
Simulating Halt Decider Applied to the Halting Theorem

The novel concept of a simulating halt decider enables a C function to correctly determine the
halt status of another C function that exactly implements the halting theorem's "impossible"
input. When a simulating halt decider is applied to conventional Turing machine based halting
problem proofs the result is the same, this input specifies a non-halting sequences of
configurations.

 In computability theory, the halting problem is the problem of determining, from a
 description of an arbitrary computer program and an input, whether the program
 will finish running, or continue to run forever. Alan Turing proved in 1936 that a
 general algorithm to solve the halting problem for all possible program-input pairs
 cannot exist.

 For any program H that might determine if programs halt, a "pathological" program
 D, called with some input, can pass its own source and its input to H and then
 specifically do the opposite of what H predicts D will do. No H can exist that handles
 this case. https://en.wikipedia.org/wiki/Halting_problem

MIT Professor Michael Sipser has agreed that the following verbatim paragraph is
correct (he has not agreed to anything else in this paper):

 If simulating halt decider H correctly simulates its input D until H correctly
 determines that its simulated D would never stop running unless aborted
 then H can abort its simulation of D and correctly report that D specifies
 a non-halting sequence of configurations.

The criteria of the above paragraph and ordinary software engineering code analysis is all that
is needed to verify that Sipser_H does correctly determine the halt status of Sipser_D. This
same simulating halt decider is applied to the Peter Linz Turing machine proof in the Appendix.

We start with Sipser's definitions of H and D:
On input (M, w), where M is a TM and w is a string, H halts and accepts
if M accepts w. Furthermore, H halts and rejects if M fails to accept w.
In other words, we assume that H is a TM, where

H(⟨M,w⟩ = { accept if M accepts w
{ reject if M does not accept w

Now we construct a new Turing machine D with H as a subroutine. This new
TM calls H to determine what M does when the input to M is its own description
⟨M⟩. Once D has determined this information, it does the opposite. That is, it
rejects if M accepts and accepts if M does not accept.

D(⟨M⟩) = { accept if M does not accept ⟨M⟩
{ reject if M accepts ⟨M⟩ (Sipser 1997:165)

---1--- 10/30/22 05:15:23 PM

https://en.wikipedia.org/wiki/Halting_problem

We encode the Sipser D and define the behavior of Sipser H as C functions.

int Sipser_D(int (*M)())
{
 if (Sipser_H(M, M))
 return 0;
 return 1;
}

//
// Sipser_H returns 1 when its input would halt and return 1
// otherwise Sipser_H returns 0
//
int Sipser_H(int (*M)(), int (*w)())

When H correctly simulates D it finds that D remains stuck in recursive simulation
(a) D calls H that simulates D with an x86 emulator
(b) that calls a simulated H that simulates D with an x86 emulator
(c) that calls a simulated H that simulates D with an x86 emulator ...
Until the executed H recognizes this repeating state, aborts its simulation of D and returns 0.
The first page of the Appendix has all of the details about this.

D calls simulating halt decider H which computes the mapping from its input D to an accept or
reject state on the basis of the behavior of its correct simulation of D. When H correctly
determines that this simulated input would remain stuck in recursive simulation H aborts this
simulation and reports non-halting by returning 0. When D reverses this decision it returns 1.
This is used to correctly fill in the “?” in the Sipser Figure 4.6 (see below) with “accept”.

A simulating halt decider computes the mapping from its input finite strings to an accept or
reject state on the basis of the actual behavior specified by this input as measured by its
correct simulation of this input.

Simulating halt decider H recognizes instances of recursive simulation using the same criteria
that it uses in its dynamic behavior pattern that recognizes infinite recursion:

void Infinite_Recursion(u32 N)
{
 Infinite_Recursion(N);
}

_Infinite_Recursion()
[000013fa] 55 push ebp
[000013fb] 8bec mov ebp,esp
[000013fd] 8b4508 mov eax,[ebp+08]
[00001400] 50 push eax
[00001401] e8f4ffffff call 000013fa
[00001406] 83c404 add esp,+04
[00001409] 5d pop ebp
[0000140a] c3 ret
Size in bytes:(0017) [0000140a]

H detects that _Infinite_Recursion() calls itself with no condtional branch instructions between
the beginning of _Infinite_Recursion() and the call to itself that could escape repeated
recursion.

