
Perception as a Dynamic Activation of Relational Matrices

The Associative Model, Applied Situated Cognition and Action-based
Perception

Steve Olivecrona1 and Dirk Derom2

1 Massey University, New Zealand

2 School of Psychology, Victoria University of Wellington, New Zealand

Abstract

The storage of data within the live sciences is a challenging and highly complex task, which
has been steadily gaining attention in recent literature. Various solutions have been proposed
ranging from ontology design to metadata recommendations over standardization of database
design. Though valid in their effort to provide the life sciences with well-structured data
warehouses, their focal point is to categorize and structure the data in a rigid, often category-
tree way. Due to their fairly static characteristics, their storage becomes less dynamic than
real live systems tend to be, inducing a gap between the system and their representation in
these warehouses. Here we present an experimental model to be applied to the storage and
retrieval of information based on an associative information system’s sensory and motor state
change data, aiming to represent the dynamics of a dynamic perceptual system. The model
and database implementation use a universal information storage structure holding both data
and metadata within the same structure. This model is characterized by the emphasis on
associative information about the represented system derived from raw data, which are in
their turn produced by the associative system’s interactions with the environment. Instead of
defining objects using descriptive relations, this model stores relations between occurents
where the represented system is not replicated in its various components, but defined by its
relations when they occur. This model therefore represents the dynamics and interaction of
systems such as human perception, rather than imposing artificial boundaries and qualities.
In essence, the model is an alternative to perceptual knowledge accumulation, which, as we
show, can be applied to a database design.

Introduction

Recent developments within neuroscience
have shed light on how perception could
be encoded in the organism. Using various
recording methods, neuroscience has been
able to locate key brain areas processing
stimuli received by the medium, be it
human, robot or non-human organisms.
Mental representational structures, as
bearers of information, are widely
accepted as being engaged in procedural
computation enabling continuously
growing, changing and transforming

procedures and representations leading to
the expression of appropriate behaviour of
the agent involved. This so called
‘Representational Theory of Mind’
(RTM), whether in its strong or weak
form, is the dominant theory in the
neurosciences used to model functional
brain maps and explain human behaviour
in terms of the activity of brain area
networks. Though questions remain
unanswered regarding the difference
between effective and functional
connectivity [1-3], the working hypothesis
defines information and the processing of

information as a representational-based
(often modular) processing of specific
inputs thus producing meaningful
behaviour. Human agency is here
described in terms of an internal brain
process responding to external situations.
Strong mechanistic claims have been
proposed explaining behavioural
mechanisms in terms of its components,
relata and operations [4-6] defining brain
processes and behaviour in terms of
quantifiable internal operators relying
large body of evidence within the
neurosciences. Context in this approach is
considered to be a measurable yet complex
set of elements within the environment.

Interestingly, recent experiments [7, 8]
show a more tight connection between the
environment and the agent, where
interaction accounts for more than an
appropriate response of a particular system
in a specific context. These data-driven
contextual experiments could hint to the
pivotal claim of e.g. situated cognition or
extended mind, namely the claim that
behaviour is the expression of
fundamentally intertwined agents and their
environment. In these views, the
distinction between agent and environment
is rejected and replaced by a mutual
dependency with little or no need for
internal representations of either objects or
contexts as the driving element of human
agency. More specifically, situated
cognition refutes the idea of conceptual
knowledge, and claims that knowing
happens ‘on the fly’ being directly and
constantly generated relatively to context,
culture and language. Accumulating
knowledge is then improving the
incorporation of context, culture and
language as opposed to accumulating
representational concepts. The refutation
of category-based behaviour as proposed
by Gibson [9] and its replacement by a
probabilistic interaction (cf. behaviour that
is most likely to occur) with the
environment consequentially opposes
empiricism and neuroscientific
experimental designs proposing universal
loci of particular functional mechanisms.

The translation of the situated cognition
into an operational model has yet to be

established, which inhibits applying
situated cognition onto worldly situations.
At the heart of this hiatus lies the
development of a method storing
information dynamically without a priori
classification of shapes, elements of
shapes or events. It must be clear that it
would be insufficient to develop a system
based upon hard-coded patterns (of either
shapes, events or categories), since this
would at maximum introduce merely a
modification of empirically grounded
theories. Developing a situated cognitive
system requires a different architecture
where dynamic and interactive cognition
is constructed solely on low-level
perceptual and relational inputs. In what
follows we present the Associative Model
(AM), which aims of initiating the core
architecture of such a relational model and
consequentially address some of the issues
as described above.

The model presented here must be
considered a hypothesis as to how an
accumulation of knowledge might be
produced without the need for hard-coded
patterns or shapes. This model uses only
relational entities for it to derive
information and does not (directly) store
any object or part of an object for it to
achieve conceptual knowledge. In its
simplest form, the AM is a basic pattern
recognition tool, with the implementation
of a non-object based framework. We
have thus developed a model able to
derive categories using a purely relational
storage of perceptual stimuli. In what
follows, we describe the concept behind
the AM using simplified examples
clarifying the framework we have
developed. This framework will then be
applied to an experimental build of the
AM. The use case presented here is a
visual pattern recognition task using
simplified facial expressions, showing the
practicality of the approach.

From an Object- to a Association-Based
Model

Given that that the AM does not require
prior knowledge of any object or its
characteristics, yet is able to categorize
objects solely based upon stored and

processed relations, the model can be
considered as an embodied model using
interaction rather than prior categorization.
For this to become apparent, we need to
clearly describe our conceptual
framework. In what follows, we will
outline the basic principles and concepts
of the model using three simple examples.
These concepts form the backbone of the
application, which will be described
further below.

