
Simulating Termination Analyzer H is Not Fooled by
Pathological Input D

The notion of a simulating termination analyzer is examined at the concrete level
of pairs of C functions. This is similar to AProVE: Non-Termination Witnesses for C
Programs: The termination status decision is made on the basis of the dynamic
behavior of the input. This paper explores what happens when a simulating
termination analyzer is applied to an input that calls itself.

In computer science, termination analysis is program analysis which attempts to
determine whether the evaluation of a given program halts for each input. This
means to determine whether the input program computes a total function.
https://en.wikipedia.org/wiki/Termination_analysis

Computable functions are the formalized analogue of the intuitive notion of
algorithms, in the sense that a function is computable if there exists an algorithm
that can do the job of the function, i.e. given an input of the function domain it
can return the corresponding output.
https://en.wikipedia.org/wiki/Computable_function

To understand this analysis requires a sufficient knowledge of the C programming
language and what an x86 emulator does. It is also very helpful to have some
basic understanding of the x86 programming language. When we examine
termination at the concrete C / x86 level false assumptions that slip through the
cracks of the Turing Machine level are exposed.

CODE SAMPLE 1

typedef void (*ptr)();
int HHH(ptr P);

void Infinite_Loop()
{
 HERE: goto HERE;
}

void Infinite_Recursion()
{
 Infinite_Recursion();
}

void DDD()
{
 HHH(DDD);
}

int main()
{
 HHH(Infinite_Loop);
 HHH(Infinite_Recursion);
 HHH(DDD);
}

Analysis of CODE SAMPLE 1

Every C programmer that knows what
an x86 emulator is knows that when
HHH emulates the machine language of
Infinite_Loop,
Infinite_Recursion, and DDD
that it must abort these emulations so
that itself can terminate normally.

When this is construed as non-halting
criteria then simulating termination
analyzer HHH is correct to reject these
inputs as non-halting by returning 0 to
its caller.

Simulating termination analyzers report
on the behavior that their finite string
input specifies thus HHH must report
that DDD correctly emulated by HHH
remains stuck in recursive simulation
unless this simulation is aborted.

https://en.wikipedia.org/wiki/Termination_analysis
https://en.wikipedia.org/wiki/Computable_function

Now we examine that behavior of DDD correctly emulated by x86 emulator HHH
at the x86 programming language level. When we stipulate that the only
measure of a correct emulation is the semantics of the x86 programming
language then we see that when DDD is correctly emulated by HHH that its call to
HHH(DDD) cannot possibly return.

_DDD()
[00002163] 55 push ebp ; housekeeping
[00002164] 8bec mov ebp,esp ; housekeeping
[00002166] 6863210000 push 00002163 ; push DDD
[0000216b] e853f4ffff call 000015c3 ; call HHH(DDD)
[00002170] 83c404 add esp,+04
[00002173] 5d pop ebp
[00002174] c3 ret
Size in bytes:(0018) [00002174]

When DDD is correctly emulated by any pure function x86 emulator HHH calls an
emulated HHH(DDD) this call cannot possibly return. This prevents the emulated
DDD from ever reaching past its own machine address of 0000216b and halting.

HHH must report that it needs to abort its emulaton of DDD. HHH can't correctly
report that DDD doesn't need to be aborted at the point in the execution trace
where DDD does need to be aborted. The behavior of DDD(DDD) is at a different
point in the execution trace after HHH has already aborted the emulated DDD.

Halt Deciders compute the mapping from their actual finite string input to a
Boolean output on the basis of the actual behavor specified by this input. The
behavior of this input must include and cannot ignore the recursive emulation
specified by the fact that DDD is calling its own emulator.

A partial halt decider is a computable function that computes the mapping from its
finite string input to a Boolean value corresponding to the behavior that this finite
string actually specifies. It does this for a limited set of inputs.

