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Abstract 

The storage of data within the live sciences is a challenging and highly complex task, which 
has been steadily gaining attention in recent literature. Various solutions have been proposed 
ranging from ontology design to metadata recommendations over standardization of database 
design. Though valid in their effort to provide the life sciences with well-structured data 
warehouses, their focal point is to categorize and structure the data in a rigid, often category-
tree way. Due to their fairly static characteristics, their storage becomes less dynamic than 
real live systems tend to be, inducing a gap between the system and their representation in 
these warehouses. Here we present an experimental model to be applied to the storage and 
retrieval of information based on an associative information system’s sensory and motor state 
change data, aiming to represent the dynamics of a dynamic perceptual system. The model 
and database implementation use a universal information storage structure holding both data 
and metadata within the same structure. This model is characterized by the emphasis on 
associative information about the represented system derived from raw data, which are in 
their turn produced by the associative system’s interactions with the environment. Instead of 
defining objects using descriptive relations, this model stores relations between occurents 
where the represented system is not replicated in its various components, but defined by its 
relations when they occur. This model therefore represents the dynamics and interaction of 
systems such as human perception, rather than imposing artificial boundaries and qualities. 
In essence, the model is an alternative to perceptual knowledge accumulation, which, as we 
show, can be applied to a database design.  

Introduction 

Recent developments within neuroscience 
have shed light on how perception could 
be encoded in the organism. Using various 
recording methods, neuroscience has been 
able to locate key brain areas processing 
stimuli received by the medium, be it 
human, robot or non-human organisms. 
Mental representational structures, as 
bearers of information, are widely 
accepted as being engaged in procedural 
computation enabling continuously 
growing, changing and transforming 

procedures and representations leading to 
the expression of appropriate behaviour of 
the agent involved. This so called 
‘Representational Theory of Mind’ 
(RTM), whether in its strong or weak 
form, is the dominant theory in the 
neurosciences used to model functional 
brain maps and explain human behaviour 
in terms of the activity of brain area 
networks. Though questions remain 
unanswered regarding the difference 
between effective and functional 
connectivity [1-3], the working hypothesis 
defines information and the processing of 



information as a representational-based 
(often modular) processing of specific 
inputs thus producing meaningful 
behaviour. Human agency is here 
described in terms of an internal brain 
process responding to external situations. 
Strong mechanistic claims have been 
proposed explaining behavioural 
mechanisms in terms of its components, 
relata and operations [4-6] defining brain 
processes and behaviour in terms of 
quantifiable internal operators relying 
large body of evidence within the 
neurosciences. Context in this approach is 
considered to be a measurable yet complex 
set of elements within the environment.  

Interestingly, recent experiments [7, 8] 
show a more tight connection between the 
environment and the agent, where 
interaction accounts for more than an 
appropriate response of a particular system 
in a specific context. These data-driven 
contextual experiments could hint to the 
pivotal claim of e.g. situated cognition or 
extended mind, namely the claim that 
behaviour is the expression of 
fundamentally intertwined agents and their 
environment. In these views, the 
distinction between agent and environment 
is rejected and replaced by a mutual 
dependency with little or no need for 
internal representations of either objects or 
contexts as the driving element of human 
agency. More specifically, situated 
cognition refutes the idea of conceptual 
knowledge, and claims that knowing 
happens ‘on the fly’ being directly and 
constantly generated relatively to context, 
culture and language. Accumulating 
knowledge is then improving the 
incorporation of context, culture and 
language as opposed to accumulating 
representational concepts. The refutation 
of category-based behaviour as proposed 
by Gibson [9] and its replacement by a 
probabilistic interaction (cf. behaviour that 
is most likely to occur) with the 
environment consequentially opposes 
empiricism and neuroscientific 
experimental designs proposing universal 
loci of particular functional mechanisms.  

The translation of the situated cognition 
into an operational model has yet to be 

established, which inhibits applying 
situated cognition onto worldly situations. 
At the heart of this hiatus lies the 
development of a method storing 
information dynamically without a priori 
classification of shapes, elements of 
shapes or events. It must be clear that it 
would be insufficient to develop a system 
based upon hard-coded patterns (of either 
shapes, events or categories), since this 
would at maximum introduce merely a 
modification of empirically grounded 
theories. Developing a situated cognitive 
system requires a different architecture 
where dynamic and interactive cognition 
is constructed solely on low-level 
perceptual and relational inputs. In what 
follows we present the Associative Model 
(AM), which aims of initiating the core 
architecture of such a relational model and 
consequentially address some of the issues 
as described above.  

The model presented here must be 
considered a hypothesis as to how an 
accumulation of knowledge might be 
produced without the need for hard-coded 
patterns or shapes. This model uses only 
relational entities for it to derive 
information and does not (directly) store 
any object or part of an object for it to 
achieve conceptual knowledge. In its 
simplest form, the AM is a basic pattern 
recognition tool, with the implementation 
of a non-object based framework. We 
have thus developed a model able to 
derive categories using a purely relational 
storage of perceptual stimuli. In what 
follows, we describe the concept behind 
the AM using simplified examples 
clarifying the framework we have 
developed. This framework will then be 
applied to an experimental build of the 
AM. The use case presented here is a 
visual pattern recognition task using 
simplified facial expressions, showing the 
practicality of the approach.  

From an Object- to a Association-Based 
Model 

Given that that the AM does not require 
prior knowledge of any object or its 
characteristics, yet is able to categorize 
objects solely based upon stored and 



processed relations, the model can be 
considered as an embodied model using 
interaction rather than prior categorization. 
For this to become apparent, we need to 
clearly describe our conceptual 
framework. In what follows, we will 
outline the basic principles and concepts 
of the model using three simple examples. 
These concepts form the backbone of the 
application, which will be described 
further below. 