Example I: elements, relations, clusters
and change

The core concepts of the AM are what we
denote as elements, relations, clusters,
states of clusters and change. Before
explaining these concepts, consider the
following example: a single point moves
in a repetitive and consistent manner
across a grid (see figure 1). Moving 1
square at the time, the black point moves
to the right, down, to the left and finally
up again landing in its original position.

In this simple configuration, there are two
elements: the grid and the point. At any
given time, a particular relationship
between these elements is in place (e.g.
the point is at position ‘1’ relative in the
grid), in this case defined by the position
of the point on the grid. Each of these
snapshots (‘the black point is at position
1’) is what we call states (of a cluster),
where the term ‘cluster’ (of relations)
refers to the specific configuration of
relationships between various elements (in
this case defined solely by position). By
changing the position of the point, that
state (of a cluster) changes and a new

cluster is formed (‘cluster 2’ in figure 1).
The AM is thus defined by the elements
(point and grid), their relations - forming
clusters and state of clusters - and the
possibility of change, which is the
transition from one state to another.

Repetitive actions (cf. multiple sequences
of figure 1) within the AM are then the
motor of stable relationships. A
continuous repetition of the various states
in the example (e.g. a continuous sequence
of cluster 1 to cluster 4) generates a stable
cluster of relations. This is related to the
temporal aspect of the AM, where we
make a distinction between sequential and
simultaneous states. If ‘cluster 2’ is always
preceded by ‘cluster 1’, cluster 3 by
cluster 2… the AM will consider these
relations as a cluster of relations in itself,
leading to stable states with high
probability and predictability. The AM
thus records either sequential or
simultaneous changes of states, which are
defined by the relations between the
elements.

The AM is not recording the actual object,
its boundaries, or any other meaning that
is not introduced by a change in state. In
the example provided here, the AM will
not, for example, store the colour of the
point if the colour does not change
(undergoes a change of state). Given that
the colour does not change e.g. from black
to blue, no change has been detected and
no record is made of the change, leading
to no ‘knowledge’ about the change. Nor
will it record how wide the lines are in the
grid, nor how thick they are if they do not
change either sequentially or
simultaneously. In that sense, naivety is a
core feature of the AM, being blind to
consistency. The more consistent a
particular feature is (e.g. the point that
never changes its colour), the less relevant
it becomes for the AM. Prior to knowledge
in the AM is difference and change, where
colour for example can only be used as a
state if it is contrasted with a change of
colour.

This does not mean that the AM is colour-
blind. The system is equipped with a basic
set of change detection, where low-level

features are recognized and differentiated.
However, if occurring change does not
stimulate these potential differentiators
(e.g. colour), they will not evoke the
perception of colour nor develop a concept
of colour. This means that a deprivation of
stimuli (e.g. change) of either one of these
differentiators will make them less
relevant for the given AM. In the case of
our example, though colour can be
detected, it is nevertheless not relevant to
the system since there is no change in
colour (apart from black and white). And
since change is a transformation of one
state into another, relations become the
motor of knowledge production within the
system.

Example II: association versus cause and
effect

Building upon the previous example,
consider the following: a system detects
two states (of clusters), where change
consists of both a change of position of the
point to the right and a simultaneous rise
of the system’s internal temperature (cf.
cluster 1 to cluster 2, adding a temperature
variable to the system). Suppose a change
of the position of the point to the left is
also detected to consistently coincide with
a simultaneous decline of temperature. As
previously mentioned, a continuous
repetition of these changes will build a
stable cluster of relations and define the
various states as well as their sequential
and simultaneous temporal features. The
system here will detect a strong relation
between the sequence of positions of the
point (having a constant repetition of
cluster 1 and cluster 2), an equally strong
relation of a sequential relation between
the rise/decline of temperature and the
simultaneous sequence of a change in
position and a change in temperature.

Within the AM this is the origin of
causality. Causality is a stable cluster of
relations, be it sequential or simultaneous,
leading to an expectation about the
occurrence of the various states. In the
above example causality would be inferred
when position was stable prior to any
change in temperature. Assume that the
system first learns the spatial change and
once these clusters are well established
detects a change in temperature, then as
far as the system is concerned the position
might be causing the temperature change.
Such a hypothesis can be discarded when
the opposite is shown and the temperature
rises even when there is no occurrence of a
spatial change. In that case, the relation
between temperature and position is
discontinued and causality is dropped.
Falsification of change, change detection
and temporal association is the motor
behind what often is referred to as
causality. Cause and effect can thus be
expressed in change and change detection
through the relations between the detected
elements.

We have to be cautious, however, since
for the system causality does not exist.
Causality is the conceptualisation of stable
clusters and robust states. The system does
not deduce causality, nor does it introduce
effects and origins. The AM only stores
relations and change between relations as
its motor for categorizations. Causality
and effect being frozen concepts do no
justice to an inherently dynamic model of
association storage. The above examples
are simplified to express the concepts of
the AM, whereas terminology such as

cause and effect already introduce terms
that can not be part of the system’s core
strategy, which is the storage of change.
Or to put it differently: the AM does not
require concepts such as cause and effect
to expect effects, origins and causes.

Example III: associative predictability

Where the previous two examples were
occurrences of singular elements, the same
can be applied to patterns of elements.
Take the example as shown in figure 3,
where the triangle of points moves 1
square to the right in cluster 1 and back to
its original position in cluster 2. Given that
this is a continuous repetition of these
states, the relation between the two states
becomes stable.

