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Abstract — Quentin Meillassoux is one of the leading French philosophers of today.
His first book, Après la finitude: Essai sur la nécessité de la contingence, first pub-
lished in 2006 and translated into English in 2008, has already become a cult
classic. It features a préface by his former mentor, Alain Badiou. One of Meil-
lassoux’s main goals is to rehabilitate the distinction between primary and sec-
ondary qualities, typical of pre-Kantian philosophies. Specifically, he claims that
mathematics is capable of disclosing the primary qualities of any object: “all those
aspects of the object that can be formulated in mathematical terms can be mean-
ingfully conceived as properties of the object in itself.” (Meillassoux, 2008: 3, em-
phasis removed). Here we will use Bunge’s philosophy of mathematics in order to
challenge the preceding assumption.

Résumé— Quentin Meillassoux est l’un des principaux philosophes français d’au-
jourd’hui. Son premier livre, Après la finitude. Essai sur la nécessité de la contin-
gence, publié pour la première fois en 2006 et traduit en anglais en 2008, est déjà
devenu un classique culte. Il comporte une préface de son ancien mentor, Alain
Badiou. L’un des principaux objectifs de Meillassoux est de réhabiliter la distinc-
tion entre qualités premières et qualités secondes, typique des philosophies pré-
kantiennes. Plus précisément, il affirme que les mathématiques sont capables de
révéler les qualités premières de tout objet : « tous les aspects de l’objet qui peu-
vent être formulés en termes mathématiques peuvent être considérés de manière
significative comme des propriétés de l’objet en soi. » Ici, nous allons utiliser la
philosophie mathématique de Bunge pour remettre en question l’hypothèse pré-
cédente.

1 Martin Orensanz is a Licentiate in Philosophy from Argentina. His work fo-
cuses on three main topics: Argentine philosophy, contemporary philosophy and
philosophy of science. He has published a book, as well as several articles in inter-
national journals. Currently, he is finishing his PhD, thanks to a scholarship from
the National Scientific and Technical Research Council of Argentina (CONICET).
Together with Guillermo Denegri, he is working on the philosophical, historical
and theoretical aspects of parasitology and helminthology.



116
Mεtascience n° 1-2020

1] Meillassoux's Philosophy of Mathematics in After Finitude
First, it will be necessary to indicate that Meillassoux rejects a

thesis which he calls “Pythagorean”. Whether or not this has any-
thing to do with what Pythagoras actually upheld, Meillassoux uses
that term to refer to the thesis that mathematical statements, such
as formulas and equations, are as real as any object in the Universe.
Contrary to this point of view, he claims that mathematical state-
ments are not real but ideal instead. This is found in his discussion
of the accretion of the Earth, where he says:

Consequently, our Cartesian physicist will maintain that those
statements about the accretion of the earth which can be mathe-
matically formulated designate actual properties of the event in
question (such as its date, its duration, its extension), even when
there was no observer present to experience it directly. In doing so,
our physicist is defending a Cartesian thesis about matter, but not,
it is important to note, a Pythagorean one: the claim is not that the
being of accretion is inherently mathematical—that the numbers or
equations deployed in the ancestral statements exist in themselves.
For it would then be necessary to say that accretion is a reality
every bit as ideal as that of number or of an equation. Generally
speaking, statements are ideal insofar as their reality is one of sig-
nification. But their referents, for their part, are not necessarily
ideal (the cat is on the mat is real, even though the statement “the
cat is on the mat” is ideal). In this particular instance, it would be
necessary to specify: the referents of the statements about dates,
volumes, etc., existed 4.56 billion years ago as described by these
statements—but not these statements themselves, which are con-
temporaneous with us2.

Nevertheless, there is some ambiguity in the preceding distinc-
tion between statements and their referents. This was noted by
Graham Harman in his book on Meillassoux’s philosophy. Harman
explains this ambiguity in the following way:

Meillassoux says that the Cartesian position towards physics (and
he takes the side of Descartes on most issues) must be distinguished
from the Pythagorean position that the mathematical is reality it-
self. The Cartesian position is supposedly different in so far as it is

2 Meillassoux, After Finitude, 2008 [2006], p. 12.
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the referent of equations which has existence independent of hu-
mans, not the equations themselves. This sounds plausible enough
in Descartes’s case, given the explicit role in his philosophy of phys-
ical substance. But assuming that Meillassoux means to take an
anti-Pythagorean line in this passage (which he probably does), it
remains unclear what his residual “referent” would be beyond the
mathematical other than the “dead matter” that we have already
found lacking3.

