
Rebutting the Sipser Halting Problem Proof V2

A simulating halt decider correctly predicts what the behavior of its input would be if this
simulated input never had its simulation aborted. It does this by correctly recognizing several
non-halting behavior patterns in a finite number of steps of correct simulation.

When simulating halt decider H correctly predicts that directly executed D(D) would continue
to run forever unless H aborts its simulation of D this directly applies to the halting theorem.

 In computability theory, the halting problem is the problem of
 determining, from a description of an arbitrary computer program
 and an input, whether the program will finish running, or continue to
 run forever.

 For any program H that might determine whether programs halt,
 a "pathological" program D, called with some input, can pass its
 own source and its input to H and then specifically do the opposite
 of what H predicts D will do. https://en.wikipedia.org/wiki/Halting_problem

That (a) proves (b) is a tautology
(a) If simulating halt decider H correctly simulates its input D until H correctly determines that
its simulated D would never stop running unless aborted then

(b) H can abort its simulation of D and correctly report that D specifies a non-halting sequence
of configurations.

To make the details 100% concrete Sipser D and H are encoded as C
functions. The exact same rebuttal equally applies to Turing machines

int Sipser_D(int (*M)())
{
 int DoesHalt = H(M, M); // *Rejects when Sipser_D fails to accept*
 if (DoesHalt)
 return 0;
 return 1;
}

int main()
{
// *never stops running unless H aborts its simulation*
 Sipser_D(Sipser_D);
}

When Sipser_D calls H to simulate itself this comparable to calling H to call itself and can
result in something like infinite recursion. Because there are no control flow instructions in
Sipser_D to stop this the recursive simulation continues until H aborts it.

When the simulation of D is aborted this is comparable to a divide by zero error thus is not
construed as D halting. Entire system available: https://github.com/plolcott/x86utm

This exact same principle works on all Turing machine based halting theorem proofs

Sipser, Michael 1997. Introduction to the Theory of Computation. Boston: PWS Publishing
Company (165-167)

https://en.wikipedia.org/wiki/Halting_problem
https://github.com/plolcott/x86utm

Applying a simulating halt decider to the Linz halting problem proof

The Linz text indicates that Ĥ is defined on the basis of prepending and appending states to
the orignal Linz H, thus is named embedded_H. ⊢* indicates an arbitrary number of moves
such as: change_state / tape_head_action. The Peter Linz Ĥ is applied to its own machine
description ⟨ ⟩Ĥ .

Ĥ.q0 ⟨ ⟩Ĥ ⊢* embedded_H ⟨ ⟩Ĥ ⟨ ⟩Ĥ ⊢* Ĥ.qy ∞
Ĥ.q0 ⟨ ⟩Ĥ ⊢* embedded_H ⟨ ⟩Ĥ ⟨ ⟩Ĥ ⊢* Ĥ.qn

When Ĥ is applied to ⟨ ⟩Ĥ
(q0) The input ⟨ ⟩Ĥ is copied then transitions to (qx)
(qx) embedded_H is applied to ⟨ ⟩ ⟨ ⟩Ĥ Ĥ (input and copy)
which simulates ⟨ ⟩ ⟨ ⟩Ĥ Ĥ which transitions back to (q0) to repeat the process.

This process continues to repeat until embedded_H recognizes the repeating pattern and
aborts its simulation of ⟨ ⟩ ⟨ ⟩Ĥ Ĥ .

embedded_H is correct to abort its simulation and transition to .qn because it correctly Ĥ
predicts that Ĥ applied to ⟨ ⟩Ĥ would never stop running unless embedded_H aborts its
simulation of ⟨ ⟩ ⟨ ⟩Ĥ Ĥ .

Linz, Peter 1990. An Introduction to Formal Languages and Automata.
Lexington/Toronto: D. C. Heath and Company. (317-320)