In this example, it should be obvious that
the system does not require a concept of a
‘triangle’ to predict that the points will
move to a certain direction. The system
does not need to know whether the
specific configuration of these points
resembles what is understood as the term
‘triangle’. The system will not even have a
concept of a triangle if it is not confronted
with a different configuration of points.
However, it can ‘behave’ as if it has
knowledge about a triangle, by using the
specific relations between the elements to
predict that the next state will indeed be a
triangle, yet this time slightly more to the
right or left relative to the grid. The
system will thus apply the configuration as
a stable set of relations, and use the
triangular configuration as a way of
predicting what the next position of the
various elements will be.

With the point as an atom of the system’s
change detection, it will gradually and
after sufficient repetition learn that the
specific configuration is always present,
thus forming a cluster of spatial

associations. If the system has a highly
stable spatial configuration through a
consistent simultaneous appearance of
these three points, in combination with a
sequential change detection of a change in
position that does not disrupt the internal
spatial configuration, expectancy will be
orientated towards more stable
occurrences. Consider the following
variation of our triangular example: a
system detects over a long period of time
cluster 1 and cluster 2. Suddenly,
however, cluster 1 and cluster 2 do not
occur any longer, yet cluster 1’ and cluster
2’ occur (figure 4).

With experience of previously highly
stable clusters 1 and 2, the system expects
that, based upon the information it has in
cluster 1’, cluster 2’ will be ‘triangular’.
Not because it has recognized that there
seems to be a triangle, but solely because
it has learned that in the system’s world,
there used to be always three points
spatially organized in a specific way
which was stable over time (cf.
simultaneous states). Unless there is
evidence of a changed world (with e.g.
squares), the system does not expect
something other than a triangular spatial
organization. Despite a change in
perception (e.g. a missing point in
particular states), its prediction therefore
stays intact, or better unchanged.

Thus, an AM uses association as a
measure of stability and probability.
Unknown situations are, despite their
novelty, integrated, weighted and
gradually engrained in the system’s
predictions until they form equally or

more stable associations, replacing
previously detected associations. In other
words: when the system is confronted with
unexpected situations, it is able to detect
novelty, incorporate the novel information
and accumulate and rebuild previous
stable clusters.

Rationale of the Associative Model

The associative model, as developed in the
application, is a database design storing a
minimum of information in order to derive
or conceptualise information. This
database design differs significantly from
others, since it does not require any
categorisation, nor connected tables for the
structure of its stored data. The idea
behind the design is to store the actual
dynamism of learning processes as can be
demonstrated in visual processing. The
goal here is to store the accumulative
process of visual perception, not by
imposing a priori structures and objects
used to reverse engineer data processing,
but to let the system design its concepts
based upon interaction with the
environment. In other words, the database
design aims to store the dynamic process
of the interaction between the system (e.g.
a person) and its environment (e.g. a
working environment).

In the previous section we described the
core concepts. For the sake of simplicity,
the application and consequences of the
model were left out. In the following
paragraphs, we will describe the principles
behind the design of the AM, where we
focus more on what the AM stores (and
what it does not), leading to a grounded
categorization of stimuli through change
detection.

Relations are, objects are not

The AM therefore is the accumulation of
relational structures between various
elements. A subject perceiving a table is
not the perception of the edges of the
table, but the perception of the relation of
those edges. The AM can be summarized
as a relational accumulative storage of
transforming relations between elements,
where the change or consolidation of

related elements is the sole source of
accuracy. These elements are not stored as
a label, but as a ‘meaningless’ element
having ‘a’ relation with another
meaningless element. A ‘cup of tea’ in the
AM is not stored as ‘a cup of tea’, but as
an element that has consolidated relations
with other elements, which you can label
as being ‘cup’, ‘hot water’, ‘herbs’ - which
are in their turn complexes of elements
and relations. In the AM the actual
element is nothing but the cluster of
relations as seen by the system. A ‘cup of
tea’ therefore is the accumulation of
storage occurrences in which the subject
has noticed that the cup holds water, that it
can be hot, that it might require some tea
leaves, that it smelt like tea and so on. For
now, we don’t go into detail on how such
is applied in a database design, yet will
describe what we consider ‘elements’ and
how they are active agents in the
construction of perception.

The concept ‘element’ is an artificial term
to denote the atom of the AM, though it’s
never perceivable as such. An element in
the AM is never a singular, since it is
always a collection of other elements and
their relations. This means that an element
(e.g. a human being) can either perceive
(e.g. ‘see a dog running towards him’)
another element (e.g. ‘a dog’). The past
(e.g. ‘I was bitten by a mad dog’) and
present (‘I see a dog running towards me’)
relations between the first element (‘the
human being’) and the second element
(‘the dog’), can be simply perceived (e.g.
‘I see a dog running towards me’), but also
acted upon (e.g. ‘I run away because I’m
afraid of what my prior experience has led
me to assume is a mad dog’). As one can
see, the emphasis here lies on the
relational structure storing perception and
enabling action. The dynamics of
perception in the previous example are not
represented by an accurate classification
of the ‘object’ (cf. secondary element), but
by past and present relations between
elements. This is significantly different
from static perception, where
classification is in essence a rigid structure
with possible updates and revisions of a
dominant class structure. The associative
model does not implement events to

update relations, but assumes events to be
clusters of relations integrating past and
present relations between elements and are
therefore always the (whether or not
appropriate or accurate) integration of
relations between elements given an
ongoing stream of occurrences. Elements
are therefore both atoms of the model as
well as collections of other elements and
relations.

