MECHANIZING INDUCTION

Ronald Ortner and Hannes Leitgeb

In this chapter we will deal with “mechanizing” induction, i.e. with ways in
which theoretical computer science approaches inductive generalization.

In the field of Machine Learning, algorithms for induction are developed. De-
pending on the form of the available data, the nature of these algorithms may
be very different. Some of them combine geometric and statistical ideas, while
others use classical reasoning based on logical formalism. However, we are not so
much interested in the algorithms themselves, but more on the philosophical and
theoretical foundations they share. Thus in the first of two parts, we will examine
different approaches and inductive assumptions in two particular learning settings.

While many machine learning algorithms work well on a lot of tasks, the inter-
pretation of the learned hypothesis is often difficult. Thus, while e.g. an algorithm
surprisingly is able to determine the gender of the author of a given text with
about 80 percent accuracy [Argamon and Shimoni, 2003], for a human it takes
some extra effort to understand on the basis of which criteria the algorithm is able
to do so. With that respect the advantage of approaches using logic are obvious: If
the output hypothesis is a formula of predicate logic, it is easy to interpret. How-
ever, if decision trees or algorithms from the area of inductive logic programming
are based purely on classical logic, they suffer from the fact that most universal
statements do not hold for exceptional cases, and classical logic does not offer any
convenient way of representing statements which are meant to hold in the “normal
case”. Thus, in the second part we will focus on approaches for Nonmonotonic
Reasoning that try to handle this problem.

Both Machine Learning and Nonmonotonic Reasoning have been anticipated
partially by work in philosophy of science and philosophical logic. At the same
time, recent developments in theoretical computer science are expected to trig-
ger further progress in philosophical theories of inference, confirmation, theory
revision, learning, and the semantic and pragmatics of conditionals. We hope
this survey will contribute to this kind of progress by building bridges between
computational, logical, and philosophical accounts of induction.

1 MACHINE LEARNING AND COMPUTATIONAL LEARNING THEORY

1.1  Introduction

Machine Learning is concerned with algorithmic induction. Its aim is to develop
algorithms that are able to generalize from a given set of examples. This is quite
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a general description, and Machine Learning is a wide field. Here we will confine
ourselves to two exemplary settings, viz. concept learning and sequence prediction.

In concept learning, the learner observes examples taken from some instance
space X together with a label that indicates for each example whether it has a
certain property. The learner’s task then is to generalize from the given examples
to new, previously unseen examples or to the whole instance space X. As each
property of objects in X can be identified with the subset C' C X of objects that
have the property in question, this concept C' can be considered as a target concept
to be learned.

EXAMPLE 1. Consider an e-mail program that allows the user to classify incom-
ing e-mails into various (not necessarily distinct) categories (e.g. spam, personal,
about a certain topic, etc.). After the user has done this for a certain number of
e-mails, the program shall be able to do this classification automatically.

Sequence prediction works without labels. The learner observes a finite sequence
over an instance set (alphabet) X and has to predict its next member.

EXAMPLE 2. A stock broker has complete information about the price of a cer-
tain company share in the past. Her task is to predict the development of the
price in the future.

In the following, we will consider each of the two mentioned settings in detail.
Concerning concept learning we also would like to refer to the chapter on Statistical
Learning Theory of von Luxburg and Schélkopf in this volume, which deals with
similar questions in a slightly different setting.

1.2 Concept Learning
The Learning Model

We start with a detailed description of the learning model. Given a basic set
of instances X, the learner’s task is to learn a subset C' C X, called a concept.
Learning such a target concept C' means learning the characteristic function 1o
on X. That is, for each x € X the learner shall be able to predict whether x is
in C or not.

EXAMPLE 3. For learning the concept “cow” one may e.g. consider X to be the
set of all animals, while C' would be the set of all cows. The concept would be
learned if the learner is able to tell of each animal whether it is a cow.

In order to enable the learner to learn a concept C, she is provided with some
training examples, that is, some instances taken from X together with the infor-
mation whether each of these is in C or not. Thus the learner’s task is to generalize
from such a set of labeled training examples

{(331, lc(itl)), ($2, 10(1‘2)), ey (a:n, lc(xn))}



Mechanizing Induction 721

with x; € X to a hypothesis h : X — {0,1}. If the learner’s hypothesis coincides
with 1¢ she has successfully learned the concept C.