Meillassoux’s philosophy of mathematics is ambiguous on this
point because, on the one hand, he claims that mathematical state-
ments can disclose the primary qualities of an object, such as its
length, height, figure, and so forth. These primary qualities are
properties that the object has in itself, independently of the pres-
ence of human beings. So, for example, an object that has a trian-
gular shape has a mathematical property independently of the pres-
ence of human beings. But on the other hand, the rejection of the
“Pythagorean” thesis entails that the object in question cannot have
a triangular shape by itself, since the concept of “triangle” is a term
used in the statements of geometry, understood as a branch of
mathematics. Having indicated this ambiguity, we will assume that
Meillassoux’s view on this issue is that objects in themselves have
primary qualities, which are inherently mathematical. These prop-
erties are real, while the mathematical statements that disclose
them are ideal. Such a view is at odds with Bunge’s philosophy of
mathematics. Consider the following statement:

There is no reason to expect that pure mathematics is capable of
disclosing, without further ado, the structure of reality4.

Why not? Because pure mathematics, by itself, only deals with
constructs. In order to study reality, we need empirical science; pure
mathematics alone is insufficient for that task. To be sure, Meil-
lassoux is aware of this: “For what is at stake here”, he says, “is the
nature of scientific discourse, and more particularly of what char-
acterizes this discourse, i.e. its mathematical form5.” And, later on,
he says, “it is the discourse of empirical science as such that we are

3 Harman, Quentin Meillassoux, 2015 [2011], p. 207.
4 Bunge, Ontology I : The Furniture of the World, 1977, p. 150.
5 Harman, Quentin Meillassoux, 2015 [2011], p. 26.



118
Mεtascience n° 1-2020

attempting to understand and to legitimate6”. Thus, Meillassoux
recognizes that there is a difference between pure mathematics and
empirical science. Furthermore, he believes that one of the salient
features of empirical science is that it relies heavily on mathemat-
ics; not entirely, but to a large extent. Of course, Bunge does not
have any qualms with this. The decisive issue here is: What do the
statements of empirical science refer to, especially those that rely
heavily on mathematics? Meillassoux seems to believe, in agree-
ment with Descartes and Locke, that properties such as length,
height, figure, among others, are not merely technical terms of the
vocabulary of geometry, but real properties that can be found in ex-
ternal objects instead. We will see that this is not the case according
to Bunge.

But before we do so, and in order to understand Bunge’s mathe-
matical fictionalism, it will be necessary to take a quick look at the
history of non-Euclidean geometries, and the consequences that
their development had for philosophy.

2] A Brief History of Non-Euclidean Geometries
In the fourth chapter of After Finitude, Meillassoux makes some

scarce comments on the history of mathematics7; specifically, he re-
fers to the development of non-Euclidean geometries during the
nineteenth century, stating that “we are all familiar” with their his-
tory, and then he summarizes Lobachevsky’s work. Although Meil-
lassoux’s target audience may be familiar with that history, it
seems to us that it must be recounted here.

But before we present that history, it will be convenient to note
that according to Meillassoux, philosophers have recently become
modest, and even prudent, when discussing scientific issues8. It
seems to us that this has been especially true after the Sokal affair.
Unlike previous generations, today’s continental philosophers have
learned to be cautious about topics such as non-Euclidean geome-
tries, Einstein’s theories of special and general relativity, quantum
physics and Gödel’s theorems, among others.

6 Ibid., p. 28.
7 Ibid., p. 92.
8 Ibid., p. 13.
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This was never a problem for analytic philosophers. For example,
Ernest Nagel and James Newman wrote a book on Gödel’s proof9,
and Thomas Kuhn wrote a book on quantum physics10. None of
these authors have been criticized by Alan Sokal or Jean Bricmont
for misusing scientific concepts. Kuhn has been criticized by Sokal
and Bricmont in Fashionable Nonsense for fostering philosophical
relativism, but not for misunderstanding physics11. The point is
that philosophers may be knowledgeable enough to write on topics
such as Gödel’s work and quantum physics without falling into
charlatanry. That some philosophers do fall into charlatanry when
discussing these topics does not mean that all of them do so. Of
course, neither Sokal nor Bricmont claim the contrary. They specif-
ically criticize a group of thinkers, those that they regard as post-
modern intellectuals. But to step into that discussion exceeds the
purposes of this article. We have only advanced these remarks in
order to clearly state that we are fully aware of the perils surround-
ing the philosophical discussions of complicated scientific issues.