Bottom-up Storage of Associations

An associative model records occurrences
where a specific element is perceived in
relation with a second element. An
example would be the occurrence of a
needle penetrating your finger and seeing
a drop of blood on your finger. These two
elements (‘needle penetrating your finger’
and ‘seeing a drop of blood’) are stored in
a relation to one another (‘when I saw the
needle penetrate, I saw the drop of
blood’). Note that the system does not
categorize the elements (cf. this is a finger,
which is part of my hand, which is part of
my arm…). It only stores the occurrence
of two elements. This means that the
model in its initial empty shell ‘knows’
nothing, has stored nothing and can only
record all the occurrences it encounters as
time passes. Tightly interconnected
elements then provide the abstract schema
allowing the categorisation of novel
elements or the derivation of common
features among aggregated elements. This
aggregation is the storage of change of the
various elements, where change refers to a
previously defined threshold of the
system. When the threshold is reached, the
change is stored and a subset of elements
is created. Such a threshold can vary and
serves as a guiding principle of the system,
yet can be a low-level feature of the
element. Examples could be a colour
change in a bitmap or a luminosity
difference in a bitmap.

The factual accumulation of relations
between elements enables the potential
and growing conceptual power of the
model, where consistent confirmation of
relations become stronger and
contradiction of previously recorded
relations become weaker. Do note that we

deliberately do not use concepts such as
‘human’, ‘table’, ‘cup of tea’ to represent
the elements, neither do we use
meaningful descriptions for the relations
(e.g. ‘has_a’, ‘stands_before’) to describe
the relations. All of these elements and
relations are information empty and, as
previously noted, they can only become
meaningful after a sufficient accumulation
of elements and relations. In other words,
the simplified end-result after occurrence
4 can therefore be a wide variety of
concepts, from which without any further
input nothing can be derived. As must be
obvious, the relational structure is the
source of information, yet it does not store
any readable information.

As laid out above, the example situation
already induces concepts (‘a person’ or
even ‘walking around’), which are not
accepted in the AM. The AM in its purest
form has no concepts in its initial phase,
and consequently does not use such
concepts to store data. However, the
example given above facilitates a ready, if
superficial, grasp of what the AM actually
stores, despite the shortcomings and
assumptions such an approach introduces.
We would therefore like to distinguish the
model from object-subject systems (or
perceiver-perceived learning systems),
where objects are considered to be distinct
and separable, though potentially
connected and dependent on other objects.
Consider a ‘subject’ (e.g. a person)
perceiving an ‘object’ (e.g. a table). The
distinction between subject and object are
often delineated through boundaries,
salience differences, colour… Subjects are
those objects that perceive other objects
and are able to classify the perceived and
interacting objects. This distinction
between subject and object is rejected in
the associative model, for the associative
model can be defined as the storage of
dynamic systems represented by the
relation between objects-subjects, the
physical boundaries of the system and the
environment in which the system resides.
Elements are defined not by their (physical
or deduced) edges but by their relationship
with other elements as they occur in
events. Systems are then understood as
being constituted by their cluster of

relations between elements as interacted
with in the environment.

Invariance is repetitive Variance

Within the AM, invariance (or stability of
clusters) is achieved through the detection
of variance where specific states are either
simultaneously or sequentially repeated
over time. With variance being the change
of a specific element, the system only
stores changes of these elements, be it
position, colour, size… Stability of
perception then becomes repetitive
perception of sequential or simultaneous
states (of clusters), where invariance or
stability is always relative and possibly
subject to change. Invariance therefore is
never final, assumed, discovered or
realized. It’s an ongoing dynamic state of
clusters in itself, where its stability is only
guaranteed by the repetitive nature of its
sub-clusters. Invariance within the AM is
thus a special kind of variance, leading to
redefinitions of categorization within the
system.

This implies that non-changing elements
are not perceived and thus do not exist.
These elements (e.g. the colour of the
point in example 1) do not hold any
relevant information, since they do not
form any specific relation with other
elements and are therefore ignored. The
AM remains blind to factors that are not
actively engaging the system’s perception.
Only perception and the change of
perception provide useful chunks of
information. Additionally, the AM refutes
the existence of a priori stability, since
stability and invariance are only achieved
through the perceiver. Despite the
possibility that a particular state can be
initiated before being perceived, only the
perceiver introduces stability and
invariance when a consistent repetition of
variances is stored within the system. The
perceiver is the sole source of invariance
definition, since there is no other
information available regarding whether
the invariance had been present before
perception. Though various systems may
be able to impose their invariance on
others (e.g. exchange of information
regarding invariant states and clusters), at

the root of invariance still lies the initial
variance. Invariance without variance is
not perceived within the AM and in a
sense delineates the boundaries in which
the system moves.

Finally, invariance will ‘counter’
invariance if the perceived invariance in
itself does not become as stable as the
initial invariability. Invariability, or
consistent variability, can only be broken
down with a significant increase in
changes in states, leading to the
deconstruction of the invariance.
Variability thus introduces invariability
and has the tendency to neutralize itself
through the construction of highly stable
clusters. With an initial neutral state, the
AM gradually produces biased systems, in
which, after a sufficient amount of time,
invariance is more present than variance.
The AM therefore introduces a system
moving towards stability through the use
of clusters of variability and, though being
built solely upon variability, over time the
system attains such a level of stability that
it is only impelled to reduce the number of
stable clusters if confronted with radical
and consistent changes in novel or already
present states.

