][00103240] [00001e84] 68841e0000 push 00001le84
[00001ebc] [0010323¢c] [00001ecl] e8c3ffffff call 00001e84
[00001e84] [00103238] [00103244] 55 push ebp
[00001e85] [00103238] [00103244] 8bec mov ebp,esp
[00001e87] [00103238] [00103244] 8b4508 mov eax, [ebp+08]
[00001e8a][00103234][00001e84] 50 push eax
[00001e8b][00103234] [00001e84] 8b4d08 mov ecx, [ebp+08]
[00001e8e][00103230] [00001e84] 51 push ecx
[00001e81] [0010322c] [00001e94] e8a0f5ffff call 00001434
New slave_stack at:1032e8
Begin Local Halt Decider Simulation Execution Trace Stored at:1132f0
[00001e84][001132dc][001132e0] push ebp
[00001e85] [001132dc] [001132e0] 8bec mov ebp,esg
[00001e87] [001132dc] [001132e0] 8b4508 mov eax, [ebp+08]
[00001e8a] [001132d8] [00001e84] 50 push eax
[00001e8b] [001132d8] [00001e84] 8b4d08 mov ecx, [ebp+08]
[00001e8e][001132d4][00001e84] 51 push ecx
[00001e8f][001132d0] [00001e94] e8a0f5ffff call 00001434
New slave_stack at:14dd10 i
[00001e84] [0015dd04] [0015dd08] 55 push ebp
[00001e85] [0015dd04] [0015dd08] 8bec mov ebp,esp
[00001e87] [0015dd04] [0015dd08] 8b4508 mov eax, [ebp+08]
[00001e8a] [0015dd00] [00001e84] 50 push eax
[00001e8b] [0015dd00] [00001e84] 8b4d08 mov ecx, [ebp+08]
[00001e8e] [0015dcfc] [00001e84] 51 push ecx
[00001e8F] [0015dcf8] [00001e94] e8a0f5ffff call 00001434

Local Halt Decider:

Sipser_D(Sipser_D) remains stuck in recursive simulation until H recognizes this and aborts

Infinite Recursion Detected Simulation

// call H
Stopped

its simulation. The above behavior pattern conclusively proves that Sipser_D(Sipser_D)
cannot possibly stop running unless H aborts its simulation of Sipser_D.