Thus, our presentation of the history of non-Euclidean geome-
tries will follow Meillassoux’s remark about modesty and prudence.
In order to do so, we will use a well-known Argentine textbook on
the philosophy of mathematics by Gregorio Klimovsky and
Guillermo Boido, Las desventuras del conocimiento matemático
(“The Misadventures of Mathematical Knowledge”)12. Klimovsky
was a mathematician and philosopher of science who introduced set
theory in Argentina. Boido was a physicist and historian of science,
who wrote a popular history book on Galileo. A more detailed
presentation of non-Euclidean geometries and their history can be
found in Richard Trudeau’s book, The non-Euclidean revolution13.
Several quotes and definitions by philosophers and mathematicians
of the past can also be found in Trudeau’s book.

It will be necessary to begin by considering Euclid’s Elements,
which has certain similarities with Aristotle’s way of conceiving ax-
ioms and theorems. For Aristotle, axioms are self-evident princi-
ples, which are undeniably true. From them, theorems can be

9 Nagel & Newman, Gödel’s Proof, 1958.
10 Kuhn, Black-Body Theory and the Quantum Discontinuity, 1894–1912, 1987.
11 Sokal & Bricmont, Fashionable Nonsense, 1998 [1997], p. 51.
12 Klimovsky & Boido, Las desventuras del conocimiento matemático, 2005.
13 Trudeau, The Non-Euclidean Revolution, 2008 [1987].
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deduced, and which are also undeniably true. Thus, he says in the
Posterior Analytics:

That which is an indispensable antecedent to the acquisition of any
knowledge I call an Axiom; for there are some principles of this
kind, and “axiom” is the name generally applied to them14.

And later on, he highlights the self-evidence that characterizes
axioms, when he says:

There are three elements in demonstrations: (1) the conclusion
which is demonstrated, i. e., an essential attribute of some genus;
(2) axioms or self-evident principles from which the proof proceeds;
(3) the genus in question whose properties, i. e. essential attributes,
are set forth by the demonstrations15.

Euclid’s postulates apparently were more or less similar to Aris-
totle’s axioms; that is, they were true statements which do not need
to be demonstrated. Klimovsky and Boido say the following:

The statements that Euclid calls postulates are assumptions that
we must accept without demonstration and that concern geometry
itself. They are roughly equivalent to Aristotle’s axioms, although
our geometer does not make any philosophical considerations about
their evidence and merely asks the reader to accept them16.

This being so, let us examine the history of non-Euclidean geom-
etries, which has its roots in the attempts to prove Euclid’s fifth
postulate. These roots go far back to Antiquity. Philosophers like
Posidonius and Geminus had the suspicion that the fifth postulate
was not really a postulate, but a theorem. There were more or less
solid reasons for this doubt. First of all, the grammatical expression
of the fifth postulate is much more complicated and extensive than
the other four. In its original formulation, it says nothing about par-
allels. Let us cite Euclid’s five postulates, in order to see how
“strange” the fifth looks, at least from a grammatical point of view:

Let the following be postulated:
1. To draw a straight line from any point to any point.

14 Aristotle, Aristotle’s Posterior Analytics, 1901, p. 6.
15 Ibid., p. 20.
16 Klimovsky & Boido, Las desventuras del conocimiento matemático, 2005,
p. 78‑79.
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2. To produce a finite straight line continuously in a straight line.
3. To describe a circle with any center and distance.
4. That all right angles are equal to one another.
5. That, if a straight line falling on two straight lines make the in-
terior angles on the same side less than two right angles, the two
straight lines, if produced indefinitely, meet on that side on which
are the angles less than the two right angles17.

