
Rebutting the Sipser Halting Problem Proof V2

A simulating halt decider correctly predicts what the behavior of its input would be if this 
simulated input never had its simulation aborted. It does this by correctly recognizing several 
non-halting behavior patterns in a finite number of steps of correct simulation. 

When simulating halt decider H correctly predicts that directly executed D(D) would continue 
to run forever unless H aborts its simulation of D this directly applies to the halting theorem. 

   In computability theory, the halting problem is the problem of 
   determining, from a description of an arbitrary computer program 
   and an input, whether the program will finish running, or continue to 
   run forever.

   For any program H that might determine whether programs halt, 
   a "pathological" program D, called with some input, can pass its 
   own source and its input to H and then specifically do the opposite 
   of what H predicts D will do. https://en.wikipedia.org/wiki/Halting_problem  

*That (a) proves (b) is a tautology*
(a) If simulating halt decider H correctly simulates its input D until H correctly determines that 
its simulated D would never stop running unless aborted then 

(b) H can abort its simulation of D and correctly report that D specifies a non-halting sequence
of configurations. 

*To make the details 100% concrete Sipser D and H are encoded as C* 
*functions. The exact same rebuttal equally applies to Turing machines*

int Sipser_D(int (*M)()) 
{
  int DoesHalt = H(M, M); // *Rejects when Sipser_D fails to accept*
  if (DoesHalt)
    return 0;
  return 1;
}

int main() 
{ 
// *never stops running unless H aborts its simulation*
  Sipser_D(Sipser_D); 
}

When Sipser_D calls H to simulate itself this comparable to calling H to call itself and can 
result in something like infinite recursion. Because there are no control flow instructions in 
Sipser_D to stop this the recursive simulation continues until H aborts it. 

When the simulation of D is aborted this is comparable to a divide by zero error thus is not 
construed as D halting.  Entire system available: https://github.com/plolcott/x86utm  

This exact same principle works on all Turing machine based halting theorem proofs
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Applying a simulating halt decider to the Linz halting problem proof

The Linz text indicates that Ĥ is defined on the basis of prepending and appending states to 
the orignal Linz H, thus is named embedded_H. ⊢* indicates an arbitrary number of moves 
such as: change_state / tape_head_action. The Peter Linz Ĥ is applied to its own machine 
description ⟨ ⟩Ĥ . 

Ĥ.q0 ⟨ ⟩Ĥ  ⊢* embedded_H ⟨ ⟩Ĥ  ⟨ ⟩Ĥ  ⊢* Ĥ.qy ∞ 
Ĥ.q0 ⟨ ⟩Ĥ  ⊢* embedded_H ⟨ ⟩Ĥ  ⟨ ⟩Ĥ  ⊢* Ĥ.qn   

When Ĥ is applied to ⟨ ⟩Ĥ  
(q0) The input ⟨ ⟩Ĥ  is copied then transitions to (qx)
(qx) embedded_H is applied to ⟨ ⟩ ⟨ ⟩Ĥ Ĥ  (input and copy) 
which simulates ⟨ ⟩ ⟨ ⟩Ĥ Ĥ  which transitions back to (q0) to repeat the process. 
 
This process continues to repeat until embedded_H recognizes the repeating pattern and 
aborts its simulation of ⟨ ⟩ ⟨ ⟩Ĥ Ĥ . 

embedded_H is correct to abort its simulation and transition to .qn because it correctly Ĥ
predicts that Ĥ applied to ⟨ ⟩Ĥ  would never stop running unless embedded_H aborts its 
simulation of ⟨ ⟩ ⟨ ⟩Ĥ Ĥ . 
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