
The Notion of Truth in Natural and Formal Languages
The purpose of this paper is to complete the RHS of Tarski's famous formula: ∀x True(x) ↔ (x)φ

For any natural (human) or formal (mathematical) language L we know that an expression X of 
language L is true if and only if there are expressions  of language L that connect X to known Γ
facts. 

By extending the notion of a Well Formed Formula to include syntactically formalized rules for 
rejecting semantically incorrect expressions we recognize and reject expressions that evaluate to 
neither True nor False. 

An axiom is a proposition regarded as self-evidently true without proof. Axioms are really nothing 
more than a set of expressions of language that have been assigned the semantic property of True. 
Axioms form the ultimate foundation of Truth-conditional semantics. 

The natural language equivalent to an axiom in formal language is a {known fact}. Some 
expressions of natural language are simply defined to be True. 

Example: “a cat is an animal”. 
Formalized as: (cat ∈ animals) or (cat ◁ animal) 
where ◁ is the [is_a_type_of] operator adapted from UML Inheritance relation. 
The only reason that we know that “a cat is an animal” is that it is defined to be True. 

Meaning Postulates (1952) by Rudolf Carnap formalized natural language semantics:
(x) Bachelor(x) → ~Married(x) 

Let 'W' be a primitive predicate designating the relation Warmer. Then 'W' is 
transitive, irreflexive, and hence asymmetric in virtue of its meaning: 
(a) (x)(y)(z) W(x,y) ∧ W(y,z) → W(x,z)
(b) (x)      ~W(x,x)
(c) (x)(y)     W(x,y) → ~W(y,x) 

Generalizing the notion of a (known fact) to formal language we define an axiom as any expression 
of (formal or natural) language that has been assigned the semantic property of True. This concept 
of an axiom provides the ultimate foundational basis of conceptual Truth. 

Validity and Soundness    https://www.iep.utm.edu/val-snd/    
A deductive argument is said to be valid if and only if it takes a form that makes it 
impossible for the premises to be true and the conclusion nevertheless to be false. 
Otherwise, a deductive argument is said to be invalid.

A deductive argument is sound if and only if it is both valid, and all of its premises 
are actually true. Otherwise, a deductive argument is unsound.

https://www.iep.utm.edu/val-snd/


If we define a symbolic logic predicate to formalize the distinction between a valid deductive 
argument and a sound deductive argument where  represents the premises and C stands for the Γ
conclusion then: 

Provable( , C) is simply a valid deductive argument where the premises  may or may not be true. Γ Γ
True( , C) is simply a deductive argument known to be sound  because its premises  are axioms.Γ Γ
Provable( , C) is more fully elaborated by Mendelson's reference to  ⊢ C. Γ Γ

Introduction to Mathematical logic Sixth edition Elliott Mendelson 
1.4 An Axiom System for the Propositional Calculus
A wf C is said to be a consequence in S of a set  of wfs if and only if there is a Γ
sequence B1, …, Bk of wfs such that C is Bk and, for each i, either Bi is an axiom 
or Bi is in , or Bi is a direct consequence by some rule of inference of some of Γ
the preceding wfs in the sequence.  Such a sequence is called a proof (or deduction) 
of C from . The members of  are called the hypotheses or premisses of the proof. Γ Γ
We use  ⊢ C as an abbreviation for “C is a consequence of ”. Γ Γ

 ⊢ C is merely infix notation for this predicate Provable( , C). My Truth predicate can be defined Γ Γ
as True( , C) by simply requiring that the Mendelson premises be axioms. By doing this the Valid Γ
deductive argument specified by a formal proof becomes a Sound deductive argument, thus the 
conclusion is necessarily True. Because Axioms ⊆ WFF therefore True( , C) ⊆ Provable( , C). Γ Γ

We generalize the Mendelson provability predicate:  ⊢ C by applying it to every formal system Γ
∀L ∈ Formal_Systems.  ∃  ⊆ WFF(L) formalizes “set  of wfs” and binds  to the existential Γ Γ Γ
quantifier. ∀L ∈ Formal_Systems Provable(L, C) ↔ ∃  ⊆ WFF(L) (  ⊢ C) Γ Γ

Transforming the above generic Provability predicate into a generic Truth predicate:
∀L ∈ Formal_Systems True(L, C) ↔ ∃  ⊆ Axioms(L) (  ⊢ C) Γ Γ

To verify that an expression X of language L is True or False only requires a syntactic logical 
consequence inference chain (formal proof) from a sequence of Axioms followed by a sequence of 
WFF to the consequent of X or ~X.  (Backward chaining reverses this order).

The key understanding that the above analysis provides:
(1) Axioms are the ultimate foundational basis of conceptual Truth. 
(2) True(L, X) ⊆ Provable(L, X) 

When True(L, X) ⊆ Provable(L, X) we can see that it is impossible for any expression of language X 
to be True in L and not Provable in L. 

Sentence (mathematical logic)   https://en.wikipedia.org/wiki/Sentence_(mathematical_logic)   
In mathematical logic, a sentence of a predicate logic is a Boolean-valued well-formed 
formula with no free variables. A sentence can be viewed as expressing a proposition, 
something that must be true or false. The restriction of having no free variables is needed 
to make sure that sentences can have concrete, fixed truth values: As the free variables of 
a (general) formula can range over several values, the truth value of such a formula may vary.

https://en.wikipedia.org/wiki/Sentence_(mathematical_logic


Predicate logic is augmented with an <assign alias name> operator.
LHS is assigned as an alias name for the RHS
LHS ≡ RHS
The LHS is logically equivalent to the RHS only because 
the LHS is merely an alias name (place-holder) for the RHS
The <assign alias name> operator allows an expression to refer directly to itself. 

When we formalize expressions of language such as the Liar Paradox using the above universal 
truth predicate, we can finally understand its semantic error. 

“This sentence is not True.”
LP ≡ ∀L ∈ Formal_Systems ~True(L, LP) 

Expanded definition of above: 
LP ≡ ∀L ∈ Formal_Systems ~∃  ⊆ Axioms(L) (  ⊢ LP) Γ Γ

[LP] makes the assertion that there is no sequence of WFF that proves [LP]. 
Is this assertion True or False? 

If there was a sequence of WFF that proves [LP] it would be self-contradictory because it proved 
that its own proof must fail therefore making its proof succeed. [LP] is not satisfied thus not true. 

If there is a not sequence of WFF that proves [LP] its assertion would be true but in order for a WFF 
to evaluate to true it must be satisfied.  [LP] also cannot be false, because its assertion is True. 

So we have the paradoxical case where the assertion of a proposition is True, yet this does not 
make the proposition itself True. Since [LP] cannot possibly be either True or False it is therefore 
semantically incorrect. 

ON FORMALLY UNDECIDABLE PROPOSITIONS 
OF PRINCIPIA MATHEMATICA AND RELATED SYSTEMS I
by Kurt Gödel Vienna

The analogy between this result and Richard’s antinomy leaps to the eye; there is also a 
close relationship with the “liar” antinomy,14

14 Every epistemological antinomy can likewise be used for a similar undecidability proof.

Since Kurt Gödel said that the Liar Paradox “can … be used for a similar undecidability proof.”
The semantic error of the Liar Paradox equally applies to the 1931 Incompleteness Theorem.

A formula precisely analogous to the Liar Paradox specifying Provability instead of Truth
G ≡ ∀L ∈ Formal_Systems ~∃  ⊆ WFF(L) (  ⊢ G) Γ Γ
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