The fifth postulate looked grammatically “strange” when one
compared it to the other four. But this was not the only problem. If
it was, then there would not be any other reasons, other than gram-
mar, to suspect that this was a theorem. In other words, it would
have been a postulate which was poorly written, but a postulate
nonetheless. There was another source of doubt, more problematic
than grammar. It was the fact that the fifth postulate was explicitly
used only once in Euclid’s book. On the other hand, the first, second,
third and fourth postulates are frequently used throughout the
book, in order to deduce many different theorems. It seemed suspi-
cious that there was a postulate whose only role was to deduce one
specific theorem. In the words of Klimovsky and Boido:

It is striking that Euclid has placed among the postulates of his
system one that is used explicitly only once, as if some aversion on
the part of the author of the Elements lies behind it. We would say
that everything happens as if in a certain religion we found a god of
rain, another of fire, a third of the earth and a fourth of the sea, but
also a god whose specific purpose is to cure a particular cold to a
certain king. A divinity destined exclusively to that seems a bit ex-
cessive18.

This is why philosophers like Posidonius and Geminus suspected
that the fifth “postulate” was a theorem, and they attempted to
prove this. Even more so, they succeeded. They really did deduce
the fifth postulate, therefore proving that it was a theorem. But
there was a catch: they introduced an additional postulate in order
to do this. Thus, Posidonius, whose work we know from the com-
mentaries of Proclus, apparently proposed the following additional
postulate:

17 Euclid, The Thirteen Books of Euclid’s Elements, 1908, p. 154‑55.
18 Klimovsky & Boido, Las desventuras del conocimiento matemático, 2005, p. 90.
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Parallel straight lines are equidistant19.

Now this is much more concise and elegant than Euclid’s formu-
lation of the fifth postulate, as far as grammar is concerned. And
with it, one can deduce Euclid’s fifth “postulate” as a theorem. The
problem is that the postulate that Posidonius introduces is actually
equivalent to Euclid’s. They say the same thing, even if this is not
immediately evident. But it can be proved. If one takes the first four
postulates of Euclid’s Elements, together with the postulate that Po-
sidonius introduces, it is possible to deduce, as a theorem, Euclid’s
fifth postulate. But the converse is also true. If one takes all of Eu-
clid’s postulates, then Posidonius’ “postulate” can be deduced as a
theorem. So Posidonius did not really prove that Euclid’s fifth pos-
tulate was a theorem. In order to do so, he would have had to either
deduce it using only the first four postulates of the Elements, or he
would have had to introduce a new postulate which would not be
logically equivalent to Euclid’s fifth. He believed that he had suc-
ceeded in pursuing this second option, but later it was shown that
this had not been the case. The other philosopher of that time, Gem-
inus, had a similar experience.

At the beginning of the Middle Ages, Proclus summarized most
of the earlier attempts at proving the fifth postulate. All of them
had the same thing in common: they introduced an additional pos-
tulate, which was shown later to be equivalent to Euclid’s fifth. Pro-
clus himself attempted an additional proof. He did so by surrepti-
tiously introducing a statement that is equivalent to Euclid’s fifth
postulate.

This kept going on and on during the Middle Ages and later dur-
ing the Renaissance as well. At the same time, mathematics in gen-
eral had been marching forward, especially in the works of Coper-
nicus, Galileo, and later in Descartes. Mathematics, says Meil-
lassoux, began to describe a “glacial world”, one that was independ-
ent of human experience, and even of human existence:

It is this glacial world that is revealed to the moderns, a world in
which there is no longer any up or down, centre or periphery, nor
anything else that might make of it a world designed for humans.
For the first time, the world manifests itself as capable of subsisting

19 Trudeau, The Non-Euclidean Revolution, 2008 [1987], p. 128.



123
Martín Orensanz  A Critique of Meillassoux’s Reflections on Mathematics

without any of those aspects that constitute its concreteness for
us20.

Yet, the map of this glacial landscape would remain incomplete
until Euclid’s fifth postulate could finally be proven. It seemed like
an almost impossible task, since there had been numerous attempts
during the past centuries, and all of them had failed. By the 18th
century, the situation was scandalous. While Kant claimed in a foot-
note to the Critique of Pure Reason that the lack of a solid proof for
the existence of external things was “the scandal of philosophy” 21,
D’Alembert claimed in the Essays on the Elements of Philosophy
that the problem of the parallel postulate was “the scandal of geom-
etry”22. Euclid’s fifth postulate came to be known as “the parallel
postulate” because it could be written in a more elegant and concise
way by using the notion of parallels. So, for example, it became cus-
tomary to use the following equivalent formulation, which was pop-
ularized by John Playfair at the end of the 18th century:

Through a given point not on a given straight line, and not on that
straight line produced, no more than one parallel straight line can
be drawn23.