This stems directly from the claim that the
system is relational and bottom-up, where
only relations between elements are stored
and object and prior features are left out.
As previously described (cf. ‘Relations
are, objects are not’), gradual
accumulation of clusters lead to a complex
network of relations. Such a network is
sufficient for the AM to produce
categories of objects and actions.

Experimental Build: Simplified Facial
Pattern Recognition

The following use case is an application of
the previously described model interacting
with a number of static images. This
demonstration is intended to show how the
AM grounds its information in relations
and how it identifies similarities and
differences between discrete experiences.
The images used to derive similarities and
differences based upon relational scans are
created to be both similar and different

enough to allow the application to produce
recognizable outputs after a relatively
small number of scans. Sequences of
states would be related differently in an
embodied system to produce the
equivalent of the event sequences in the
use case.

Before describing the experimental
application, we need to explain the built-in
limitations of the application. Currently
there is a 16-bitmap limit hard coded into
the program. This could easily be changed
if the queries were dynamically created at
runtime. Additionally, the use case is a
simulation of an intrinsically, largely
parallel, processing system implemented
on a serial processing machine, causing it
to run slowly. Another limitation is the
fact that event sequences are linked
directly to filenames in the application.
This is a simplification of the AM in that
there ought to be an intermediate step
corresponding to the unique and shared
subsets discovered by the system. Finally,
the application is currently also limited by
the expedient linking of start points
(bitmap canvas-relative coordinates) to the
event sequences. This allows easy display
of the visual output on a 128 x 128 bit
bitmap but makes the system incapable of
matching similar shapes situated in
different positions relative to the bitmap
canvas.

The System

The program is written in function-based
Delphi code using Borland Developer
Studio 2006 connecting to a Microsoft
SQL Server relational database. A number
of dimension values and types of
relationships are loaded into the database
on start up. These are used within the
program to make the data readable to the
user. A predefined workflow is
implemented (figure 5), checking and
storing the relational changes it detects
during the scans. The entire workflow
consists of two sub-workflows. The first
sub-workflow (figure 5, step 1 to 3) is
only used at the very beginning of the
scans. Here the system starts scanning at a
random point, where the sensor array (a
3x3 focus grid) moves in a random

direction (figure 5, step 2). If the focus
grid is told it has reached the edge of the
base grid, it randomly changes direction
and continues moving. Only when the
focus grid detects a change in its 9xp pixel
grid, it queries the database for an
identical change detection (figure 5, step
3). If the sensor array is not present, it
writes that particular sensor array state to
the database. If the sensor array state is
however present, it chooses another
random direction.

After these three initial steps, the system
then starts the second sub-workflow
(figure 5, steps 4 to 8), with identical
functions used during its scans. As with
the initial start-up phase of the system, it
goes through another cycle of moving and
storing the sensor array (figure 5, steps 4
and 6). The system also stores (as opposed
to the first sub-workflow) the movement
made by the sensor array (figure 5, step 5).
In case a specific scan sequence is then
already present in the database (figure 5,
step 7), that particular scan sequence is
linked to the bitmap in which it occurred
(figure 5, step 8). After these queries and
array storages, this workflow (steps 4 to 8)
are repeated until a total of 1000 scans is
performed.

The above described workflow is
essentially stored in 1 table, yet for

readability reasons two tables are
implemented. The two tables implemented
in the system are the Datum Table (tblID)
and the Information Table (tblI). The
datum table stores the explanatory text
strings generated by the program in the v
column, while the id column holds its
associated unique identifier, the next
unassigned integer in the table for each
novel event or combination of events. The
information table stores the elements and
relationships discovered by the system
while interacting with the bitmaps. The s
column contains the element1 identifiers,
the r column the relationship identifiers
and the o column, the element identifiers.

All three columns are part of a
concatenated primary key, making each
record unique. These two tables are joined
by three one-to-many relationships with
the id from tblD linked to each of the s, r
and o columns in tblI (see figure 6).

The datum table is created to make the
data as stored in the information table
readable. This is due to the fact that the
information table solely stores numbers
with no descriptive information attached
to them, making it unreadable for the user.
This is a logical consequence of the AM,
storing only relations with no reference to
previously labelled objects or object parts.
An example can be found in figure 7,
where the information table (figure 7 a)
shows a selection of stored records of the
use case.

Figure 7 (a, b) shows subsets of the data in
the Information Table and the Datum
Table from the use case has been
reproduced. In the Datum Table the id
column integers are tokens that are used in
the Information Table in place of the text
in the v column. At the base level in this
example is the first record in the datum
table, which has an id of 8 and a v of -. It
is a direct and invariable representative

used in place of an aspect of the structure
of the use cases “environment”. It occurs
whenever a negative integer is input to or
output from the use case to the computer
that it runs on. In this virtual and limited
version of the AM, the Datum Table
becomes the interface between AM
structured information and the
programming environment.

The integer 8 is associated with the text
character – when the program has a
requirement for storage of negative
polarity as a dimension of a complex
informational entity. In this example u[-1],
the table already had 7 records in it, hence
the next available integer (8) was
associated. Here, all information is defined
through association with sets of base level
interactions between the AM and its
environment. The base level, simultaneous
interactions that occur when the u[-1]
vector is input or output, are the three
aspects of a vector: dimension, magnitude
and polarity (direction along its
dimensional axis). These are assigned
values which compromise the interaction,
in this case u,1 and – respectively. Do note
that the vector-based terminology was
chosen for lack of a better alternative to
make the tables more readable. The three
aspects could just as validly be two
aspects called variable name and current
value and assigned the values u and -1.