Example I: elements, relations, clusters 
and change 

The core concepts of the AM are what we 
denote as elements, relations, clusters, 
states of clusters and change. Before 
explaining these concepts, consider the 
following example: a single point moves 
in a repetitive and consistent manner 
across a grid (see figure 1). Moving 1 
square at the time, the black point moves 
to the right, down, to the left and finally 
up again landing in its original position.  

 

In this simple configuration, there are two 
elements: the grid and the point. At any 
given time, a particular relationship 
between these elements is in place (e.g. 
the point is at position ‘1’ relative in the 
grid), in this case defined by the position 
of the point on the grid. Each of these 
snapshots (‘the black point is at position 
1’) is what we call states (of a cluster), 
where the term ‘cluster’ (of relations) 
refers to the specific configuration of 
relationships between various elements (in 
this case defined solely by position). By 
changing the position of the point, that 
state (of a cluster) changes and a new 

cluster is formed (‘cluster 2’ in figure 1). 
The AM is thus defined by the elements 
(point and grid), their relations - forming 
clusters and state of clusters - and the 
possibility of change, which is the 
transition from one state to another.  

Repetitive actions (cf. multiple sequences 
of figure 1) within the AM are then the 
motor of stable relationships. A 
continuous repetition of the various states 
in the example (e.g. a continuous sequence 
of cluster 1 to cluster 4) generates a stable 
cluster of relations. This is related to the 
temporal aspect of the AM, where we 
make a distinction between sequential and 
simultaneous states. If ‘cluster 2’ is always 
preceded by ‘cluster 1’, cluster 3 by 
cluster 2… the AM will consider these 
relations as a cluster of relations in itself, 
leading to stable states with high 
probability and predictability. The AM 
thus records either sequential or 
simultaneous changes of states, which are 
defined by the relations between the 
elements.  

The AM is not recording the actual object, 
its boundaries, or any other meaning that 
is not introduced by a change in state. In 
the example provided here, the AM will 
not, for example, store the colour of the 
point if the colour does not change 
(undergoes a change of state). Given that 
the colour does not change e.g. from black 
to blue, no change has been detected and 
no record is made of the change, leading 
to no ‘knowledge’ about the change. Nor 
will it record how wide the lines are in the 
grid, nor how thick they are if they do not 
change either sequentially or 
simultaneously. In that sense, naivety is a 
core feature of the AM, being blind to 
consistency. The more consistent a 
particular feature is (e.g. the point that 
never changes its colour), the less relevant 
it becomes for the AM. Prior to knowledge 
in the AM is difference and change, where 
colour for example can only be used as a 
state if it is contrasted with a change of 
colour.  

This does not mean that the AM is colour-
blind. The system is equipped with a basic 
set of change detection, where low-level 



features are recognized and differentiated. 
However, if occurring change does not 
stimulate these potential differentiators 
(e.g. colour), they will not evoke the 
perception of colour nor develop a concept 
of colour. This means that a deprivation of 
stimuli (e.g. change) of either one of these 
differentiators will make them less 
relevant for the given AM. In the case of 
our example, though colour can be 
detected, it is nevertheless not relevant to 
the system since there is no change in 
colour (apart from black and white). And 
since change is a transformation of one 
state into another, relations become the 
motor of knowledge production within the 
system.  

 

Example II: association versus cause and 
effect 

Building upon the previous example, 
consider the following: a system detects 
two states (of clusters), where change 
consists of both a change of position of the 
point to the right and a simultaneous rise 
of the system’s internal temperature  (cf. 
cluster 1 to cluster 2, adding a temperature 
variable to the system). Suppose a change 
of the position of the point to the left is 
also detected to consistently coincide with 
a simultaneous decline of temperature. As 
previously mentioned, a continuous 
repetition of these changes will build a 
stable cluster of relations and define the 
various states as well as their sequential 
and simultaneous temporal features. The 
system here will detect a strong relation 
between the sequence of positions of the 
point (having a constant repetition of 
cluster 1 and cluster 2), an equally strong 
relation of a sequential relation between 
the rise/decline of temperature and the 
simultaneous sequence of a change in 
position and a change in temperature.  

 

Within the AM this is the origin of 
causality. Causality is a stable cluster of 
relations, be it sequential or simultaneous, 
leading to an expectation about the 
occurrence of the various states. In the 
above example causality would be inferred 
when position was stable prior to any 
change in temperature. Assume that the 
system first learns the spatial change and 
once these clusters are well established 
detects a change in temperature, then as 
far as the system is concerned the position 
might be causing the temperature change. 
Such a hypothesis can be discarded when 
the opposite is shown and the temperature 
rises even when there is no occurrence of a 
spatial change. In that case, the relation 
between temperature and position is 
discontinued and causality is dropped. 
Falsification of change, change detection 
and temporal association is the motor 
behind what often is referred to as 
causality. Cause and effect can thus be 
expressed in change and change detection 
through the relations between the detected 
elements.  

We have to be cautious, however, since 
for the system causality does not exist. 
Causality is the conceptualisation of stable 
clusters and robust states. The system does 
not deduce causality, nor does it introduce 
effects and origins. The AM only stores 
relations and change between relations as 
its motor for categorizations. Causality 
and effect being frozen concepts do no 
justice to an inherently dynamic model of 
association storage. The above examples 
are simplified to express the concepts of 
the AM, whereas terminology such as 



cause and effect already introduce terms 
that can not be part of the system’s core 
strategy, which is the storage of change. 
Or to put it differently: the AM does not 
require concepts such as cause and effect 
to expect effects, origins and causes.  

