Self Referential Undecidability Construed as Incorrect Questions

A PhD computer science professor came up with an English question that is perfectly analogous to the halting problem proofs. His thought experiment must stipulate that any answer besides [yes, no] is a wrong answer to preserve its correspondence to a Turing machine halt decider: Can Carol correctly answer “no” to this [yes/no] question?

If Carol answers “no” to this question she is saying that “no” is the wrong answer, if she is correct then “no” is the right answer making her necessarily incorrect.

If Carol answers “yes” to this question she is saying that “no” is the correct answer thus making “yes” necessarily the wrong answer.

Thus both [yes, no] are the wrong answer from Carol, thus “no” is the correct answer from anyone else.

...is a consistent, satisfiable specification for some agent (anyone other than Carol), and an inconsistent, unsatisfiable specification for some agent (Carol). (Hehner 2017)

Since the question posed to Carol has no correct answer from Carol and the same word-for-word question does have a correct answer from anyone else linguistics understands that these are two different questions because they have different meanings depending on the linguistic context of who is asked.

We can see that Carol's question posed to Carol is self-contradictory for Carol because the question contradicts both yes/no answers from Carol.

Another example of self-contradictory question
Is this sentence true or false: “This sentence is not true” ???

Next we form an isomorphism from Carol's question to the halting problem proof counter-example template. When input D to halt decider H does the opposite of whatever Boolean value that H returns then the question: Does your input halt on its input? Is a self-contradictory (thus incorrect) question for H on input D.

The bottom line of all of the above reasoning is that it is agreed that the halt status of some inputs to some halt deciders cannot possibly be correctly determined when the halt decider is required to report on the behavior of the direct execution of this input.

The brand new insight by the PhD computer science professor and myself (since 2004) is that the inability of a halt decider to correctly provide the halt status of an input that does the opposite of whatever halt status is provided does not place any actual limit on computation.

It is generally the case that the inability to do the logically impossible never places any actual limits on anyone of anything. That no CAD system can possibly correctly draw a square circle places no actual limits on computation.

Professor Hehner has reviewed this and says that it is in agreement with his paper Objective and Subjective Specifications https://www.cs.toronto.edu/~hehner/OSS.pdf