According to Klimovsky and Boido, during the early decades of
the 19th century, a small group of mathematicians:

[…] had the firm suspicion that the postulate of the parallels is un-
provable from the previous four and that it is possible to obtain new
conclusions, without finding any contradiction, admitting these
four postulates and the negation of the fifth24.

Among this group was Gauss. He developed a new geometry, a
non-Euclidean one, but he did not publish his results immediately.
Gauss did not publish his manuscripts because he feared that his
colleagues would consider his work to be “the result of an insane
lucubration, worthy of an eccentric”25.

20 Meillassoux, After Finitude, 2008 [2006], p. 115.
21 Kant, Critique of Pure Reason, 2000 [1781–1787], p. 121.
22 Le Lionnais, « Beauty in Mathematics », 2004, p. 133.
23 Trudeau, The Non-Euclidean Revolution, 2008 [1987], p. 128.
24 Klimovsky & Boido, Las desventuras del conocimiento matemático, 2005, p. 94.
25 Ibid., p. 95.
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However, Gauss received a book from an old friend of his, a math-
ematician called Wolfgang Bolyai. It was a two-volume work on ge-
ometry. This treatise included an appendix written by his son, Jo-
hann Bolyai. In this appendix, Johann Bolyai had developed a non-
Euclidean geometry by accepting Euclid’s first four postulates and
this additional one: “from a point exterior to a strait line there is
more than one parallel that passes through that point”. Previously,
Johann had told his father that he had “created a universe out of
nothing”. When Gauss received this book, he wrote a letter to Wolf-
gang. He praised Johann’s work, and felt relieved that other people
had reached similar results by negating Euclid’s fifth postulate. He
now had more confidence in the idea that he was not a lone eccen-
tric, but a serious researcher who, despite having produced a geom-
etry which seemed “strange”, had no logical errors. Gauss decided
to encourage other mathematicians to investigate these possibili-
ties. Yet the atmosphere of the time was rather uncertain, many
mathematicians still felt that they could be making fools of them-
selves if they insisted too much on this issue. Johann Bolyai decided
to stop publishing, in part due to the reason just mentioned, and in
part because he felt that Gauss could rob him of his merits if the
community of mathematicians were to fully accept the idea that it
was possible, and legitimate, to develop non-Euclidean geometries.

Johann Bolyai was not entirely wrong in his suspicions. He was
wrong to suppose that Gauss would try to steal his merit. But he
was not wrong in supposing that the community of mathematicians
would not accept the possibility of non-Euclidean geometries. This
last point was to be corroborated when a third figure emerged on
the scene, Nikolai Lobachevksy. He had developed a non-Euclidean
geometry very similar to that of Bolyai, and he presented it in con-
ferences and in publications. Lobachevsky had been urged by a
friend of Gauss to publish these results; apparently because Loba-
chevsky himself felt rather uneasy about it, just like Gauss and Bol-
yai had felt. None of them were wrong on this point, because when
the community of mathematicians started to pay attention to what
they had written, they were accused of fabricating “caricatures of
geometry” and even “morbid manifestations of geometry”26.

What were the characteristics of these early non-Euclidean ge-
ometries? Why did they seem so “repugnant”, or hard to accept?

26 Ibid., p. 94‑96.
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Neither Gauss, Bolyai nor Lobachevsky reached any contradictions
by denying Euclid’s fifth postulate. Instead, what they obtained was
a series of “weird” theorems, which nonetheless were perfectly valid
from a logical point of view. They were so “weird” that they defied
intuition, and even common sense. For example, “the sum of the
angles of a triangle is less than 180 degrees”. Or they included state-
ments like this one: “from a point exterior to a straight line, an in-
finite number of parallels pass through that point”. As if this was
not enough, another mathematician, Bernhard Riemann, developed
a non-Euclidean geometry which claimed that “from a point exterior
to a straight line, no parallels pass through that point”. While
Gauss, Bolyai and Lobachevsky developed different versions of
what was later to be called “hyperbolic geometry”, Riemann devel-
oped what would later be known as “elliptic geometry”. It was Felix
Klein who introduced these terms to describe the new geometries
developed by his colleagues.