Example III: associative predictability 

Where the previous two examples were 
occurrences of singular elements, the same 
can be applied to patterns of elements. 
Take the example as shown in figure 3, 
where the triangle of points moves 1 
square to the right in cluster 1 and back to 
its original position in cluster 2. Given that 
this is a continuous repetition of these 
states, the relation between the two states 
becomes stable.  

 

In this example, it should be obvious that 
the system does not require a concept of a 
‘triangle’ to predict that the points will 
move to a certain direction. The system 
does not need to know whether the 
specific configuration of these points 
resembles what is understood as the term 
‘triangle’. The system will not even have a 
concept of a triangle if it is not confronted 
with a different configuration of points. 
However, it can ‘behave’ as if it has 
knowledge about a triangle, by using the 
specific relations between the elements to 
predict that the next state will indeed be a 
triangle, yet this time slightly more to the 
right or left relative to the grid. The 
system will thus apply the configuration as 
a stable set of relations, and use the 
triangular configuration as a way of 
predicting what the next position of the 
various elements will be.  

With the point as an atom of the system’s 
change detection, it will gradually and 
after sufficient repetition learn that the 
specific configuration is always present, 
thus forming a cluster of spatial 

associations. If the system has a highly 
stable spatial configuration through a 
consistent simultaneous appearance of 
these three points, in combination with a 
sequential change detection of a change in 
position that does not disrupt the internal 
spatial configuration, expectancy will be 
orientated towards more stable 
occurrences. Consider the following 
variation of our triangular example: a 
system detects over a long period of time 
cluster 1 and cluster 2. Suddenly, 
however, cluster 1 and cluster 2 do not 
occur any longer, yet cluster 1’ and cluster 
2’ occur (figure 4).  

With experience of previously highly 
stable clusters 1 and 2, the system expects 
that, based upon the information it has in 
cluster 1’, cluster 2’ will be ‘triangular’. 
Not because it has recognized that there 
seems to be a triangle, but solely because 
it has learned that in the system’s world, 
there used to be always three points 
spatially organized in a specific way 
which was stable over time (cf. 
simultaneous states). Unless there is 
evidence of a changed world (with e.g. 
squares), the system does not expect 
something other than a triangular spatial 
organization. Despite a change in 
perception (e.g. a missing point in 
particular states), its prediction therefore 
stays intact, or better unchanged.  

 

Thus, an AM uses association as a 
measure of stability and probability. 
Unknown situations are, despite their 
novelty, integrated, weighted and 
gradually engrained in the system’s 
predictions until they form equally or 



more stable associations, replacing 
previously detected associations. In other 
words: when the system is confronted with 
unexpected situations, it is able to detect 
novelty, incorporate the novel information 
and accumulate and rebuild previous 
stable clusters.  

Rationale of the Associative Model 

The associative model, as developed in the 
application, is a database design storing a 
minimum of information in order to derive 
or conceptualise information. This 
database design differs significantly from 
others, since it does not require any 
categorisation, nor connected tables for the 
structure of its stored data. The idea 
behind the design is to store the actual 
dynamism of learning processes as can be 
demonstrated in visual processing. The 
goal here is to store the accumulative 
process of visual perception, not by 
imposing a priori structures and objects 
used to reverse engineer data processing, 
but to let the system design its concepts 
based upon interaction with the 
environment. In other words, the database 
design aims to store the dynamic process 
of the interaction between the system (e.g. 
a person) and its environment (e.g. a 
working environment). 

In the previous section we described the 
core concepts. For the sake of simplicity, 
the application and consequences of the 
model were left out. In the following 
paragraphs, we will describe the principles 
behind the design of the AM, where we 
focus more on what the AM stores (and 
what it does not), leading to a grounded 
categorization of stimuli through change 
detection.  

Relations are, objects are not 

The AM therefore is the accumulation of 
relational structures between various 
elements. A subject perceiving a table is 
not the perception of the edges of the 
table, but the perception of the relation of 
those edges. The AM can be summarized 
as a relational accumulative storage of 
transforming relations between elements, 
where the change or consolidation of 

related elements is the sole source of 
accuracy. These elements are not stored as 
a label, but as a ‘meaningless’ element 
having ‘a’ relation with another 
meaningless element. A ‘cup of tea’ in the 
AM is not stored as ‘a cup of tea’, but as 
an element that has consolidated relations 
with other elements, which you can label 
as being ‘cup’, ‘hot water’, ‘herbs’ - which 
are in their turn complexes of elements 
and relations. In the AM the actual 
element is nothing but the cluster of 
relations as seen by the system. A ‘cup of 
tea’ therefore is the accumulation of 
storage occurrences in which the subject 
has noticed that the cup holds water, that it 
can be hot, that it might require some tea 
leaves, that it smelt like tea and so on. For 
now, we don’t go into detail on how such 
is applied in a database design, yet will 
describe what we consider ‘elements’ and 
how they are active agents in the 
construction of perception.  