A special case of this general setting is the learning of Boolean functions where
the task is to learn a function f(p1,pa,...,pn) of Boolean variables p; that takes
values in {0,1}. Obviously, any Boolean function can be represented by a formula
of propositional logic (and vice versa) if the values of the variables p; and the
value of the function f are interpreted as truth values. Each training example
for the learner consists of an assignment of values from {0,1} to the variables p;
together with the respective value of f. The task of the learner is to identify
the function f. As each assignment of values to the p; uniquely corresponds to a
vector from X := {0,1}", learning a Boolean function f is the same as learning
the concept of all vectors z in X for which f(z) = 1.

No-Free-Lunch Theorems

Unfortunately, the space of possible concepts is the whole power set 2%, so that
without any further inductive assumptions learning is an impossible task (except
for the trivial case, in which each instance in X is covered by the training exam-
ples), cf. [Mitchell, 1990]. Mitchell in his introduction to Machine Learning [1997,
p.23] postulates as desired inductive assumption the following inductive learning
hypothesis:

“Any hypothesis found to approximate the target function well over
a sufficiently large set of training examples will also approximate the
target function well over other unobserved examples.”

Although this is of course what we want to have, it does not really help us in
achieving it. Given only the training examples, each possible hypothesis in 2%
which correctly classifies the training examples seems to be as likely.

On the other hand, machine learning literature provides a lot of algorithms
starting from decision trees to neural networks and support vector machines (for
an introduction to all this see e.g. [Mitchell, 1997]) that seem to work well on a lot
of problems (and also with some theoretical results complementing the picture).
How do these algorithms resolve the problem of induction?

Indeed, each algorithm (at least implicitly) defines its own hypothesis class. For
a given set of training examples the algorithm will output a hypothesis. By doing
this, the algorithm obviously has to prefer this hypothesis to all other possible hy-
potheses. As remarked before, the training sample helps only to a limited extent as
there are a lot of consistent hypotheses in 2% which classify the training examples
correctly. Thus each learning algorithm is biased towards some hypotheses in 2% in
order to be able to make a decision at all. On the other hand, if all hypotheses in 2%
are equally likely, no learning algorithm will be able to perform better than another
one in general. This is basically the content of so-called “no-free-lunch theorems”
for supervised learning of which there exist various versions [Rao et al., 1995;
Schaffer, 1994; Wolpert, 1996b; Wolpert, 1996a]. For a discussion see also [von
Luxburg and Scholkopf, 2009).
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THEOREM 4 No-free-lunch, [Wolpert, 2001]. Averaged over all possible target
concepts, the performance of any learning algorithm on previously unseen test
examples is that of a random guesser.

Thus, in order to save the possibility of learning, one either has to accept that
each learning problem can be only tackled by suitable algorithms that on the
other hand will fail on other learning problems. Alternatively, one may adopt
an inductive assumption that denies that all possible target concepts in 2% are
equally likely.

ASSUMPTION 5 [Giraud-Carrier and Provost, 2005]. The process that presents
us with learning problems induces a non-uniform probability distribution on pos-
sible target concepts C' C 2X.

Actually, this is not enough, as one also has to avoid all probability distribu-
tions on target concepts where good performance on some problems is exactly
counterbalanced by poor performance on all other problems, see [Rao et al., 1995]
for details.

Most learning algorithms use that the instance set X will not be unstructured
but (as e.g. in the common case where X C R"™) provides a suitable distance
metric d : X x X — R which can be used as a kind of similarity measure between
instances. The inductive assumption in this case is that two similar (i.e. close)
instances will have the same label. Thus, if in an object recognition problem two
images differ in only a few pixels they will get the same label, if two e-mails differ
only in some letters one will be spam only if the other is as well, and so on.!
Although this is a very natural assumption, note that it won’t be true for all
learning problems whatsoever, as the following example shows.

EXAMPLE 6. Consider the two chess positions in the following diagram with
Black to move in both of them. While the two positions will be considered to

be very close by any ordinary distance measure (as there is only a single white
pawn placed differently), the first position is clearly in favor of White due to the
enormous material advantage, while in the second diagram Black can checkmate

1This observation leads to the simple k-nearest neighbor algorithm, which classifies an instance
according to the labels of the k nearest training examples. This algorithm not only works well in
practice, it also has some advantageous theoretical properties. See [von Luxburg and Schoélkopf,
2009].
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immediately by moving the bishop to h4. Of course, it may well be that there is
some other natural metric on the space of chess positions that works well, yet it is
by no means clear what such a metric may look like. Thus, from a practical point
of view for many learning problems it is important to find in advance a proper
representation space together with a suitable metric for the data.

In the favorable case where there is a suitable distance metric on X, the only
difficulty is to determine the boundary between positively and negatively labeled
instances. Unfortunately, in general this boundary between positive and negative
training examples also will not be uniquely determined by the training exam-
ples. Thus, the availability of a distance metric does not really solve our original
problem, so that again any algorithm must specify some preference relation. (Ac-
cordingly, in Section 2 on Nonmonotonic Reasoning we will see that the standard
semantics for nonmonotonic logics is based on preference relations over worlds or
states.)