---2--- 10/30/22 05:15:23 PM

 ⟨M1⟩ ⟨M2⟩ ⟨M3⟩ ⟨M4⟩ ... ⟨D⟩ ...
 M1 accept reject accept reject accept

 M2 accept accept accept accept accept

 M3 reject reject reject reject reject

 M4 accept accept reject reject accept
 ...

 D reject reject accept accept ?
 ...

 Figure 4.6 (Sipser 1997:167)

Sipser, Michael 1997. Introduction to the Theory of Computation. Boston: PWS Publishing
Company (165-167)

Complete halt deciding system (Visual Studio Project) Sipser version.
(a) x86utm operating system
(b) x86 emulator adapted from libx86emu to compile under Windows
(c) Several halt deciders and their sample inputs contained within Halt7.c
(d) The execution trace of Sipser_H applied to Sipser_D is shown in Halt7_Sipser.txt
https://liarparadox.org/ 2022_10_08.zip

---3--- 10/30/22 05:15:23 PM

https://liarparadox.org/2022_10_08.zip
https://liarparadox.org/2022_10_08.zip

Appendix

int Sipser_D(int (*M)())
{
 if (Sipser_H(M, M))
 return 0;
 return 1;
}

int main()
{
 Output((char*)"Input_Halts = ", Sipser_D(Sipser_D));
}

_Sipser_D()
[000012ae] 55 push ebp
[000012af] 8bec mov ebp,esp
[000012b1] 8b4508 mov eax,[ebp+08]
[000012b4] 50 push eax
[000012b5] 8b4d08 mov ecx,[ebp+08]
[000012b8] 51 push ecx
[000012b9] e880fdffff call 0000103e
[000012be] 83c408 add esp,+08
[000012c1] 85c0 test eax,eax
[000012c3] 7404 jz 000012c9
[000012c5] 33c0 xor eax,eax
[000012c7] eb05 jmp 000012ce
[000012c9] b801000000 mov eax,00000001
[000012ce] 5d pop ebp
[000012cf] c3 ret
Size in bytes:(0034) [000012cf]

When H correctly simulates D it finds that D remains stuck in recursive simulation

Sipser_H: Begin Simulation Execution Trace Stored at:111fa8
 machine stack stack machine assembly
 address address data code language
 ======== ======== ======== ========= =============
[000012ae][00111f94][00111f98] 55 push ebp // Begin Sipser_D
[000012af][00111f94][00111f98] 8bec mov ebp,esp
[000012b1][00111f94][00111f98] 8b4508 mov eax,[ebp+08]
[000012b4][00111f90][000012ae] 50 push eax // push Sipser_D
[000012b5][00111f90][000012ae] 8b4d08 mov ecx,[ebp+08]
[000012b8][00111f8c][000012ae] 51 push ecx // push Sipser_D
[000012b9][00111f88][000012be] e880fdffff call 0000103e // call Sipser_H
Sipser_H: Infinitely Recursive Simulation Detected Simulation Stopped

We can see that the first seven instructions of Sipser_D simulated by Sipser_H precisely
match the first seven instructions of the x86 source-code of Sipser_D. This conclusively proves
that these instructions were simulated correctly.

Anyone sufficiently technically competent in the x86 programming language will agree that the
above execution trace of Sipser_D simulated by Sipser_H shows that Sipser_D will never stop
running unless Sipser_H aborts its simulation of Sipser_D.

Sipser_H detects that Siper_D is calling itself with the exact same arguments that Siper_H was
called with and there are no conditional branch instructions from the beginning of Sipser_D to
its call to Sipser_H that can possibly escape the repetition of this recursive simulation.