The concept ‘element’ is an artificial term 
to denote the atom of the AM, though it’s 
never perceivable as such. An element in 
the AM is never a singular, since it is 
always a collection of other elements and 
their relations. This means that an element 
(e.g. a human being) can either perceive 
(e.g. ‘see a dog running towards him’) 
another element (e.g. ‘a dog’). The past 
(e.g. ‘I was bitten by a mad dog’) and 
present (‘I see a dog running towards me’) 
relations between the first element (‘the 
human being’) and the second element 
(‘the dog’), can be simply perceived (e.g. 
‘I see a dog running towards me’), but also 
acted upon (e.g. ‘I run away because I’m 
afraid of what my prior experience has led 
me to assume is a mad dog’). As one can 
see, the emphasis here lies on the 
relational structure storing perception and 
enabling action. The dynamics of 
perception in the previous example are not 
represented by an accurate classification 
of the ‘object’ (cf. secondary element), but 
by past and present relations between 
elements. This is significantly different 
from static perception, where 
classification is in essence a rigid structure 
with possible updates and revisions of a 
dominant class structure. The associative 
model does not implement events to 



update relations, but assumes events to be 
clusters of relations integrating past and 
present relations between elements and are 
therefore always the (whether or not 
appropriate or accurate) integration of 
relations between elements given an 
ongoing stream of occurrences. Elements 
are therefore both atoms of the model as 
well as collections of other elements and 
relations.  

Bottom-up Storage of Associations 

An associative model records occurrences 
where a specific element is perceived in 
relation with a second element. An 
example would be the occurrence of a 
needle penetrating your finger and seeing 
a drop of blood on your finger. These two 
elements (‘needle penetrating your finger’ 
and ‘seeing a drop of blood’) are stored in 
a relation to one another (‘when I saw the 
needle penetrate, I saw the drop of 
blood’). Note that the system does not 
categorize the elements (cf. this is a finger, 
which is part of my hand, which is part of 
my arm…). It only stores the occurrence 
of two elements. This means that the 
model in its initial empty shell ‘knows’ 
nothing, has stored nothing and can only 
record all the occurrences it encounters as 
time passes. Tightly interconnected 
elements then provide the abstract schema 
allowing the categorisation of novel 
elements or the derivation of common 
features among aggregated elements. This 
aggregation is the storage of change of the 
various elements, where change refers to a 
previously defined threshold of the 
system. When the threshold is reached, the 
change is stored and a subset of elements 
is created. Such a threshold can vary and 
serves as a guiding principle of the system, 
yet can be a low-level feature of the 
element. Examples could be a colour 
change in a bitmap or a luminosity 
difference in a bitmap.  

The factual accumulation of relations 
between elements enables the potential 
and growing conceptual power of the 
model, where consistent confirmation of 
relations become stronger and 
contradiction of previously recorded 
relations become weaker. Do note that we 

deliberately do not use concepts such as 
‘human’, ‘table’, ‘cup of tea’ to represent 
the elements, neither do we use 
meaningful descriptions for the relations 
(e.g. ‘has_a’, ‘stands_before’) to describe 
the relations. All of these elements and 
relations are information empty and, as 
previously noted, they can only become 
meaningful after a sufficient accumulation 
of elements and relations. In other words, 
the simplified end-result after occurrence 
4 can therefore be a wide variety of 
concepts, from which without any further 
input nothing can be derived. As must be 
obvious, the relational structure is the 
source of information, yet it does not store 
any readable information.  

As laid out above, the example situation 
already induces concepts (‘a person’ or 
even ‘walking around’), which are not 
accepted in the AM. The AM in its purest 
form has no concepts in its initial phase, 
and consequently does not use such 
concepts to store data. However, the 
example given above facilitates a ready, if 
superficial, grasp of what the AM actually 
stores, despite the shortcomings and 
assumptions such an approach introduces. 
We would therefore like to distinguish the 
model from object-subject systems (or 
perceiver-perceived learning systems), 
where objects are considered to be distinct 
and separable, though potentially 
connected and dependent on other objects. 
Consider a ‘subject’ (e.g. a person) 
perceiving an ‘object’ (e.g. a table). The 
distinction between subject and object are 
often delineated through boundaries, 
salience differences, colour… Subjects are 
those objects that perceive other objects 
and are able to classify the perceived and 
interacting objects. This distinction 
between subject and object is rejected in 
the associative model, for the associative 
model can be defined as the storage of 
dynamic systems represented by the 
relation between objects-subjects, the 
physical boundaries of the system and the 
environment in which the system resides. 
Elements are defined not by their (physical 
or deduced) edges but by their relationship 
with other elements as they occur in 
events. Systems are then understood as 
being constituted by their cluster of 



relations between elements as interacted 
with in the environment.  

Invariance is repetitive Variance 

Within the AM, invariance (or stability of 
clusters) is achieved through the detection 
of variance where specific states are either 
simultaneously or sequentially repeated 
over time. With variance being the change 
of a specific element, the system only 
stores changes of these elements, be it 
position, colour, size… Stability of 
perception then becomes repetitive 
perception of sequential or simultaneous 
states (of clusters), where invariance or 
stability is always relative and possibly 
subject to change. Invariance therefore is 
never final, assumed, discovered or 
realized. It’s an ongoing dynamic state of 
clusters in itself, where its stability is only 
guaranteed by the repetitive nature of its 
sub-clusters. Invariance within the AM is 
thus a special kind of variance, leading to 
redefinitions of categorization within the 
system.  

This implies that non-changing elements 
are not perceived and thus do not exist. 
These elements (e.g. the colour of the 
point in example 1) do not hold any 
relevant information, since they do not 
form any specific relation with other 
elements and are therefore ignored. The 
AM remains blind to factors that are not 
actively engaging the system’s perception. 
Only perception and the change of 
perception provide useful chunks of 
information. Additionally, the AM refutes 
the existence of a priori stability, since 
stability and invariance are only achieved 
through the perceiver. Despite the 
possibility that a particular state can be 
initiated before being perceived, only the 
perceiver introduces stability and 
invariance when a consistent repetition of 
variances is stored within the system. The 
perceiver is the sole source of invariance 
definition, since there is no other 
information available regarding whether 
the invariance had been present before 
perception. Though various systems may 
be able to impose their invariance on 
others (e.g. exchange of information 
regarding invariant states and clusters), at 

the root of invariance still lies the initial 
variance. Invariance without variance is 
not perceived within the AM and in a 
sense delineates the boundaries in which 
the system moves.  