Occam’s Razor

A common preference relation on the whole hypothesis space is to prefer in the
spirit of Occam’s razor simple hypotheses over complicated ones. Thus — to stay
with the previous example — when choosing a boundary between positive and
negative training examples, a hyperplane is e.g. preferred over a non-differentiable
surface. Especially, in the presence of noise (i.e. when the labels of the training
data may be wrong with some probability) Occam’s razor is often used to avoid
the danger of overfitting the training data, that is, to choose a hypothesis that
perfectly fits the training data but is very complex and hence often does not
generalize well.

There has been some discussion on the validity of Occam’s razor (and also of
the more or less synonymous overfitting avoidance) also in the machine learning
community.? While Occam’s razor often remains a rather vague principle, there
are some theoretical results (some of which will be mentioned below) and attempts
to clarify what Occam’s razor in machine learning exactly is. Thus, it has been
argued [Domingos, 1998] that the term “Occam’s razor” is actually used for two
different principles in the machine learning literature.

POSTULATE 7 Occam’s first razor. Given two models with the same error on
the whole instance space X, choose the simpler one.

POSTULATE 8 Occam’s second razor. Given two models with the same error
on the training sample, choose the simpler one.

While it is evidently easier to argue for Occam’s first razor (although its validity
is also not clear), only the second razor is of any use in machine learning. However,
finding convincing arguments for this latter version is obviously more difficult.
Basically there are two ways of argument for a theoretical justification of Occam’s

2For a related discussion concerning the trade-off between estimation error and approxzimation
error see [von Luxburg and Schélkopf, 2009].
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second razor. First, there are some theoretical results from so-called PAC learning
which can loosely be interpreted as support for Occam’s second razor (see the
section on PAC learning below). Second, there is the Bayesian argument which
serves as a base for a lot of learning algorithms, the best-known of which is the
MDL (minimum description length) principle introduced by Rissanen [1978].3

POSTULATE 9 MDL Principle. Choose the model that minimizes the total num-
ber of bits needed to encode the model and the data (given the model).*

There are some theoretical results that support the claim that Occam’s second
razor in the realization of the MDL principle indeed is the best strategy in almost
all cases [Vitanyi and Li, 2000]. However, these results consider an idealized MDL
principle that (due to the use of Kolmogorov complexity [Li and Vitanyi, 1997])
is uncomputable in practice.® On the other hand, although approximations of
an idealized MDL approach are often successful in practice, the empirical success
of Occam’s second razor is controversial, too [Webb, 1996; Schaffer, 1993]. Of
course, part of the reason for this is that practical MDL approaches (just as any
other learning algorithm) cannot evade the earlier mentioned no-free-lunch results.
That MDL has particular problems when the training sample size is small (so that
the chosen hypothesis fits the data, but is too simple) is neither surprising nor a
real defect of the approach: with insufficient training data provided, also complex
models are likely to fail.

Metalearning

Some people try to evade the no-free-lunch theorems by lifting the problem to a
meta-level (see e.g. [Baxter, 1998; Vilalta et al., 2005]). Thus, instead of solving
all problems with the same algorithm, it is attempted to assign each problem a
suitable algorithm. Of course, from the theoretical point of view this does not
help, as the no-free-lunch theorems obviously also hold for any meta-algorithm
that consists of several individual algorithms. However, from the practical point
of view this approach makes sense. In particular, it is e.g. certainly useful to apply
an algorithm that is able to make use of any additional assumptions one has on
the learning problem at hand. A similar theory of induction that prefers local
induction over global induction has recently been proposed in [Norton, 2003).

After these general considerations we turn to more theoretical models of learning
together with some results that have been achieved.

3 Actually, MDL does not see itself as a Bayesian method. For a discussion of the relation
of MDL to Bayesian methods (and a general introduction to MDL) see Chapters 1 and 17
of [Griinwald, 2007]. More detailed descriptions of MDL as well as Bayesian approaches can also
be found in [von Luxburg and Schélkopf, 2009].

4 As such, this basic idea of MDL does not look Bayesian at all, as there seem to be no proba-
bilities involved. Indeed, these come into play by the observation that there is a correspondence
between encodings and probability distributions (cf. Section 1.3, in particular footnote 20).

5We do not give any details here but refer to the section on Solomonoff’s theory of induction
below, which is closely related to idealized MDL.
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PAC Learning

The simplest way to make learning feasible is to consider a setting where the space
of possible concepts is restricted to a certain concept class known to the learner.