---4--- 10/30/22 05:15:23 PM

Peter Linz Halting Problem Proof adapted to use a simulating halt decider

When we see the notion of a simulating halt decider applied to the embedded copy of Linz H
within Linz Ĥ then we can see that the ⟨ ⟩ ⟨ ⟩Ĥ Ĥ input to embedded H specifies recursive
simulation that never reaches its own final state of ⟨ .qy⟩ or ⟨ .qn⟩.Ĥ Ĥ

computation that halts … the Turing machine will halt whenever it enters a final state. (Linz:1990:234)

.qĤ 0 ⟨ ⟩ ⊢* H ⟨ ⟩ ⟨ ⟩ ⊢* .qy ∞ Ĥ Ĥ Ĥ Ĥ
If ⟨ ⟩ ⟨ ⟩ correctly simulated by H would reach its own final state of ⟨ .qn⟩. Ĥ Ĥ Ĥ

.qĤ 0 ⟨ ⟩ ⊢* H ⟨ ⟩ ⟨ ⟩ ⊢* .qn Ĥ Ĥ Ĥ Ĥ
If ⟨ ⟩ ⟨ ⟩ correctly simulated by H would never reach its own final state of ⟨ .qn⟩. Ĥ Ĥ Ĥ

When is applied to ⟨ ⟩ // subscripts indicate unique finite stringsĤ Ĥ
 copies its input ⟨Ĥ Ĥ0⟩ to ⟨Ĥ1⟩ then H simulates ⟨Ĥ0⟩ ⟨Ĥ1⟩

Then these steps would keep repeating: (unless their simulation is aborted)
Ĥ0 copies its input ⟨Ĥ1⟩ to ⟨Ĥ2⟩ then H0 simulates ⟨Ĥ1⟩ ⟨Ĥ2⟩
Ĥ1 copies its input ⟨Ĥ2⟩ to ⟨Ĥ3⟩ then H1 simulates ⟨Ĥ2⟩ ⟨Ĥ3⟩
Ĥ2 copies its input ⟨Ĥ3⟩ to ⟨Ĥ4⟩ then H2 simulates ⟨Ĥ3⟩ ⟨Ĥ4⟩...

Since we can see that the input: ⟨Ĥ0⟩ ⟨Ĥ1⟩ correctly simulated by H would never reach its own
final state of ⟨Ĥ0.qy⟩ or ⟨Ĥ0.qn⟩ we know that ⟨Ĥ0⟩ specifies a non-halting sequence of
configurations.

Linz, Peter 1990. An Introduction to Formal Languages and Automata. Lexington/Toronto: D.
C. Heath and Company. (317-320)

---5--- 10/30/22 05:15:23 PM

When you deny this you deny a tautology
When the line-by-line execution trace of D simulated by H exactly matches the line-by-line
behavior that the x86 source-code of D specifies then we know that the simulation is correct.

On 10/13/2022 10:00 PM, Richard Damon wrote:
> Yes, If H never aborts its simulation, then THAT H, the one
> that never aborts its simulation, never answers, and the D
> based on it is non-halting.

Professor Sipser has agreed to these verbatim words (and no more)
If simulating halt decider H correctly simulates its input D until H
correctly determines that its simulated D would never stop running
unless aborted then H can abort its simulation of D and correctly
report that D specifies a non-halting sequence of configurations.

A paraphrase of a portion of the above paragraph
Would D correctly simulated by H ever stop running if not aborted?

Is proven on page 3 of this paper to be "no" thus perfectly meeting the Sipser approved criteria
shown above.

You don't have enough knowledge of the x86 language to understand the proof on page 3.

Simulating Halt Decider Applied to the Halting Theorem
https://www.researchgate.net/publication/364302709_Simulating_Halt_Decider_Applied_to_th
e_Halting_Theorem

If simulating halt decider H correctly predicts that its correct and
complete simulation of D would never stop running then H is correct
to abort its simulation of D and correctly report that D specifies a
non-halting sequence of configurations.