Finally, invariance will ‘counter’ 
invariance if the perceived invariance in 
itself does not become as stable as the 
initial invariability. Invariability, or 
consistent variability, can only be broken 
down with a significant increase in 
changes in states, leading to the 
deconstruction of the invariance. 
Variability thus introduces invariability 
and has the tendency to neutralize itself 
through the construction of highly stable 
clusters. With an initial neutral state, the 
AM gradually produces biased systems, in 
which, after a sufficient amount of time, 
invariance is more present than variance. 
The AM therefore introduces a system 
moving towards stability through the use 
of clusters of variability and, though being 
built solely upon variability, over time the 
system attains such a level of stability that 
it is only impelled to reduce the number of 
stable clusters if confronted with radical 
and consistent changes in novel or already 
present states.  

This stems directly from the claim that the 
system is relational and bottom-up, where 
only relations between elements are stored 
and object and prior features are left out. 
As previously described (cf. ‘Relations 
are, objects are not’), gradual 
accumulation of clusters lead to a complex 
network of relations. Such a network is 
sufficient for the AM to produce 
categories of objects and actions.  

Experimental Build: Simplified Facial 
Pattern Recognition 

The following use case is an application of 
the previously described model interacting 
with a number of static images. This 
demonstration is intended to show how the 
AM grounds its information in relations 
and how it identifies similarities and 
differences between discrete experiences. 
The images used to derive similarities and 
differences based upon relational scans are 
created to be both similar and different 



enough to allow the application to produce 
recognizable outputs after a relatively 
small number of scans. Sequences of 
states would be related differently in an 
embodied system to produce the 
equivalent of the event sequences in the 
use case. 

Before describing the experimental 
application, we need to explain the built-in 
limitations of the application. Currently 
there is a 16-bitmap limit hard coded into 
the program. This could easily be changed 
if the queries were dynamically created at 
runtime. Additionally, the use case is a 
simulation of an intrinsically, largely 
parallel, processing system implemented 
on a serial processing machine, causing it 
to run slowly. Another limitation is the 
fact that event sequences are linked 
directly to filenames in the application. 
This is a simplification of the AM in that 
there ought to be an intermediate step 
corresponding to the unique and shared 
subsets discovered by the system. Finally, 
the application is currently also limited by 
the expedient linking of start points 
(bitmap canvas-relative coordinates) to the 
event sequences. This allows easy display 
of the visual output on a 128 x 128 bit 
bitmap but makes the system incapable of 
matching similar shapes situated in 
different positions relative to the bitmap 
canvas.  

The System 

The program is written in function-based 
Delphi code using Borland Developer 
Studio 2006 connecting to a Microsoft 
SQL Server relational database. A number 
of dimension values and types of 
relationships are loaded into the database 
on start up. These are used within the 
program to make the data readable to the 
user. A predefined workflow is 
implemented (figure 5), checking and 
storing the relational changes it detects 
during the scans. The entire workflow 
consists of two sub-workflows. The first 
sub-workflow (figure 5, step 1 to 3) is 
only used at the very beginning of the 
scans. Here the system starts scanning at a 
random point, where the sensor array (a 
3x3 focus grid) moves in a random 

direction (figure 5, step 2). If the focus 
grid is told it has reached the edge of the 
base grid, it randomly changes direction 
and continues moving. Only when the 
focus grid detects a change in its 9xp pixel 
grid, it queries the database for an 
identical change detection (figure 5, step 
3). If the sensor array is not present, it 
writes that particular sensor array state to 
the database. If the sensor array state is 
however present, it chooses another 
random direction.  

After these three initial steps, the system 
then starts the second sub-workflow 
(figure 5, steps 4 to 8), with identical 
functions used during its scans. As with 
the initial start-up phase of the system, it 
goes through another cycle of moving and 
storing the sensor array (figure 5, steps 4 
and 6). The system also stores (as opposed 
to the first sub-workflow) the movement 
made by the sensor array (figure 5, step 5). 
In case a specific scan sequence is then 
already present in the database (figure 5, 
step 7), that particular scan sequence is 
linked to the bitmap in which it occurred 
(figure 5, step 8). After these queries and 
array storages, this workflow (steps 4 to 8) 
are repeated until a total of 1000 scans is 
performed.  

 

The above described workflow is 
essentially stored in 1 table, yet for 



readability reasons two tables are 
implemented. The two tables implemented 
in the system are the Datum Table (tblID) 
and the Information Table (tblI). The 
datum table stores the explanatory text 
strings generated by the program in the v 
column, while the id column holds its 
associated unique identifier, the next 
unassigned integer in the table for each 
novel event or combination of events. The 
information table stores the elements and 
relationships discovered by the system 
while interacting with the bitmaps. The s 
column contains the element1 identifiers, 
the r column the relationship identifiers 
and the o column, the element identifiers.  

All three columns are part of a 
concatenated primary key, making each 
record unique. These two tables are joined 
by three one-to-many relationships with 
the id from tblD linked to each of the s, r 
and o columns in tblI (see figure 6).  

 

The datum table is created to make the 
data as stored in the information table 
readable. This is due to the fact that the 
information table solely stores numbers 
with no descriptive information attached 
to them, making it unreadable for the user. 
This is a logical consequence of the AM, 
storing only relations with no reference to 
previously labelled objects or object parts. 
An example can be found in figure 7, 
where the information table (figure 7 a) 
shows a selection of stored records of the 
use case.  