DEFINITION 10. Let X be an arbitrary (possibly infinite) set of instances. Then
any subset C of the power set 2% of X is called a concept class over X.

If the learner knows the concept class C, she will choose her hypothesis h from
H = {1¢|C € C}. Thus our first assumption to make learning possible in this
framework will be the following.

ASSUMPTION 11. The learner has access to a set of possible hypotheses H C 2%
that also contains a hypothesis corresponding to the target concept.

Of course, it will depend on the size of the concept class and the given training
examples to which extent Assumption 11 will be helpful to the learner.

EXAMPLE 12. Assume X = {a,b,c,...,z} and C = {{a7b}7{b7 c}} Then the
learner will be able to identify a target concept taken from C if and only if either
a or ¢ is among the training examples.

EXAMPLE 13. Let X = {a,b,c} and C = {{a}, {b}, {c}, {a,b},{b,c}}. It is easy
to check that unlike in Example 12 two distinct training examples are needed in
any case in order to identify a target concept taken from C.

In general, the number of distinct training examples that are necessary (in the
best as well as in the worst case) in order to identify a concept will depend on the
combinatorial structure of the concept class.

DEFINITION 14. For Y C X weset CNY := {CNY|C € C}. Such a subset
Y C X is said to be shattered by C, if CNY = oY,

If Y C X is shattered by a concept class C then it is easy to see that in the worst
case, learning a concept in C will take |Y| distinct training examples. Thus, the
following definition provides an important combinatorial parameter of a concept
class.

DEFINITION 15. The VC-dimension® of a concept class C C 2% is the cardinality
of a largest Y C X that is shattered by C.

Subsequent results will emphasize the significance of the VC-dimension. For a
more detailed account on why the VC-dimension matters see [von Luxburg and
Scholkopf, 2009].

EXAMPLE 16. The concept class given in Example 12 has VC-dimension 1, as
only the sets {a} and {c} are shattered. In Example 13 we find that C shatters
{a,b} and has VC-dimension 2.

REMARK 17. In the agnostic learning setting (see the respective section below)
where the learner does not know the concept class from which the target concept

6VC stands for Vapnik-Chervonenkis. Vapnik and Chervonenkis [1971] were together with
[Sauer, 1972] and [Shelah, 1972] the first to consider the VC-dimension of concept classes.
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is taken, the learner has to choose a hypothesis class H by herself. If there is
no hypothesis in H that suits the training examples, the hypothesis class H can
be considered to be falsified by the examples. The number of examples that is
necessary in the worst case to falsify a class H of VC-dimension d is simply d + 1.
This can be easily verified, as the examples in a set Y shattered by H cannot
falsify H, independent of their labels. Hence, the VC-dimension can be used to
measure the degree of falsifiability of hypothesis classes, as noted in [Corfield et
al., 2005]. Popper [1969, Chapter VI] had similar ideas, yet his measure for the
degree of falsifiability in general does not coincide with the VC-dimension [Corfield
et al., 2005]. See also the discussion in [von Luxburg and Schoélkopf, 2009).

Example 12 shows that if two concepts are close to each other (i.e. their char-
acteristic functions coincide on almost all instances in X), then finding the target
concept may take a lot of training examples (in the worst case). In the PAC-
framework this problem is handled by weakening the task for the learner in that
she need not identify the target concept, but that it is sufficient to approzrimate
it. That is, the learner’s hypothesis shall be correct on most instances in X.

As the learner usually will not be able to choose the training examples by her-
self,” one assumes that the training examples are drawn independently according
to some fixed probability distribution P on X that is unknown to the learner.
The learning success will of course depend on the concrete sample presented to
the learner, so that the number of training examples the learner needs in order to
approximate the target concept well will be a random variable depending on the
distribution P. Thus, with some (usually small) probability the training examples
may be not representative for the target concept (e.g. if the same example is re-
peatedly drawn from X). Hence, it is reasonable to demand from the learner to
approximate the target concept only with high probability, that is, to learn probably
approximately correct, which is what PAC stands for.

However, learning still may be impossible, if the distribution P has support® on
a proper subset Y C X, so that some instances will never be sampled. Thus, one
measures the performance of the learner’s hypothesis not uniformly over the whole
instance space X, but according to the same distribution P that also generates the
training examples. That is, the error of the learner’s hypothesis h : X — {0,1}
with respect to a target concept C' and a distribution P on X is defined as

ercp(h) == ’P({ax | h(z) # 1C(x)})

One may consider this as the error expected for a randomly drawn test exam-
ple, where one makes the inductive assumption that this test example is drawn
according to the same distribution P that generated the training sample.

