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There is an error in the proof of the main theorem on page 6 (‘‘Rice’s Theorem for Logic’’).
If φ is undecidable in Q, the claim that Ax1 and Ax2 are tautologies is not valid, and this
fact compromises the rest of the proof. Furthermore, the following decidable property is a
counter-example to our result:

Definition 1. Let T be a theory. A theory T+ is an extension of T if Th(T )⊆ Th(T+).

Definition 2. Sub(T ) denotes the set {Th(T−) : T is an extension of T−}.

Proposition 1. If T is a consistent decidable theory, then Sub(T ) is a non-trivial decidable
property.

Proof. By the consistency of T , Sub(T ) is non-trivial. For each finite A⊆L�, the following
holds:

Th(A)∈Sub(T )⇐⇒T is an extension ofA⇐⇒T �
∧

φ∈Aφ.

Since T is decidable, there exists an algorithm which decides for given finite A⊆L�
whether T �∧

φ∈Aφ or not. That is, Sub(T) is decidable. �
For instance, Sub({∀x∀y (x = y)}) is a counter-example to our result. This negative result,
which is contrary to our initial intuition, led us to consider the existence of these ‘‘Ricean’’
undecidability results in a more general sense.
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Definition 3. Let T be a theory and � be a set of sentences. � is a property on T if the
following holds for any sentences φ and ψ:

T �φ↔ψ⇒[φ∈�⇐⇒ψ∈�].

A property � is trivial if it is the empty set or the set of all sentences.

In particular, note that a property P in the sense of our paper corresponds to the property
{
∧
φ∈Aφ :Th(A)∈P and A is finite} on ∅. If we consider sufficiently expressive theories such

as Q (Robinson arithmetic), it is indeed possible to prove that they are undecidable in the
sense of Rice’s theorem.

Theorem 1. Every non-trivial property on Q is undecidable.

For instance, since Th(Q) is a property on Q, we derive as a particular case of this
general result that Q is an undecidable theory. Theorem 1 is a consequence of the diagonal
lemma, and the reader is referred to [1] for a general treatment of this elegant result and its
consequences. A new interpretation of this result will appear in a forthcoming paper.
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