Figure 7 (a, b) shows subsets of the data in 
the Information Table and the Datum 
Table from the use case has been 
reproduced. In the Datum Table the id 
column integers are tokens that are used in 
the Information Table in place of the text 
in the v column. At the base level in this 
example is the first record in the datum 
table, which has an id of 8 and a v of -. It 
is a direct and invariable representative 

used in place of an aspect of the structure 
of the use cases “environment”. It occurs 
whenever a negative integer is input to or 
output from the use case to the computer 
that it runs on. In this virtual and limited 
version of the AM, the Datum Table 
becomes the interface between AM 
structured information and the 
programming environment.  

The integer 8 is associated with the text 
character – when the program has a 
requirement for storage of negative 
polarity as a dimension of a complex 
informational entity. In this example u[-1], 
the table already had 7 records in it, hence 
the next available integer (8) was 
associated. Here, all information is defined 
through association with sets of base level 
interactions between the AM and its 
environment. The base level, simultaneous 
interactions that occur when the u[-1] 
vector is input or output, are the three 
aspects of a vector: dimension, magnitude 
and polarity (direction along its 
dimensional axis). These are assigned 
values which compromise the interaction, 
in this case u,1 and – respectively. Do note 
that the vector-based terminology was 
chosen for lack of a better alternative to 
make the tables more readable. The three 
aspects could just as validly be two 
aspects called variable name and current 
value and assigned the values u and -1.  

The Datum Table furthermore contains 
records for the word polarity and for the 
vector descriptor u[-1], in our example the 
unique identifiers 14 and 24 respectively. 
These Datum Table records are not 
considered within the AM to hold any 
information. They are merely 
representative of interaction events. The 
unknown information that regulates the 
occurrence of base level interactions is 
stored out of reach in the inaccessible 
parts of the structure of the environment. 
What can be known within the AM is that 
certain interactions happened 
simultaneously and this information is 
recorded in the Information Table as a 
series of relationships. The Information 
Table in figure 7 contains a record that has 
8 in the s column, 14 in the r column and 
24 in the o column, one that has 3 in the s 



column, 12 in the r column and 24 in the o 
column and one that has 27 in the s 
column, 13 in the r column and 24 in the o 
column. UPDATE TABLE 7. A loose 
interpretation of the information is that a 
polarity type of interaction occurred when 
the polarity sensor sent a – signal and it 
occurred in conjunction with a magnitude 
type interaction when the magnitude 
sensor sent a 1 signal and a dimension 
type interaction when the dimension 
sensor sent a u signal. The conjunction of 
these three interactions is recorded via the 
common o column value of 24 which is 
associated in the Datum Table with the 
text string u[-1].  

Finally, the text string u[-1] has no 
intrinsic meaning in the AM, nor has the 
unique identifier 24, but the pattern of 
virtual connections represented by the 
Information Table records that the unique 
identifier 24 participates in has a direct 
correspondence to a unique combination 
of interactions; it, in effect, represents that 
pattern of occurrences. 

 

Interface and Functions 

The application’s interface (figure 8) can 
be divided into roughly 4 sections: the 
graphic representation of the queries 

(figure 8 A), image list (figure 8 B), event 
set members (figure 8 C) and a display of 
the generated rows in the database (figure 
8 D). The interpreted data display grids on 
the right hand side of the application 
window show stored information from the 
database hierarchically organised from top 
left to bottom right with lower level grids 
filtered to show only records associated 
with the selected record in the grid 
immediately above. 

 

 

 Scan Bitmap 

Clicking the Scan Bitmap (figure 8 A) 
button causes the program to start at a 
random point on the selected bitmap and 
to move in a constant, but initially 
randomly selected direction, comparing 
the red, green and blue values of each 
corresponding position in two 3x3 pixel 
sampling grids, one at the origin of the 
scan, the other at the current focus position 
until a difference in colour is detected. A 
difference in colour of any pixel is 
interpreted as being equivalent to a change 
in state of the sampling grid at its current 
position relative to its start position state. 
This first scan is not recorded in the 
system because the start point is not 
guaranteed to correspond to a point of 
difference in the bitmap. The next and all 
subsequent scans are made in random 
directions, each starting at the end point of 
its immediately previous scan. If a scan 
reaches an outer edge of the bitmap frame, 
it “bounces” back into the body of the 
bitmap.  



The relationship between the start and end 
points of each scan is the difference 
between their coordinates. The system 
associates the change in position of the 
focus grid with the change from the grids 
initial state to that of its subsequent state. 
In the use case, the relationship or 
transformation is calculated, whereas in an 
embodied system the transformation 
information would be provided by changes 
in states of sensors, each monitoring a 
degree of freedom of, for instance, a 
camera mount moving relative to the body 
of the system. The components, 
coordinates, dimensions, magnitudes and 
polarities are stored to show that, even in 
this simplified, simulated system, 
information is firmly associatively 
grounded at the lowest level of interaction 
between the system and its environment. 

 Check All Shared 

Clicking the ‘Check All Shared’ button 
causes the system to look for each event 
sequence in the selected bitmap’s unique 
event set in every other bitmap in the list 
of bitmaps available in the system. This is 
a series of directed scans. When a scan is 
repeated in a new bitmap, it is associated, 
or shared, with the new bitmap in addition 
to the original one. Next time the original 
bitmap’s unique event set is queried any 
shared event sequences will not be 
included in the result set. 