ASSUMPTION 18. The training as well as the test examples are drawn from the
instance set X according to an unknown but fixed distribution P.

7See however the active learning setting described below.
8The support of a probability distribution is basically the set of instances that have positive
probability.
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Summarizing, a learner PAC learns a concept class, if for £, § > 0 there is
a number m = m(e,d) of training examples that are sufficient to approximate
the target concept with high probability. That is, with probability at least 1 — ¢
the output hypothesis has error smaller than €. More precisely, this leads to the
following definition.”

DEFINITION 19. A concept class C C 2% is called PAC learnable, if for all ¢,
0 € (0,1) there is an m = m/(e, §), such that for all probability distributions P on X
and all C' € C: when learning C' from m examples, the output hypothesis A has
error ercp(h) > ¢ with probability smaller than § (in respect to the m examples
drawn independently according to P and labeled by C).

This framework has been introduced by Valiant [1984]. For a comparison of this
learning model to alternative models see [Haussler et al., 1991] or also [Wolpert,
1995] where the PAC learning model is embedded into a Bayesian framework. A
lot of earlier work in computational learning dealt with learning a target concept
in the limit (i.e. when the number of training examples goes to infinity). Research
in this direction (with some links to recursion theory) goes back to [Gold, 1967].
For an overview see [Angluin and Smith, 1983]; [Osherson and Weinstein, 2009]
also deals with that approach.

Valiant [1984, p.1142] remarks that an interesting consequence of his learning
model is that when a population has successfully learned a concept based on the
same underlying probability distribution, there still may be significant differences
on the learned concept. In particular, examples that appear only with very small
probability are irrelevant for learning, so that

“thought experiments and logical arguments involving unnatural hy-
pothetical situations may be meaningless activities.”

It is a natural question to ask which concept classes are PAC learnable. Ob-
viously, this will also depend on the learning algorithm. Choosing e.g. a stupid
algorithm that even classifies most of the training examples wrongly will obviously
prevent learning. Thus, one often turns the attention to consistent learners that
always choose a hypothesis h that is consistent with the training sample,' i.e. for
a target concept C' and training examples 1,...,x, one has h(z;) = 1o(z;) for
1 <4 < n.t' Such consistent learners then are able to PAC learn finite concept

9Usually, there are also some considerations about the run-time complexity of an algorithm
that PAC learns a concept class. For now, we will neglect this for the sake of simplicity, and come
back to the question of efficient PAC learning when discussing Occam algorithms and polynomial
learnability below.

10While at first sight it may look foolish to consider hypotheses that are not consistent,
this certainly makes sense if there is noise in the training data. Furthermore as mentioned
by Kelly [2004b], when also considering questions of computability it may happen that the re-
striction to computable consistent hypotheses prevents learning, see also [Osherson et al., 1988;
Kelly and Schulte, 1995].

1 As we assume that the learner has access to the concept class C from which the target concept
is taken, it is obvious that there is a consistent hypothesis h € H = {1 |C € C}.
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classes, where the necessary number of examples can be shown to depend on the
size of the concept class.

THEOREM 20 [Haussler, 1988]. Any consistent learning algorithm needs
O (L(log 5 +log|C|)) examples for PAC learning any finite concept class C.

More generally, not the absolute size but the VC-dimension of a concept class
turns out to be the critical parameter. Thus, concept classes of finite VC-dimension
are PAC learnable, and the number of necessary examples for learning can be upper
bounded using the VC-dimension as follows.!?

THEOREM 21 [Blumer et al., 1989]. Any consistent learning algorithm needs
0] (%(log% + dlog %)) examples for PAC learning any well-behaved'® concept class
of VC-dimension d.

For finite concept classes this is slightly worse than the result of Theorem 20,
as the VC-dimension of a finite class C may take values up to log, |C|, see [Blumer
et al., 1989)].

Of course, particular learning algorithms may PAC learn concept classes using
fewer examples. Here is e.g. an alternative bound for the (consistent) I-inclusion
graph algorithm of [Haussler et al., 1994].

THEOREM 22 [Haussler et al., 1994]. The 1-inclusion graph learning algorithm
needs O (glog%) examples for PAC learning any well-behaved concept class of
VC-dimension d.

The following lower bound shows that the dependence on the VC-dimension is
necessary.

THEOREM 23 [Ehrenfeucht et al., 1989]. Let C be an arbitrary concept class of
VC-dimension d. Then there is a probability distribution P such that any consis-
tent learner needs ) (é(d + log %)) examples for PAC learning C.