The following algorithm is used by the simulating termination analyzers:

<MIT Professor Sipser agreed to ONLY these verbatim words 10/13/2022>
 If simulating halt decider H correctly simulates its input D
 until H correctly determines that its simulated D would never
 stop running unless aborted then

 H can abort its simulation of D and correctly report that D
 specifies a non-halting sequence of configurations.
</MIT Professor Sipser agreed to ONLY these verbatim words 10/13/2022>

The x86utm operating system is a proxy for a UTM and uses C functions as
proxies for Turing Machines and the x86 language as a proxy for the Turing
Machine description language. This makes every single detail of the halting
problem 100% concrete thus totally eliminating any false assumptions.

The halting problem proof is understood to be the logical impossibility of specifying
a halt decider HHH that correctly reports the halt status of input DD that is defined
to do the opposite of whatever value that HHH reports. Of course this is
impossible.

HHH(DD) has the classic halting problem proof relationship to its input. HHH(DD)
has the same behavior as the above DDD correctly simulated by HHH. This
prevents DD correctly simulated by HHH from reaching past its own first line. This
makes the classic halting problem question moot:

What Boolean value can HHH correctly return when input DD is defined to do
the opposite of every value that HHH returns? DD correctly emulated by HHH
cannot possibly reach this paradoxical point at its own second line.

_DD()
[00002133] 55 push ebp ; housekeeping
[00002134] 8bec mov ebp,esp ; housekeeping
[00002136] 51 push ecx ; make space for local
[00002137] 6833210000 push 00002133 ; push DD
[0000213c] e882f4ffff call 000015c3 ; call HHH(DD)
[00002141] 83c404 add esp,+04
[00002144] 8945fc mov [ebp-04],eax
[00002147] 837dfc00 cmp dword [ebp-04],+00
[0000214b] 7402 jz 0000214f
[0000214d] ebfe jmp 0000214d
[0000214f] 8b45fc mov eax,[ebp-04]
[00002152] 8be5 mov esp,ebp
[00002154] 5d pop ebp
[00002155] c3 ret
Size in bytes:(0035) [00002155]

The same reasoning that applied to DDD correctly simulated by HHH applies here.
When we stipulate that the only measure of a correct emulation is the
semantics of the x86 programming language then we see that when DD is
correctly emulated by HHH that its call to HHH(DD) cannot possibly return.

typedef void (*ptr)();
int HHH(ptr P);

int DD()
{
 int Halt_Status = HHH(DD);
 if (Halt_Status)
 HERE: goto HERE;
 return Halt_Status;
}

int main()
{
 HHH(DD);
}

When we understand that
(a) Decider HHH must report on the
behavior that its input actually
specifies.

(b) The measure of this behavior is
DD correctly simulated by HHH
including its recursive call to
HHH(DD).

Then we can see that DD correctly
simulated HHH cannot possibly reach
past its own first line.

As we can see from DDD correctly emulated by HHH the behavior of the input to
HHH(DD) is different than the behavior of the directly executed DD(DD).
Computable functions including halt deciders are only accountable for the actual
behavior of their actual inputs. No one is free to overrule the semantics of the x86
language.

HHH must report that it needs to abort its emulaton of DD. HHH can't correctly
report that DD doesn't need to be aborted at the point in the execution trace where
DD does need to be aborted. The behavior of DD(DD) is at a different point in the
execution trace after HHH has already aborted the emulated DD.

Because the call from DD correctly simulated by HHH to HHH(DD) cannot possibly
return this DD cannot possibly reach past its own first line. This makes the
paradoxical portion of DD unreachable making it moot.

HHH uses the same non-halt status criteria that it uses to detect infinite recursion
to detect and reject that DD correctly simulated by HHH would halt. HHH returns 0
to it caller to indicate it rejected its input as non-halting.

Simulating (partial) halt decider applied to Peter Linz Halting Problem Proof
A simulating (partial) halt decider correctly predicts whether or not its correctly
simulated input can possibly reach its own final state and halt. It does this by
correctly recognizing several non-halting behavior patterns in a finite number of
steps of correct simulation. Inputs that do terminate are simply simulated until they
complete.

When a simulating (partial) halt decider correctly simulates N steps of its input it
derives the exact same N steps that a pure UTM would derive because it is itself a
UTM with extra features.