When the community of mathematicians began to pay sufficient
attention to these new geometries, their initial rejection gave way
to a more sophisticated way of resisting them. Instead of using
terms like “caricature” and “morbid” to describe these geometries,
the idea that began to gain acceptance was that these new geome-
tries were perfectly logical, but that, unlike Euclid’s, they did not
refer to anything in the real world. In other words, it was claimed
that Euclid’s geometry is the only one that correctly describes phys-
ical space, while these other geometries do not describe anything.
They were, in a sense, “imaginary”, while Euclid’s, on the other
hand, was real.

Since that was supposedly the case, this gave way to the idea
that those mathematicians who were working on non-Euclidean ge-
ometries were more or less wasting their time. Or, at best, they were
simply entertaining themselves with a “game”, as if they were in-
venting new rules for playing chess. Of course, one can invent any
alternative rules for chess and have fun playing with those rules,
no matter how bizarre they may be. But if one wanted to do serious
research as a mathematician, then the efforts had to be made in the
only geometry which was not purely imaginary, the only one that
can describe physical space, that is, Euclidean geometry.

David Hilbert did not share the preceding opinion. For him, the
invention of non-Euclidean geometries was not a waste of time. On
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the contrary, he claimed that a sharp distinction must be drawn
between the development of a purely formal system, on the one
hand, and the task of finding applications for that formal system,
on the other. In other words, one must distinguish between “pure”
and “applied” mathematics. That a mathematical system, such as a
non-Euclidean geometry, has no immediate applications in the real
world, does not mean that there are no applications in principle.
Because it could be the case that there are such applications, but
that we have simply not found them yet. Thus, it is hastily and in-
advisable to condemn research in pure mathematics just because it
has no immediate applications.

Hilbert maintained that pure mathematics was the study of for-
mal systems, and that the only thing that matters in these formal
systems is their syntax. Applied mathematics, on the other hand, is
the task of finding semantic interpretations of those formal sys-
tems. It is only at this point that semantics enters the scene; in
purely formal systems, all that matters are their syntax. This dis-
tinction between pure and applied mathematics began to gain ac-
ceptance within the community of mathematicians, but there was
still some reticence to the idea that non-Euclidean geometries could
have a physical interpretation. They were too weird; their most
basic statements went against common sense. The tide finally
turned when Einstein described physical space in 1916 using an in-
terpretation of Riemann’s elliptic geometry. This showed that non-
Euclidean geometries could indeed have a relation to the real world,
and that they could be used to describe physical space just as good,
if not better, than Euclidean geometry.

Profound consequences ensued. Some of them were even quite
disturbing. First of all, intuition and common sense were no longer
a guarantee of what kind of mathematical research qualifies as “le-
gitimate”. In other words, one cannot dismiss a work of mathemat-
ics simply because it runs contrary to intuition and common sense.
Second, it was no longer clear that Euclidean geometry was the only
“true” or “real” geometry, and it was not clear that there could even
be such a thing, Euclidean or not. Instead, Hilbert’s distinction be-
tween pure and applied mathematics became the new cornerstone
of mathematical research. All purely formal systems are equally le-
gitimate; Euclid’s geometry is not “better” or “worse” than non-Eu-
clidean geometries. As long as they are treated in a purely formal
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way, all of them are on an equal footing. Regarding Hilbert’s work,
Klimovsky and Boido say the following:

Hilbert himself claimed that, while we are somehow obliged to use
words from everyday language to speak in (or within) a formal axi-
omatic system, instead of “point”, “line”, and “plane” we could well
use “table”, “chair” and “beer glass” without altering in the least the
system itself: “point” or “table”, here, are mere empty labels without
any meaning27.

Shocking, isn’t it? At least it was shocking to those mathemati-
cians that still adhered to the Aristotelian notion that axioms must
be “true” and “self-evident”. What Hilbert showed was that an ax-
iom does not necessarily have to be “true” or “self-evident” in the
Aristotelian sense. Rather, it is a meaningless expression, com-
posed of meaningless signs, which is arbitrarily formulated by the
mathematician, in order to see what can be deduced from it. The
theorems, which are deduced from the axioms, are no longer “true”
either, as Aristotle thought. Instead, they are meaningless expres-
sions, composed of meaningless signs, which are derived from the
axioms simply by following a set of accepted, arbitrary rules. In this
sense, a formal axiomatic system can be compared to a game of
chess:

Actually, such a structure really looks like a logical game with some
resemblance to chess. In chess we do not know exactly what we are
referring to with the pieces (what we do know is how to move them),
and no one in their right mind will believe that they are executing
monarchical politics because they move the king, the queen and
their pawns. Calling the pieces “king”, “bishop” or “tower” is a trib-
ute to tradition; in the same way, in a non-Euclidean geometry the
words “point”, “line”, “plane”, etc., have no meaning. Such a meth-
odology is known as formal axiomatic method, or simply axiomatic
method, and the game we have described in particular is an exam-
ple of what is called a formal axiomatic system28.