 Draw Unique Event Set 

Clicking the Draw Unique Event Set 
button will filter the event sequence 
display grid to include only those records 
associated solely with the selected bitmap. 
The program will draw all those initial and 
subsequent states on a blank bitmap above 
the button. 

 Draw Shared Event Set 

Clicking the ‘Draw Shared Event Set’ 
button filters a query that then shows only 
those event sequences that are shared by 
the bitmaps selected in the checkbox panel 
on the application. The program will then 
draw all those initial and subsequent states 
on a blank bitmap above the button. 

 Use of Datum Table values to detect 
existing relations 

The program stores descriptive text in a 
database table named tblD to ascribe user 
interpretable meanings to events and 
relations. This is not a requirement of the 
AM, merely a convenient way to interpret 
the data. We have also used text 
descriptions to check the novelty of new 
input, to make the program easier to 
debug. 

Stimuli 

In this use case we used 16 simplified 
faces (figure 9), with differences in the 
colour of the ‘nose’ (e.g. a red nose of 010 
and a green nose of 016), the colour of the 
eyes (e.g. red eyes for 004 and blue for 
006), whether the faces were ‘glasses’ or 
not (e.g. face 007, 008, 013…) and 
whether the faces are smiling (e.g. 001, 
004… but also 015), neutral (e.g. 002) or 
slightly sad (e.g. 003). The images are 
located in the exact same position within 
their 128-pixel square grid. For the sake of 
simplicity and process speed, the position 
relative to the grid remains constant 
despite the fact that this is not a 
requirement for the AM. If the position of 
the face varied the application would be 
forced to store additional relational 
elements, which is feasible but would slow 
the system down.  

 

Scans and Results 

Scanning a bitmap, against a fixed 
background grid, means to detect change 



in colour between the starting point and 
the end point. A 3x3 pixel focus grid 
detects this change, where the 9-pixel 
square detects any change in any of the 9 
pixels on the base grid. In figure 10 a, the 
yellow lines and the red dots represent 
change-detection. In this graphical 
representation of an archetype of a 1000-
scan the red squares represent the change 
as detected by the application and the 
yellow lines the stored translations linking 
these changes. The yellow lines thus 
demonstrate the fact that the focus grid 
does not detect any change and thus 
moves on in the same direction until it 
detects a change (cf. figure 5). When a 
change is detected a new and randomly 
generated direction is chosen and 
continued until another change is detected. 
The process in this case is repeated 1000 
times (see section ‘The System’).  

Any change in the red, green or blue 
values (of the bitmap) in any of nine pixels 
sampled in the focus grid will trigger a 
change event. The system then records or 
finds the corresponding grid state record 
(see section ‘The System’ steps 4 to 8). As 
can be seen in figure 10 (a), 1000 random 
scans do not locate all aspects of a pattern, 
but sufficient information is stored to 
differentiate the scanned bitmap from 
other bitmaps.  

 

The current system detects and stores 
relations between changes in the patterns 
of colours (in a nine pixel reference grid 
moving in straight lines). The random 
direction of the focus grid movements 
relative to the base bitmap, as well as the 
changes, are stored, checked for repetition 
of those relations in new situations (other 
bitmaps) by means of data directed 
searches and then the program displays 
sets of commonly observed relational 
content for selected combinations of 
bitmaps. These could, according to the 
AM, theoretically be used as experientially 
grounded relational bitmap classifiers. 
Using the AM, the application does not 
store pictures or features as such, instead it 
stores sequences of system states 
determined by interactions between the 
system and each bitmap and then shares 
repeated experiences of sequence 
segments with other bitmaps. 

Figure 10b shows the graphical translation 
of the scans and the relational storage as 
described in section ‘The system’. The 
button ‘Draw Shared Event Set’ queries 
the system to report, based upon the 
relational matrix, what the differences are 



in bitmap 012.bmp within the image group 
consisting of images 007.bmp, 008.bmp, 
011.bmp, 012.bmp, 013.bmp and 
014.bmp. The rationale behind this type of 
query is explained by the limitations of the 
current application. In a fully automated 
system, groups would be produced by the 
system itself. The application could e.g. 
query for shared elements and build 
groups by ranking them according to the 
amount of shared elements. In other 
words, a category would be created if a 
particular set of bitmaps has a high 
number of shared elements, which differ 
significantly from another collection of 
bitmaps sharing a high number of shared 
elements. Here, the use case runs a 
singular bitmap against a predefined 
collection of bitmaps. The collection of 
bitmaps are handpicked based upon 
obvious shared elements (in this case the 
fact that all wore glasses, had a nose, a 
smiling mouth and a contour), to show that 
the AM is able to deduce shared elements 
not based upon objects stored in the 
database, but solely based upon their 
relational and change-sensitive matrix 
(bottom right image of figure 10b).  

The initially blank database is thus able to 
deduce shared elements after a total of 
16000 scans and produce a highly detailed 
reproduction of what you could denote a 
‘categorization’ of bitmap 012. The 
bitmap 012 is thus detached from its 
particularities, and by comparing the 
shared bitmaps across the collection of 
bitmaps the system produces its category 
description (here represented by a graphic 
of the category having glasses, a nose, a 
mouth and a contour). As said before, the 
hypothesis here was that these elements 
would be picked up, which is indeed the 
case.  