In particular this means that it is impossible to PAC learn concept classes of
infinite VC-dimension,'* so that it becomes an interesting question which concept
classes have finite VC-dimension. For certain concept classes the VC-dimension
can be easily calculated. Thus, the concept class of all (open or closed) intervals
on the real line R has VC-dimension 2. The class of axis-parallel rectangles in R™
has VC-dimension 2n. Half-spaces as well as balls in R™ have VC-dimension n+ 1.
Further concept classes with finite VC-dimension can be found e.g. in [Vapnik
and Chervonenkis, 1974], [Dudley, 1984], [Wenocur and Dudley, 1981], [Assouad,
1983, or [Haussler and Welzl, 1987]. Examples for concept classes with infinite
VC-dimension are finite unions of intervals or the interiors of Jordan curves in R2.

12 Although the results presented by von Luxburg and Scholkopf [2009] concern a slightly
different setting, they give some good intuition for why finiteness is important and why a combi-
natorial parameter like the VC-dimension matters even if hypothesis classes and instance space
are infinite or even continuous.

13Usually, one has to impose some modest measure-theoretic assumptions when the considered
concept classes are infinite, cf. Appendix A1l of [Blumer et al., 1989].

14See however the paragraph on polynomial learnability below.
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In spite of the negative result implied by Theorem 23 it is not hopeless to learn
such classes. Algorithms as well as theoretical results may make use of a suitable
parametrization of the domain in order to achieve useful results about what is
called polynomial learnability (Definition 25 below) in [Blumer et al., 1989]. For
details see the discussion of Occam algorithms below.

For particular classes with finite VC-dimension, beside the PAC bound of The-
orem 21 often alternative or sharper, sometimes even optimal bounds can be de-
rived. Thus (in view of Theorem 23) optimal PAC bounds of O (1(d +log $)) can
be derived e.g. for axis-parallel hyperrectangles in R? [Auer et al., 1998] or classes
with certain combinatorial structure [Auer and Ortner, 2007]. However, some of
these bounds only hold for special algorithms, while for particular consistent al-
gorithms sharper lower bounds than given in Theorem 23 can be shown. Thus,
consider e.g. the concept class Cx 4 := {C C X ||C| < d} of all subsets of X of
size at most d. This simple concept class has VC-dimension d and is PAC learn-
able only from €2 (%(d logé + log %)) examples for the learning algorithm which
chooses a largest consistent hypothesis from Cy 4 [Auer and Ortner, 2007]. It is
notable that the algorithm that chooses a smallest consistent hypothesis needs
only O (1(d +1log $)) examples to PAC learn Cx 4 [Auer and Ortner, 2007]. This
can be seen as a theoretical justification of Occam’s razor, as choosing a simple
(which in this case means small) hypothesis provides better PAC bounds than
choosing a more complex (i.e. larger) hypothesis.

Occam Algorithms and Polynomial Learnability

In fact, there are also other theoretical justifications of Occam’s razor. Consider a
concept class C (of arbitrary, possibly infinite VC-dimension) together with some
kind of complexity measure on the concepts in C. It would be a straightforward
realization of Occam’s razor to demand to choose a hypothesis consistent with
the training examples which has smallest complexity. However, as it turns out
that computing such a hypothesis may be (NP-)hard (cf. e.g. the example given
in [Blumer et al., 1989]), one confines oneself to the more modest requirement to
choose a hypothesis that is significantly simpler than the training sample. This
can be made precise as follows. Let C;‘}m be the effective hypothesis space'® of an
algorithm A that is presented with m training examples of a concept of complex-
ity < s.

DEFINITION 24. A learning algorithm A is an Occam algorithm for a concept
class C with complexity measure s : C — Z™, if there is a polynomial p(s) and a
constant o € [0,1), such that for all s,m > 1, the VC-dimension of C;‘}m is upper
bounded by p(s)m®.

It can be shown that Occam algorithms satisfy a learnability condition that is
similar to PAC learning.

DEFINITION 25. A concept class C C 2% with given complexity measure

15This is the set of all hypotheses that may be the outcome of the algorithm.
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s : C — Z* is called polynomially learnable, if for all €, § € (0,1) there is an
m = m(g,d,s), such that for all probability distributions P on X and all C' € C
with s(C) < s: when learning C' from m examples, the output hypothesis h has
error erg p(h) > ¢ with probability smaller than ¢ in respect to the m examples
drawn independently according to P and labeled by C.

Thus, unlike in the original PAC setting, polynomial learning of more complex
concepts (in terms of the given complexity measure s) is allowed to take more
examples.

THEOREM 26 [Blumer et al., 1989]. Any concept class for which there is an
Occam algorithm is polynomially learnable.