And later on, they say:
And if one were to ask here, from a purely theoretical, non-historical
or practical point of view, which one of these is the legitimate chess,

27 Ibid., p. 106.
28 Ibid., p. 104.
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the answer would be: they are all equally legitimate, once it is ac-
cepted, for each of them, their corresponding pieces, initial posi-
tions, rules, etc. The same applies to axiomatic systems. From a
purely logical perspective, we can understand Euclid’s geometry as
a formal axiomatic system, since it has its vocabulary, the catego-
ries of that vocabulary, and it has its starting points, the axioms,
and what is deduced from them, the theorems. Both the Euclidean
geometry and the non-Euclidean geometries would be, on an equal
level, formal axiomatic systems, that is, “games” that, as with the
different variants of chess that we have mentioned, would have to
be considered, all of them, perfectly legitimate29.

Having said this, we are ready to examine Bunge’s philosophy of
mathematics, which draws upon the philosophical consequences of
the history of non-Euclidean geometries.

3] Bunge’s Philosophy of Mathematics
We saw that for Meillassoux, mathematical statements are ideal,

but their referents are not. We also saw that Harman noticed an
ambiguity in this seemingly unproblematic position. In Bunge’s
work, we find a solution to this ambiguity. He unequivocally states
that numbers are not found in the Universe among objects such as
rocks, trees and mountains. Numbers, according to him, are brain
processes:

Although thinking of the number 3 is a brain process, hence one
located in space-time, the number 3 is nowhere because it is a fic-
tion existing by convention or fiat, and this pretense does not in-
clude the property of spatiotemporality. What holds for the num-
ber 3 holds for every other idea—concept, proposition, or theory. In
every case we abstract from the neurophysiological properties of the
concrete ideation process and come up with a construct that, by con-
vention, has only conceptual or ideal properties30.

According to Bunge, the number 3 is a fiction, and so is every
other mathematical entity. There is more to be said, because not
only does he consider mathematical entities to be fictional, he says
that every concept, proposition and theory are fictional as well. He
calls these “constructs”, and they include even the most complex

29 Ibid., p. 115.
30 Bunge, Ontology II : A World of Systems, 1979, p. 146.
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scientific theories. So, for instance, a scientific theory about gravity
is not gravity itself. For one thing, gravity is a fundamental force of
nature, while a theory about gravity is not: it is a brain process. And
brain processes are not fundamental forces of nature. So far, this is
in agreement with Meillassoux’s distinction between statements
and their referents. But it seems that Meillassoux would be inclined
to believe that an iron sphere, for example, is spherical in itself. It
would be a sphere even if there was no one to look at it, since its
spherical shape is understood here as a primary quality. Bunge
would disagree:

Concrete objects (things) have no intrinsic conceptual properties, in
particular no mathematical features. This last statement goes
against the grain of objective idealism, from Plato through Hegel to
Husserl, according to which all objects, in particular material
things, have ideal features such as shape and number. What is true
is that some of our ideas about the world, when detached from their
factual reference, can be dealt with by mathematics. (For example,
by analysis and abstraction we can extract the constructs “two” and
“sphere” from the proposition “That iron sphere is composed of two
halves”.) In particular, mathematics helps us to study the (mathe-
matical) form of substantial properties. In short, not the world but
some of our ideas about the world are mathematical31.

Material things, therefore, do not have shapes, at least strictly
speaking. We can, of course, talk about material things as if they
had shapes, for example when we say that a certain iron object is
spherical. But that object, in itself, is not spherical. This may seem
hard to accept. Jean-Pierre Marquis, in his appraisal of Bunge’s phi-
losophy of mathematics, expresses his concern regarding the clarity
of this point, and offers some comments on Bunge’s example of the
iron sphere:

I must admit that this is not entirely clear to me. Needless to say,
the iron sphere is not, strictly speaking, a sphere in the mathemat-
ical sense. The sensory impression of the sphere presumably gives
us an approximation of what a sphere in the strict sense would look
like. One could perhaps say that we treat the iron sphere as if it
were a sphere. But in order to do this, we already need to have the
mathematical concept of sphere. The mathematical concept of

31 Bunge, Ontology I : The Furniture of the World, 1977, p. 118.
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sphere is not in the iron sphere. The concept of sphere is given in a
certain language, be it geometric, analytic or algebraic, thus in a
certain context. It is, in Bunge’s terminology, a construct32.