The Datum Table furthermore contains
records for the word polarity and for the
vector descriptor u[-1], in our example the
unique identifiers 14 and 24 respectively.
These Datum Table records are not
considered within the AM to hold any
information. They are merely
representative of interaction events. The
unknown information that regulates the
occurrence of base level interactions is
stored out of reach in the inaccessible
parts of the structure of the environment.
What can be known within the AM is that
certain interactions happened
simultaneously and this information is
recorded in the Information Table as a
series of relationships. The Information
Table in figure 7 contains a record that has
8 in the s column, 14 in the r column and
24 in the o column, one that has 3 in the s

column, 12 in the r column and 24 in the o
column and one that has 27 in the s
column, 13 in the r column and 24 in the o
column. UPDATE TABLE 7. A loose
interpretation of the information is that a
polarity type of interaction occurred when
the polarity sensor sent a – signal and it
occurred in conjunction with a magnitude
type interaction when the magnitude
sensor sent a 1 signal and a dimension
type interaction when the dimension
sensor sent a u signal. The conjunction of
these three interactions is recorded via the
common o column value of 24 which is
associated in the Datum Table with the
text string u[-1].

Finally, the text string u[-1] has no
intrinsic meaning in the AM, nor has the
unique identifier 24, but the pattern of
virtual connections represented by the
Information Table records that the unique
identifier 24 participates in has a direct
correspondence to a unique combination
of interactions; it, in effect, represents that
pattern of occurrences.

Interface and Functions

The application’s interface (figure 8) can
be divided into roughly 4 sections: the
graphic representation of the queries

(figure 8 A), image list (figure 8 B), event
set members (figure 8 C) and a display of
the generated rows in the database (figure
8 D). The interpreted data display grids on
the right hand side of the application
window show stored information from the
database hierarchically organised from top
left to bottom right with lower level grids
filtered to show only records associated
with the selected record in the grid
immediately above.

 Scan Bitmap

Clicking the Scan Bitmap (figure 8 A)
button causes the program to start at a
random point on the selected bitmap and
to move in a constant, but initially
randomly selected direction, comparing
the red, green and blue values of each
corresponding position in two 3x3 pixel
sampling grids, one at the origin of the
scan, the other at the current focus position
until a difference in colour is detected. A
difference in colour of any pixel is
interpreted as being equivalent to a change
in state of the sampling grid at its current
position relative to its start position state.
This first scan is not recorded in the
system because the start point is not
guaranteed to correspond to a point of
difference in the bitmap. The next and all
subsequent scans are made in random
directions, each starting at the end point of
its immediately previous scan. If a scan
reaches an outer edge of the bitmap frame,
it “bounces” back into the body of the
bitmap.

The relationship between the start and end
points of each scan is the difference
between their coordinates. The system
associates the change in position of the
focus grid with the change from the grids
initial state to that of its subsequent state.
In the use case, the relationship or
transformation is calculated, whereas in an
embodied system the transformation
information would be provided by changes
in states of sensors, each monitoring a
degree of freedom of, for instance, a
camera mount moving relative to the body
of the system. The components,
coordinates, dimensions, magnitudes and
polarities are stored to show that, even in
this simplified, simulated system,
information is firmly associatively
grounded at the lowest level of interaction
between the system and its environment.

 Check All Shared

Clicking the ‘Check All Shared’ button
causes the system to look for each event
sequence in the selected bitmap’s unique
event set in every other bitmap in the list
of bitmaps available in the system. This is
a series of directed scans. When a scan is
repeated in a new bitmap, it is associated,
or shared, with the new bitmap in addition
to the original one. Next time the original
bitmap’s unique event set is queried any
shared event sequences will not be
included in the result set.

 Draw Unique Event Set

Clicking the Draw Unique Event Set
button will filter the event sequence
display grid to include only those records
associated solely with the selected bitmap.
The program will draw all those initial and
subsequent states on a blank bitmap above
the button.

 Draw Shared Event Set

Clicking the ‘Draw Shared Event Set’
button filters a query that then shows only
those event sequences that are shared by
the bitmaps selected in the checkbox panel
on the application. The program will then
draw all those initial and subsequent states
on a blank bitmap above the button.

 Use of Datum Table values to detect
existing relations

The program stores descriptive text in a
database table named tblD to ascribe user
interpretable meanings to events and
relations. This is not a requirement of the
AM, merely a convenient way to interpret
the data. We have also used text
descriptions to check the novelty of new
input, to make the program easier to
debug.

Stimuli

In this use case we used 16 simplified
faces (figure 9), with differences in the
colour of the ‘nose’ (e.g. a red nose of 010
and a green nose of 016), the colour of the
eyes (e.g. red eyes for 004 and blue for
006), whether the faces were ‘glasses’ or
not (e.g. face 007, 008, 013…) and
whether the faces are smiling (e.g. 001,
004… but also 015), neutral (e.g. 002) or
slightly sad (e.g. 003). The images are
located in the exact same position within
their 128-pixel square grid. For the sake of
simplicity and process speed, the position
relative to the grid remains constant
despite the fact that this is not a
requirement for the AM. If the position of
the face varied the application would be
forced to store additional relational
elements, which is feasible but would slow
the system down.