Theorem 26 is a generalization of a similar theorem of [Blumer et al., 1987].
Sample complexity bounds as given for PAC learning can be found in [Blumer
et al., 1989]. As already mentioned in [Blumer et al., 1989], Theorem 26 can be
considered as showing a relationship between learning and data compression. If
an algorithm is able to compress the training data (as Occam algorithms do),
it is capable of learning. Interestingly, there are also some results that indicate
some validness for the other direction of this implication [Board and Pitt, 1990;
Li et al., 2003].

The general idea of connecting learnability and compressability is the base of
Solomonoff’s theory of induction, which will be discussed in Section 1.3 below.
In this direction, the definition of Occam algorithms has been adapted using the
notion of Kolmogorov complexity in [Li and Vitdnyi, 1997] and [Li et al., 2003],
resulting in improved complexity bounds.

Agnostic Learning and Efficient PAC Learning

Obviously, the setting introduced above is not realistic in that usually the learner
has no idea what the possible concepts are that may label the training examples.
Thus, in general the learner has no access to a concept class that contains the target
concept, so that Assumption 11 does not hold. Learning in this restricted setting
is called agnostic. In the agnostic learning model introduced by Haussler [1992]
no assumption about the labels of the examples are made (i.e. there need not be
a target concept according to which examples are labeled). Instead of a concept
class from which target concept and the learner’s hypothesis are taken, there is
only a set of possible hypotheses H from which the learner chooses. As it is not
clear a priori whether the learner’s hypothesis class is suitable for the problem at
hand, the learner’s performance is measured not with respect to a perfect label
prediction (which may be impossible to achieve with an unsuitable hypothesis
space H), but with respect to the best hypothesis in H. That way, an analogous
definition of PAC learning (Definition 19 above) can be given. Thus, as above it
is assumed that the distribution that produces the training examples is also used
for measuring the performance of the learner’s hypothesis, that is, Assumption 18
still holds.
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Haussler [1992] has shown that in order to achieve positive results on agnos-
tic PAC learnability with respect to some hypothesis class H, it is sufficient to
solve the optimization problem of finding for any finite set of labeled examples
the hypothesis h € ‘H with the minimal number of misclassifications on these ex-
amples. Unfortunately, this optimization problem is computationally hard for
many interesting hypothesis classes. Further, this also concerns efficient (i.e.
polynomial time) PAC learning [Kearns et al., 1994; Feldman, 2008]. Conse-
quently, there have been some negative results on efficient agnostic PAC learn-
ing of halfspaces [Hoffgen et al., 1995] or conjunctions of literals [Kearns et al.,
1994].'6  Similar negative results about efficient non-agnostic PAC learning go
back to [Pitt and Valiant, 1988]. These latter results also show that results
about efficient (non-)learnability depend on the chosen representation of the con-
cept class. However, for suitable hypothesis classes there are also some posi-
tive results for agnostic PAC learning, see e.g. [Kearns et al., 1994; Maass, 1994;
Auer et al., 1995].

Online Learning, Transduction and Active Learning

The discussed models are only a small part of the machine learning and compu-
tational learning theory literature. In this section, we would like to indicate the
existence of other interesting models not mentioned above. For a general overview
of computational learning theory models and results see [Angluin, 1992].

The e-mail example (Example 1) shows some peculiarities that we have not
considered so far. First, the test examples the program has to classify are not
present all at once but have to be classified one after another. This is called online
learning. This form of learning may have advantages as well as disadvantages. On
the one hand, the learner does not have the distribution of the test examples to
draw any conclusions from it. On the other hand, if an example is misclassified, the
user may intervene and correct the mistake, so that the program gets additional
information. For more about online learning see e.g. [Blum, 1998].

A related special feature of Example 1 is that, as there is always only a single
example to classify, it is not necessary for the program to generate a hypothesis
for the whole space of possible e-mails. It is sufficient to classify each incoming
e-mail individually. Of course, this can be done by first generating a global hy-
pothesis from which one infers the label of the example in question. However, as
Vapnik [1998], p.477 put it:

“When solving a problem of interest, do not solve a more general prob-
lem as an intermediate step. Try to get the answer that you really need

16These results usually hold only relative to an unsolved problem of complexity theory, i.e. they
are valid provided that the complexity classes of NP and RP do not coincide. RP is a superclass
of P that contains all decision problems which can be solved in randomized polynomial time,
i.e. in polynomial time by a probabilistic Turing machine. If NP=RP, then it is easy to give an
efficient learning algorithm.