My reviewers cannot show that any of the extra features added to the UTM
change the behavior of the simulated input for the first N steps of simulation:
 (a) Watching the behavior doesn't change it.
 (b) Matching non-halting behavior patterns doesn't change it
 (c) Even aborting the simulation after N steps doesn't change the first N steps.

Because of all this we can know that the first N steps of input D simulated by
simulating (partial) halt decider H are the actual behavior that D specifies to H for
these same N steps.

computation that halts… “the Turing machine will halt whenever it enters a final
state” (Linz:1990:234)

When we see (after N steps) that D correctly simulated by H cannot possibly reach
its simulated final state in any finite number of steps of correct simulation then we
have conclusive proof that D presents non-halting behavior to H.

A simulating (partial) halt decider must always stop its simulation and report non-
halting when-so-ever it correctly detects that its correct simulation would never
otherwise stop running. All halt deciders compute the mapping from their inputs to
an accept or reject state on the basis of the actual behavior specified by this input.

When an input is defined to have a pathological relationship to its simulator this
changes the behavior of this input. A simulating (partial) halt decider (with a
pathological relationship) must report on this changed behavior to prevent its own
infinite execution by aborting its simulation.

Summary of Linz Halting Problem Proof
The Linz halting problem proof constructs its counter-example input ⟨ ⟩Ĥ on the
basis of prepending and appending states to the original Linz H, (assumed halt
decider) thus is named embedded_H.

Original Linz Turing Machine H
H.q0 ⟨M⟩ w ⊢* H.qy // M applied to w halts
H.q0 ⟨M⟩ w ⊢* H.qn // M applied to w does not halt

The Linz term “move” means a state transition and its corresponding tape head
action {move_left, move_right, read, write}.

(q0) is prepended to H to copy the ⟨M⟩ input of Ĥ. The transition from (qa) to (qb) is
the conventional infinite loop appended to the (qy) accept state of embedded_H.
⊢* indicates an arbitrary number of moves.
⊢* specifies a wildcard sequence of state transitions

.q0 ⟨M⟩ ⊢* embedded_H ⟨M⟩ ⟨M⟩ ⊢* .qy ∞ Ĥ Ĥ

.q0 ⟨M⟩ ⊢* embedded_H ⟨M⟩ ⟨M⟩ ⊢* .qnĤ Ĥ

Analysis of Linz Halting Problem Proof --- Copy of ⟨ ⟩Ĥ simulated with ⟨ ⟩Ĥ

When is applied to ⟨ ⟩ Ĥ Ĥ
.q0 ⟨ ⟩ ⊢* embedded_H ⟨ ⟩ ⟨ ⟩ ⊢* .qy ∞ Ĥ Ĥ Ĥ Ĥ Ĥ
.q0 ⟨ ⟩ ⊢* embedded_H ⟨ ⟩ ⟨ ⟩ ⊢* .qn Ĥ Ĥ Ĥ Ĥ Ĥ

(a) copies its input ⟨ ⟩ Ĥ Ĥ
(b) invokes embedded_H ⟨ ⟩ ⟨ ⟩ Ĥ Ĥ Ĥ
(c) embedded_H simulates ⟨ ⟩ ⟨ ⟩ Ĥ Ĥ
(d) simulated ⟨ ⟩ copies its input ⟨ ⟩ Ĥ Ĥ
(e) simulated ⟨ ⟩ invokes simulated embedded_H ⟨ ⟩ ⟨ ⟩ Ĥ Ĥ Ĥ
(f) simulated embedded_H simulates ⟨ ⟩ ⟨ ⟩ Ĥ Ĥ
(g) goto (d) with one more level of simulation

Two complete simulations show a pair of identical TMD's are simulating a pair of
identical inputs. We can see this thus proving recursive simulation.

"δ is the transition function" (Linz:1990:233) ...
"A Turing machine is said to halt whenever it reaches a
configuration for which δ is not defined; (Linz:1990:234)

Simulating Partial Halt Decider Applied to Linz Proof
Non-halting behavior patterns can be matched in N steps. The simulated ⟨ ⟩Ĥ halts
only it when reaches its simulated final state of ⟨ .qn⟩Ĥ in a finite number of steps.