Scans and Results

Scanning a bitmap, against a fixed
background grid, means to detect change

in colour between the starting point and
the end point. A 3x3 pixel focus grid
detects this change, where the 9-pixel
square detects any change in any of the 9
pixels on the base grid. In figure 10 a, the
yellow lines and the red dots represent
change-detection. In this graphical
representation of an archetype of a 1000-
scan the red squares represent the change
as detected by the application and the
yellow lines the stored translations linking
these changes. The yellow lines thus
demonstrate the fact that the focus grid
does not detect any change and thus
moves on in the same direction until it
detects a change (cf. figure 5). When a
change is detected a new and randomly
generated direction is chosen and
continued until another change is detected.
The process in this case is repeated 1000
times (see section ‘The System’).

Any change in the red, green or blue
values (of the bitmap) in any of nine pixels
sampled in the focus grid will trigger a
change event. The system then records or
finds the corresponding grid state record
(see section ‘The System’ steps 4 to 8). As
can be seen in figure 10 (a), 1000 random
scans do not locate all aspects of a pattern,
but sufficient information is stored to
differentiate the scanned bitmap from
other bitmaps.

The current system detects and stores
relations between changes in the patterns
of colours (in a nine pixel reference grid
moving in straight lines). The random
direction of the focus grid movements
relative to the base bitmap, as well as the
changes, are stored, checked for repetition
of those relations in new situations (other
bitmaps) by means of data directed
searches and then the program displays
sets of commonly observed relational
content for selected combinations of
bitmaps. These could, according to the
AM, theoretically be used as experientially
grounded relational bitmap classifiers.
Using the AM, the application does not
store pictures or features as such, instead it
stores sequences of system states
determined by interactions between the
system and each bitmap and then shares
repeated experiences of sequence
segments with other bitmaps.

Figure 10b shows the graphical translation
of the scans and the relational storage as
described in section ‘The system’. The
button ‘Draw Shared Event Set’ queries
the system to report, based upon the
relational matrix, what the differences are

in bitmap 012.bmp within the image group
consisting of images 007.bmp, 008.bmp,
011.bmp, 012.bmp, 013.bmp and
014.bmp. The rationale behind this type of
query is explained by the limitations of the
current application. In a fully automated
system, groups would be produced by the
system itself. The application could e.g.
query for shared elements and build
groups by ranking them according to the
amount of shared elements. In other
words, a category would be created if a
particular set of bitmaps has a high
number of shared elements, which differ
significantly from another collection of
bitmaps sharing a high number of shared
elements. Here, the use case runs a
singular bitmap against a predefined
collection of bitmaps. The collection of
bitmaps are handpicked based upon
obvious shared elements (in this case the
fact that all wore glasses, had a nose, a
smiling mouth and a contour), to show that
the AM is able to deduce shared elements
not based upon objects stored in the
database, but solely based upon their
relational and change-sensitive matrix
(bottom right image of figure 10b).

The initially blank database is thus able to
deduce shared elements after a total of
16000 scans and produce a highly detailed
reproduction of what you could denote a
‘categorization’ of bitmap 012. The
bitmap 012 is thus detached from its
particularities, and by comparing the
shared bitmaps across the collection of
bitmaps the system produces its category
description (here represented by a graphic
of the category having glasses, a nose, a
mouth and a contour). As said before, the
hypothesis here was that these elements
would be picked up, which is indeed the
case.

The same applies for clicking the button
‘Draw Unique Event Sets’, where the
query focuses on the particularities of
bitmap 012 within the handpicked
collection of bitmaps (cf. 007.bmp,
008.bmp, 011.bmp, 012.bmp, 013.bmp
and 014.bmp). As opposed to the previous
example, here we made sure that the
bitmap had particularities that were not
shared across the images, which in this

case was the green glasses of bitmap 012.
It is shown that this specific characteristic
is indeed detected by the system, again
based solely on the relation change-matrix.
Do note that the unique elements, which
are not detected (e.g. gaps as seen in the
glasses), are to be attributed to the limited
amount of scans of the system. With only
1000 scans for each bitmap, it is seen that
not everything of the face is stored (figure
10a). Consequentially, when these changes
are not stored, the system does not have
any information about these undetected
changes and they are thusly not
represented as unique elements of the
bitmap.

Do note that the produced unique and
shared event sets are currently not stored
within the database. Each time when the
query is requested, the system does a fresh
check and derives the shared and unique
event sets. Though it is theoretically
possible, and for an embodied system
desirable, the current system does not
store these creations. The generated
categories and individuals are thus solely
created to show the applicability of the
system using the AM. Despite the fact that
the system currently does not
automatically produce categories, it is here
clearly shown that it is able to do so, even
within a limited set of scans starting from
an empty database.

Conclusion

The current application as described above
is able to deduce shared and unique
elements based upon a single table in a
database storing nothing but relational
change-detection of low-level features
(e.g. colour). This implies that the system
does not require predefined geometrical
shapes or any other information. It is
capable of deducing categories on the
basis of 16000 scans of 16 bitmaps and
produce what we categorize as obvious
similarities and differences. In other
words, the application of the AM allows
an emulation of our human visual
categorization with limited application of
an intrinsically very simple system.

Here, the AM shows its applicability of
embodied and relational theories within a
visual detection paradigm. The system
further uses low-level change detection,
which is an essential part of human
perception. Though the system is limited
in scope (fixed grid, identical pixel point
detection and fixed bitmap positions), it
shows its useability as a model for visual
perception where no a priori knowledge is
required.