On 10/17/2022 10:23 AM, Ben Bacarisse wrote:
> H(D,D) /does/ meet the criterion for PO's Other Halting
> problem – the one no one cares about. D(D) halts (so H is
> not halt decider), but D(D) would not halt unless H stops
> the simulation. H /can/ correctly determine this silly
> criterion (in this one case) so H is a POOH decider
> (again, for this one case -- PO is not interested in the
> fact the POOH is also undecidable in general).

On 10/17/2022 10:23 AM, Ben Bacarisse wrote:
> ...D(D) would not halt unless H stops the simulation.
> H /can/ correctly determine this silly criterion (in this one case)...

https://www.amazon.com/Introduction-Theory-Computation-Sipser/dp/8131525295

---6--- 10/30/22 05:15:23 PM

https://www.amazon.com/Introduction-Theory-Computation-Sipser/dp/8131525295
https://www.researchgate.net/publication/364302709_Simulating_Halt_Decider_Applied_to_the_Halting_Theorem
https://www.researchgate.net/publication/364302709_Simulating_Halt_Decider_Applied_to_the_Halting_Theorem

If the halting problem could be solved then compilers could have automated bug checkers that
would drastically reduce software production costs. A simulating halt decider does not solve
the halting problem yet does seem to refute all of the conventional proofs that it cannot be
solved.

https://en.wikipedia.org/wiki/Halting_problem

On 10/17/2022 10:23 AM, Ben Bacarisse wrote:
> Richard Damon <Richard@Damon-Family.org> writes:
>
>> On 10/17/22 1:11 AM, olcott wrote:
>>> If H(D,D) meets the criteria then H(D,D)==0 No-Matter-What
>>
>> But it does'nt meet the criteria, sincd it never correctly
>> determines that the correct simulation of its input is non-halting.
>
> Are you dancing round the fact that PO tricked the professor?
>
> H(D,D) /does/ meet the criterion for PO's Other Halting problem
> -- the one no one cares about. D(D) halts (so H is not halt decider),
> but D(D) would not halt unless H stops the simulation.
> H /can/ correctly determine this silly criterion (in this one case)

> so H is a POOH decider (again, for this one case -- PO is not
> interested in the fact the POOH is also undecidable in general).
>
>> The correct simulation is the correct simulation who ever does
>> it, and since D will halt when run, the correct simulation of D
>> will halt.
>
> Right, but that's not the criterion that PO is using, is it? I don't
> get what the problem is. Ever since the "line 15 commented out"
> debacle, PO has been pulling the same trick: "D(D) only halts
> because..." was one way he used to put it before finding a more
> tricky wording. For years, the project has simply been to find
> words he can dupe people with.
>

---7--- 10/30/22 05:15:23 PM

https://en.wikipedia.org/wiki/Halting_problem

--
Copyright 2022 Pete Olcott "Talent hits a target no one else can hit;
Genius hits a target no one else can see." Arthur Schopenhauer

comp.theory: [Solution to one instance of the Halting Problem]
On 3/14/2017 9:05 AM, peteolcott wrote:

The above reference on the USENET forum comp.theory documents the exact moment
when all of my key ideas came together that form the complete basis of my current solution.

MessageID
<e18ff0a9-7f9d-4799-9d13-55d021afaa82@googlegroups.com>

Simulating Halt Decider Applied to the Halting Theorem
https://www.researchgate.net/publication/364657019_Simulating_Halt_Decider_Applied_to_th
e_Halting_Theorem

Rebutting the Sipser Halting Problem Proof
https://www.researchgate.net/publication/364302709_Rebutting_the_Sipser_Halting_Problem_
Proof

---8--- 10/30/22 05:15:23 PM

https://www.researchgate.net/publication/364302709_Rebutting_the_Sipser_Halting_Problem_Proof
https://www.researchgate.net/publication/364302709_Rebutting_the_Sipser_Halting_Problem_Proof
https://www.researchgate.net/publication/364657019_Simulating_Halt_Decider_Applied_to_the_Halting_Theorem
https://www.researchgate.net/publication/364657019_Simulating_Halt_Decider_Applied_to_the_Halting_Theorem