Execution trace of applied to ⟨ ⟩ Ĥ Ĥ
(a) Ĥ.q0 The input ⟨ ⟩Ĥ is copied then transitions to embedded_H
(b) embedded_H applied ⟨ ⟩ ⟨ ⟩Ĥ Ĥ (input and copy) simulates ⟨ ⟩Ĥ applied to ⟨ ⟩Ĥ
(c) which begins at its own simulated ⟨ .q0⟩Ĥ to repeat the process

Simulation invariant: ⟨ ⟩Ĥ correctly simulated by embedded_H never reaches its
own simulated final state of ⟨ .qn⟩Ĥ .

When embedded_H correctly simulates the state transitions
specified by its input in the order that they are specified

⟨ ⟩ ⟨ ⟩Ĥ Ĥ correctly simulated by embedded_H cannot possibly
reach its own simulated final state of ⟨ .qn⟩Ĥ and halt.

Therefore when embedded_H aborts the simulation of its input and transitions to
its own final state of .qnĤ it is merely reporting this verified fact.

Conclusion
We have shown a 100% fully operational concrete example of a simulating
termination analyzer applied to a pair of C functions that have the Halting
Problem's pathological relationship to each other.

When it is understood that D correctly simulated by H cannot possibly halt and that
H is reporting on the behavior of this correctly simulated input then H is correct to
abort its simulation of D and report that this input does not halt.

The exact same reasoning applies to the Peter Linz Halting Problem proof. When
embedded_H is applied to ⟨ ⟩ ⟨ ⟩Ĥ Ĥ it transitions to .qnĤ indicating that its correctly
simulated input cannot possibly reach its own simulated final state of ⟨ .qn⟩Ĥ .

embedded_H is not allowed to report on the behavior of itself thus is not allowed to
report on the behavior of Ĥ applied to ⟨ ⟩Ĥ . When we apply Linz H to ⟨ ⟩ ⟨ ⟩Ĥ Ĥ it
correctly reports that Ĥ applied to ⟨ ⟩Ĥ will reach its own final state of .qnĤ and halt.

References
[1] Steffen Winterfeldt and others libx86emu (x86 emulation library)
1996-2017 https://github.com/wfeldt/libx86emu

[2] P Olcott, 2023. The x86utm operating system:
https://github.com/plolcott/x86utm
Several fully operational simulating termination analyzers with sample inputs.

[3] E C R Hehner. Objective and Subjective Specifications
WST Workshop on Termination, Oxford. 2018 July 18.
See https://www.cs.toronto.edu/~hehner/OSS.pdf

[4] Bill Stoddart. The Halting Paradox
20 December 2017
https://arxiv.org/abs/1906.05340
arXiv:1906.05340 [cs.LO]

[5] E C R Hehner. Problems with the Halting Problem, COMPUTING2011
Symposium on 75 years of Turing Machine and Lambda-Calculus, Karlsruhe
Germany, invited, 2011 October 20-21; Advances in Computer Science and
Engineering v.10 n.1 p.31-60, 2013
https://www.cs.toronto.edu/~hehner/PHP.pdf

[6] Linz, Peter 1990. An Introduction to Formal Languages and Automata.
Lexington/Toronto: D. C. Heath and Company. (317-320)

[7] Nicholas J. Macias. Context-Dependent Functions:
Narrowing the Realm of Turing’s Halting Problem
13 Nov 2014
https://arxiv.org/abs/1501.03018
arXiv:1501.03018 [cs.LO]

[8] Jera Hensel , Constantin Mensendiek , and Jürgen Giesl
AProVE: Non-Termination Witnesses for C Programs
LuFG Informatik 2, RWTH Aachen University, Germany
https://link.springer.com/content/pdf/10.1007/978-3-030-99527-0_21.pdf

https://link.springer.com/content/pdf/10.1007/978-3-030-99527-0_21.pdf
https://arxiv.org/abs/1501.03018
https://www.cs.toronto.edu/~hehner/PHP.pdf
https://arxiv.org/abs/1906.05340
https://www.cs.toronto.edu/~hehner/OSS.pdf
https://github.com/plolcott/x86utm
https://github.com/wfeldt/libx86emu