Discussion

With the application we showed not only
the theoretical but also the practical
relevancy of the AM. The AM is
conceived as a theoretical basis for a
practical way to integrate all the disparate
inputs and outputs required in an
embodied system in such a way as to
allow the system to store dynamic
information about real-world interactions
and use it to produce environment-
appropriate behaviours. In the AM,
content is relational and can exist
independently from descriptive labelling.
In fact, labels can only be introduced on
top of the relational matrix. Content is thus
an indirect consequence of relations,
applied in the application above to visual
perception. Once formed however, simply
associating descriptive text strings entered
by a user with the system-discovered
features displayed would enable the
system to be later queried by a user using
text based descriptors in order to display a
list of bitmaps sharing these named
features.

Though the system as implemented in the
experimental build is simplified to show
its potential without becoming overly
complicated (due to the exponential
amount of stored data), we believe that it
can be modified to record e.g. a parallel
state that stores a Boolean value for each
pixel in the grid based on identity of the
colour of each grid pixel with the colour of
the grid’s centre pixel. Similar shapes of
differing colours could then be correlated
by the system as being the same in one
way, but different in another. The finer-
grained the shared information, the more

refined the level of discernment of the
system becomes.

Another potential application could be an
embodied system requiring multifaceted
sensory inputs (visual, auditory, tactile…)
to correlate complex inputs. This clearly
requires a more complex design storing
highly complex data with a wide variety of
relational grids stemming from
multimodal stimuli. However, with an
increased complexity in data storage a
more refined relational matrix is
constructed, leading to a more fine-grained
output appropriate to the situation at hand.
This could be correlated with e.g.
behaviour where one integrates a very
large body of stimuli, where repetitive
related events build up towards an
‘understanding’ of the given situation.

Finally, an AM system need not be limited
to a single agent. A server-based
application could, in theory, wirelessly run
multiple bodies simultaneously as long as
each input from each sensor and each
output to each actuator was unique within
the AM system. Two such systems could
also query each other using those same
text strings. The two systems could then
scan displays of each other’s idiosyncratic
version’s content and thereby update their
own definitions of the text string’s agreed
meaning. These two systems could also,
theoretically, merge experiences if their
base-level ID assignments were identical.
The merging process would have to
systematically identify functionally
identical relational structures in the
databases from the bottom up, then
rationalise the IDs by globally replacing
the various dissimilar but functionally
identical IDs with single, common IDs.

The identity of a system therefore is not
derived from the possible super-classes it
belongs to, but from the relations it stores
with elements as experienced in the
environment. As such, identity within the
associative model is not a subject, but a
bundle of relations perceived or activated
from a solipsistic point of view. In other
words: the concept of ‘subject’ is the
reference to the perceiver or activator
relation bundle, where its uniqueness is

not the distinction between the particular
element but its relations with the
surrounding elements. This implies that
the environment is not the collection of
objects as perceived and interacted with by
the subject, but the collection of relational
elements as stored by the subject.

The AM therefore is the application of
‘situated cognition’, using the relational
structure between perceiver and perceived
as the core of understanding these
interactions. In the AM there is thus no
room for universals, but only for relational
stable clusters. Subject, object, causality or
universals are seen by the AM as semantic
labels freezing content rather then freeing

content. With the AM we thus present a
possible model allowing for a
continuously dynamic system effectively
dissolving static terminology as strong
clusters of variability. Or in the light of
our use case: visual perception is action-
based interaction.

Acknowledgements

We would like to thank Courtney
Olivecrona for proof-reading the
document and prof. Lorenzo Magnani for
his most valued comments on the initial
draft of this paper.

References

1. Ramnani, N., et al., New approaches for exploring anatomical and functional
connectivity in the human brain. Biol Psychiatry, 2004. 56(9): p. 613-9.

2. Fingelkurts, A.A. and S. Kahkonen, Functional connectivity in the brain - is it an
elusive concept? Neuroscience and Biobehavioral Reviews, 2005. 28(8): p. 827-836.

3. Lee, L., L.M. Harrison, and A. Mechelli, A report of the functional connectivity
workshop, Dusseldorf 2002. Neuroimage, 2003. 19(2): p. 457-465.

4. Bechtel, W., The challenge of characterizing operations in the mechanisms
underlying behavior. Journal of the Experimental Analysis of Behavior, 2005. 84(3):
p. 313-325.

5. Bechtel, W., Mental mechanisms : philosophical perspectives on cognitive
neuroscience. 2008, Hove: Psychology. xiii, 308 p.

6. Craver, C.F., Explaining the brain : mechanisms and the mosaic unity of
neuroscience. 2007, Oxford: Clarendon. xx, 308 p.

7. Dotov, D.G., L. Nie, and A. Chemero, A demonstration of the transition from ready-
to-hand to unready-to-hand. PLoS One, 2010. 5(3): p. e9433.

8. Cardinali, L., et al., Tool-use induces morphological updating of the body schema.
Curr Biol, 2009. 19(12): p. R478-9.

9. Gibson, J.J., The ecological approach to visual perception. 1979, Dallas ; London:
Houghton Mifflin. xv,332p.

10. Resnick, L.B., Discourse, tools, and reasoning : essays on situated cognition. 1997,
Berlin ; London: Springer. 474p.

11. Robbins, P. and M. Aydede, The Cambridge handbook of situated cognition. 2009,
Cambridge: Cambridge University Press. xi, 520 p.