In order to clarify Bunge’s example of the iron sphere, it will be
useful to remember what happened to the concept of triangles dur-
ing the development of non-Euclidean geometries in the nineteenth
century. In Euclidean geometry, the sum of the angles of a triangle
is equal to 180 degrees. For millennia, this seemed to be an absolute
truth. However, in some non-Euclidean geometries it is possible to
prove, without contradiction, that the sum of the angles of a triangle
is greater than 180 degrees; this is the case of elliptic geometry. In
others, such as hyperbolic geometry, the sum of the angles of a tri-
angle can be less than 180 degrees. One cannot say that the trian-
gles of Euclidean geometry are the “real” triangles and that the tri-
angles of non-Euclidean geometries are “not real”. What holds for
triangles also holds, in general, for all other shapes: spheres,
squares, rectangles, and so forth: there is no reason to believe that
there is such a thing as a “real” sphere as characterized by this or
that geometry, as opposed to other “non-real” spheres characterized
by other geometries. The preceding point can be clarified further by
considering some of Bunge’s comments on cultural objects:

I submit that the same holds, mutatis mutandis, for all cultural ob-
jects. Thus, a sculpture that nobody looks at is just a chunk of mat-
ter—and so is a philosophical treatise that nobody reads. There is
no immortality in cultural creations just because they can be exter-
nalized (“embodied”) and catalogued33.

Initially, one could argue that a certain sculpture is a chunk of
matter that has a specific shape. But, just like the property of “being
spherical” is not a primary quality of an iron sphere, neither is “hav-
ing a specific shape” in the case of a sculpture that no one is looking
at. Suppose we are considering a sculpture of a horse, or of Pegasus.
The sculpture itself, without observers, would not look like a horse
or Pegasus, because there would not be anyone looking at it. If this
is so, then it would not only apply to cultural objects, but to natural
ones as well. A waterfall would not look like a waterfall when no-
body is looking at it, the Moon would not look round or spherical, on

32 Marquis, « Mario Bunge’s Philosophy of Mathematics », 2012, p. 1574.
33 Bunge, Ontology II : A World of Systems, 1979, p. 168‑70.
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the contrary, both of them would just be chunks of matter, without
any visual appearance.

Bunge traces a distinction between attributes and properties. At-
tributes, according to him, are characteristics that we ascribe to
things, but the things in question, by themselves, do not have those
attributes. Properties, on the contrary, do belong to things in them-
selves, independently of human existence. Attributes are con-
structs, while properties are real. Thus, when we say that a sculp-
ture looks like a horse, this is something that we are attributing to
a chunk of matter. When we say that the sculpture in question is
made of iron, this is a property of that chunk of matter itself. Iron
has properties that are independent of our scientific hypothesis and
theories, although we use the latter in order to understand the for-
mer. In this sense, “spherical” or “having a spherical shape” is not
a property, it is an attribute. Attributes can be mathematical, but
not properties. Whatever properties the object itself has, these are
never mathematical.

4] Concluding Remarks
One of the most prominent features of French philosophy in the

continental tradition is, from a historical perspective, its increasing
association with mathematics. It was a prominent topic in the
works of Gilles Deleuze, and even more so in those of Alain Badiou.
Quentin Meillassoux’s work is in line with that tradition, and our
wager is that it could greatly benefit from Bunge’s philosophy of
mathematics. The rationale for this is that Bunge’s approach pro-
vides an unequivocal solution to the ambiguity that Harman had
recognized in Meillassoux’s discussion of the “Pythagorean” thesis.
Although Bunge advances some ideas which may seem difficult to
accept, such as the idea that objects in themselves do not have geo-
metric shapes, he nevertheless also provides reasons for doubting
Meillassoux’s claim that any property which can be mathematized
can be construed as a primary quality. Numbers, algebraic struc-
tures, and other mathematical entities are not real objects nor prop-
erties of real objects, but useful fictions instead. They are brain pro-
cesses, and by convention we feign that they have autonomous ex-
istence.
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