The same applies for clicking the button 
‘Draw Unique Event Sets’, where the 
query focuses on the particularities of 
bitmap 012 within the handpicked 
collection of bitmaps (cf. 007.bmp, 
008.bmp, 011.bmp, 012.bmp, 013.bmp 
and 014.bmp). As opposed to the previous 
example, here we made sure that the 
bitmap had particularities that were not 
shared across the images, which in this 

case was the green glasses of bitmap 012. 
It is shown that this specific characteristic 
is indeed detected by the system, again 
based solely on the relation change-matrix. 
Do note that the unique elements, which 
are not detected (e.g. gaps as seen in the 
glasses), are to be attributed to the limited 
amount of scans of the system. With only 
1000 scans for each bitmap, it is seen that 
not everything of the face is stored (figure 
10a). Consequentially, when these changes 
are not stored, the system does not have 
any information about these undetected 
changes and they are thusly not 
represented as unique elements of the 
bitmap.  

Do note that the produced unique and 
shared event sets are currently not stored 
within the database. Each time when the 
query is requested, the system does a fresh 
check and derives the shared and unique 
event sets. Though it is theoretically 
possible, and for an embodied system 
desirable, the current system does not 
store these creations. The generated 
categories and individuals are thus solely 
created to show the applicability of the 
system using the AM. Despite the fact that 
the system currently does not 
automatically produce categories, it is here 
clearly shown that it is able to do so, even 
within a limited set of scans starting from 
an empty database.  

Conclusion 

The current application as described above 
is able to deduce shared and unique 
elements based upon a single table in a 
database storing nothing but relational 
change-detection of low-level features 
(e.g. colour). This implies that the system 
does not require predefined geometrical 
shapes or any other information. It is 
capable of deducing categories on the 
basis of 16000 scans of 16 bitmaps and 
produce what we categorize as obvious 
similarities and differences. In other 
words, the application of the AM allows 
an emulation of our human visual 
categorization with limited application of 
an intrinsically very simple system.  



Here, the AM shows its applicability of 
embodied and relational theories within a 
visual detection paradigm. The system 
further uses low-level change detection, 
which is an essential part of human 
perception. Though the system is limited 
in scope (fixed grid, identical pixel point 
detection and fixed bitmap positions), it 
shows its useability as a model for visual 
perception where no a priori knowledge is 
required.  

Discussion 

With the application we showed not only 
the theoretical but also the practical 
relevancy of the AM. The AM is 
conceived as a theoretical basis for a 
practical way to integrate all the disparate 
inputs and outputs required in an 
embodied system in such a way as to 
allow the system to store dynamic 
information about real-world interactions 
and use it to produce environment-
appropriate behaviours. In the AM, 
content is relational and can exist 
independently from descriptive labelling. 
In fact, labels can only be introduced on 
top of the relational matrix. Content is thus 
an indirect consequence of relations, 
applied in the application above to visual 
perception. Once formed however, simply 
associating descriptive text strings entered 
by a user with the system-discovered 
features displayed would enable the 
system to be later queried by a user using 
text based descriptors in order to display a 
list of bitmaps sharing these named 
features.  

Though the system as implemented in the 
experimental build is simplified to show 
its potential without becoming overly 
complicated (due to the exponential 
amount of stored data), we believe that it 
can be modified to record e.g. a parallel 
state that stores a Boolean value for each 
pixel in the grid based on identity of the 
colour of each grid pixel with the colour of 
the grid’s centre pixel. Similar shapes of 
differing colours could then be correlated 
by the system as being the same in one 
way, but different in another. The finer-
grained the shared information, the more 

refined the level of discernment of the 
system becomes.  

Another potential application could be an 
embodied system requiring multifaceted 
sensory inputs (visual, auditory, tactile…) 
to correlate complex inputs. This clearly 
requires a more complex design storing 
highly complex data with a wide variety of 
relational grids stemming from 
multimodal stimuli. However, with an 
increased complexity in data storage a 
more refined relational matrix is 
constructed, leading to a more fine-grained 
output appropriate to the situation at hand. 
This could be correlated with e.g. 
behaviour where one integrates a very 
large body of stimuli, where repetitive 
related events build up towards an 
‘understanding’ of the given situation.  

Finally, an AM system need not be limited 
to a single agent. A server-based 
application could, in theory, wirelessly run 
multiple bodies simultaneously as long as 
each input from each sensor and each 
output to each actuator was unique within 
the AM system. Two such systems could 
also query each other using those same 
text strings. The two systems could then 
scan displays of each other’s idiosyncratic 
version’s content and thereby update their 
own definitions of the text string’s agreed 
meaning. These two systems could also, 
theoretically, merge experiences if their 
base-level ID assignments were identical. 
The merging process would have to 
systematically identify functionally 
identical relational structures in the 
databases from the bottom up, then 
rationalise the IDs by globally replacing 
the various dissimilar but functionally 
identical IDs with single, common IDs.  

The identity of a system therefore is not 
derived from the possible super-classes it 
belongs to, but from the relations it stores 
with elements as experienced in the 
environment. As such, identity within the 
associative model is not a subject, but a 
bundle of relations perceived or activated 
from a solipsistic point of view. In other 
words: the concept of ‘subject’ is the 
reference to the perceiver or activator 
relation bundle, where its uniqueness is 



not the distinction between the particular 
element but its relations with the 
surrounding elements. This implies that 
the environment is not the collection of 
objects as perceived and interacted with by 
the subject, but the collection of relational 
elements as stored by the subject.  

The AM therefore is the application of 
‘situated cognition’, using the relational 
structure between perceiver and perceived 
as the core of understanding these 
interactions. In the AM there is thus no 
room for universals, but only for relational 
stable clusters. Subject, object, causality or 
universals are seen by the AM as semantic 
labels freezing content rather then freeing 

content. With the AM we thus present a 
possible model allowing for a 
continuously dynamic system effectively 
dissolving static terminology as strong 
clusters of variability. Or in the light of 
our use case: visual perception is action-
based interaction.  
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