
Termination Analyzer H is Not Fooled by Pathological Input P

The notion of a simulating termination analyzer is examined at the concrete level
of pairs of C functions. This is similar to AProVE: Non-Termination Witnesses for C
Programs. The termination status decision is made on the basis of the dynamic
behavior of the input. This paper explores what happens when a simulating
termination analyzer is applied to an input that calls itself.

In computer science, termination analysis is program analysis which attempts to
determine whether the evaluation of a given program halts for each input. This
means to determine whether the input program computes a total function.
https://en.wikipedia.org/wiki/Termination_analysis

The halting problem proof is understood to be the logical impossibility of specifying
a halt decider H that correctly reports the halt status of input P that is defined to do
the opposite of whatever value that H reports. Of course this is impossible.

Computable functions are the formalized analogue of the intuitive notion of
algorithms, in the sense that a function is computable if there exists an algorithm
that can do the job of the function, i.e. given an input of the function domain it
can return the corresponding output.
https://en.wikipedia.org/wiki/Computable_function

To understand this analysis requires a sufficient knowledge of the C programming
language and what an x86 emulator does. It is also very helpful to have some
basic understanding of the x86 programming language.

CODE SAMPLE 1

typedef void (*ptr)();
int H0(ptr P);

void Infinite_Loop()
{
 HERE: goto HERE;
}

void Infinite_Recursion()
{
 Infinite_Recursion();
}

void DDD()
{
 H0(DDD);
}

int main()
{
 H0(Infinite_Loop);
 H0(Infinite_Recursion);
 H0(DDD);
}

Analysis of CODE SAMPLE 1

Every C programmer that knows what an
x86 emulator is knows that when H0
emulates the machine language of
Infinite_Loop,
Infinite_Recursion, and DDD
that it must abort these emulations so
that itself can terminate normally.

When this is construed as non-halting
criteria then simulating termination
analyzer H0 is correct to reject these
inputs as non-halting by returning 0 to its
caller.

Simulating termination analyzers must
report on the behavior that their finite
string input specifies thus H0 must report
that DDD correctly emulated by H0
remains stuck in recursive simulation.

https://en.wikipedia.org/wiki/Termination_analysis
https://en.wikipedia.org/wiki/Computable_function

When we stipulate that the only measure of a correct emulation is the semantics of
the x86 programming language then we see that when DDD is correctly emulated
by H0 that its call to H0(DDD) cannot possibly return.

_DDD()
[00002172] 55 push ebp ; housekeeping
[00002173] 8bec mov ebp,esp ; housekeeping
[00002175] 6872210000 push 00002172 ; push DDD
[0000217a] e853f4ffff call 000015d2 ; call H0(DDD)
[0000217f] 83c404 add esp,+04
[00002182] 5d pop ebp
[00002183] c3 ret
Size in bytes:(0018) [00002183]

When we define H1 as identical to H0 except that DDD does not call H1 then we
see that when DDD is correctly emulated by H1 that its call to H0(DDD) does
return. This is the same behavior as the directly executed DDD().

A partial halt decider is a computable function that computes the mapping from its
finite string input to a Boolean value corresponding to the behavior that this finite
string specifies. It does this for a limited set of inputs.

The following algorithm is used by the simulating termination analyzers:

<MIT Professor Sipser agreed to ONLY these verbatim words 10/13/2022>
 If simulating halt decider H correctly simulates its input D
 until H correctly determines that its simulated D would never
 stop running unless aborted then

 H can abort its simulation of D and correctly report that D
 specifies a non-halting sequence of configurations.
</MIT Professor Sipser agreed to ONLY these verbatim words 10/13/2022>

The next example (uses the above algorithm) yet is not a termination
analyzer because it only references a single program / input pair.

Unless every single detail is made 100% explicit false assumptions always slip
through the cracks. This is why H(P,P) must be fully understood at the C level
before its isomorphism is examined at the Turing Machine level.

H(P,P) has the classic halting problem proof relationship to its input. H(P,P) has
the same behavior as the above DDD correctly simulated by H0. This prevents P
correctly simulated by H from reaching past its own first line. This makes the
classic halting problem question moot:

What Boolean value can H correctly return when input P is defined to do the
opposite of every value that H returns? P correctly emulated by H cannot
possibly reach this paradoxical point at its own second line.

_P()
[000020e2] 55 push ebp ; housekeeping
[000020e3] 8bec mov ebp,esp ; housekeeping
[000020e5] 51 push ecx ; housekeeping
[000020e6] 8b4508 mov eax,[ebp+08] ; parameter
[000020e9] 50 push eax ; push parameter
[000020ea] 8b4d08 mov ecx,[ebp+08] ; parameter
[000020ed] 51 push ecx ; push parameter
[000020ee] e82ff3ffff call 00001422 ; call H(P,P)
[000020f3] 83c408 add esp,+08
[000020f6] 8945fc mov [ebp-04],eax
[000020f9] 837dfc00 cmp dword [ebp-04],+00
[000020fd] 7402 jz 00002101
[000020ff] ebfe jmp 000020ff
[00002101] 8b45fc mov eax,[ebp-04]
[00002104] 8be5 mov esp,ebp
[00002106] 5d pop ebp
[00002107] c3 ret
Size in bytes:(0038) [00002107]

The same reasoning that applied to DDD correctly simulated by HH0 applies here.
When we stipulate that the only measure of a correct emulation is the semantics of
the x86 programming language then we see that when P is correctly emulated by
H that its call to H(P,P) cannot possibly return.

As we can see from DDD correctly emulated by H0 the behavior of the input to
H(P,P) is different than the behavior of the directly executed P(P). Computable
functions including halt deciders are only accountable for the actual behavior of
their actual inputs. No one is free to overrule the semantics of the x86 language.

Because the call from P correctly simulated by H to H(P,P) cannot possibly return
this P cannot possibly reach past its own first line. This makes the paradoxical
portion of P unreachable making it moot.

H uses the same non-halt status criteria that it uses to detect infinite recursion to
detect and reject that P correctly simulated by H would halt. H returns 0 to it caller
to indicate it rejected its input as non-halting.

typedef int (*ptr2)();
int H(ptr2 P, ptr2 I);

int P(ptr2 x)
{
 int Halt_Status = H(x, x);
 if (Halt_Status)
 HERE: goto HERE;
 return Halt_Status;
}

int main()
{
 H(P,P);
}

When we understand that
(a) Decider H must report on the
behavior that its input actually
specifies.

(b) The measure of this behavior is P
correctly simulated by H including its
recursive call to H(P,P).

Then we can see that P correctly
simulated H cannot possibly reach
past its own first line.