732 Ronald Ortner and Hannes Leitgeb

but not a more general one. (...) Do not estimate a function if you
only need to estimate its values at given points. (Try to perform direct
inference rather than induction.)”

Thus, it is quite natural to try to find the correct label of the single example di-
rectly. This has been termed transduction (contrary to induction which generates
general rules) by Vapnik [1995].'7 Although from a conceptual point of view there
may be little difference between transduction and induction (after all, if I know
how to get a label for each single instance, I have automatically also an inductive
rule), practically it may be easier to get the label for a single instance than to
label the whole instance space.

Another possibility for our e-mail program may be that it asks the user for
the label of an e-mail that is difficult to classify. This is called active learn-
ing or query learning. Usually, this is not considered in an online model (as
our e-mail example), but the learner is allowed to choose examples from the in-
stance space by herself and query their labels. As a consequence, the learner
may concentrate on “interesting” examples which contain more information, so
that she will sometimes be able to learn concepts with fewer examples than in
ordinary PAC learning.'® Geometrically, these interesting examples usually lie
very close to the boundary that corresponds to the learner’s current hypothesis,
that shall separate the positively labeled from the negative examples. For an
overview of active learning results see e.g. [Angluin, 1992; Freund et al., 1997;
Angluin, 2004].

1.3 Sequence Prediction
Learning Setting

In concept learning, the labels provide the learner with a certain pattern among the
training examples. If the learner has to discover such patterns by herself one speaks
of unsupervised learning (as opposed to supervised learning). There are various
unsupervised learning settings such as data mining, where the learner tries to
extract useful information from large data sets. Here we want to consider an online
setting, where the learner’s task is to predict the next entry in a finite sequence
of observations. Thus, the learner is presented with a sequence of observations

17 Actually, already Carnap [1950] distinguished between various forms of inductive inference,
two of which are universal inference and singular predictive inference, the latter corresponding
to what Vapnik calls transduction.

18There are also similar settings where the learner need not identify a concept, but has to
check whether the concept at hand has a certain property. This property testing scenario is in
particular natural when dealing with graphs, that is, when X is the set of all possible edges of
a graph with given vertex set V', and the concept class is a set of graphs with common vertex
set V. For the relation between property testing and learning see [Goldreich et al., 1998]. There
is also some literature on query learning of graphs, as in the graph setting beside membership
(i.e. edge) queries there are other natural queries one may consider (e.g. edge count, shortest
path etc.). See e.g. [Alon and Asodi, 2005; Angluin and Chen, 2008; Bouvel et al., 2005].
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X1,%a, ..., 2y over some instance set (alphabet) X and has to predict the next
observation x;y1. After her prediction the true value is revealed.

REMARK 27. Note that this simple setting may deal with seemingly far more
general problems. Consider e.g. transductive online concept learning from training
examples (21,Y1), - - -, (2n, Yn) where the z; are taken from some instance space and
the labels y; € {0,1} are given according to some target concept. The learner’s
task is to classify some z,,1. This can be encoded as a sequence prediction problem
where the task is to predict the next entry in the sequence 21,41, ..., Zn, Yn, Znt1-

The learner’s performance when predicting an z},; € X is usually evaluated by
U(xy41, ;) for asuitable loss function £ : X x X — R that measures the distance
between the true value 241 and the prediction x} 11 A natural loss function that
works for arbitrary X is obtained by setting ¢(z,z’) := 0 if = 2’ and 1 otherwise.
If X C R, another common loss function is the squared error

(1) l(x,2") = (z — )2

In any case, loss functions are usually chosen so that the learner will try to minimize
the loss.

More generally, the learner will not predict a single instance in X but e.g. a
probability distribution on X. Thus, in general it is assumed that the learner
makes at time ¢ + 1 a decision d;41 taken from some decision space D. The loss
function ¢ then maps each pair (dyy1,2:41) € D X X to R.

Similar to the case of concept learning, without further assumptions the learner
will stand little chance to learn a given sequence. Even in the simplest, binary
case with X = {0, 1} each prediction of the learner can be thwarted by a suitable
sequence (see [Dawid, 1985]).19 The strategy to make concept learning possible has
been twofold. On the one hand, one assumes that not all concepts are equally likely
(Assumption 5), on the other hand one restricts the space of possible hypotheses
(which e.g. in the PAC learning setting was done by giving the learner access
to a concept class that contains the target concept). While in the setting of
(PAC) concept learning both of these measures are taken, in sequence prediction
either assumption leads to a different framework. Thus, we either assume that the
sequence is generated by an unknown probability distribution (the probabilistic
setting), or we consider a fixed sequence and restrict the possible hypotheses for
prediction (deterministic setting). Thus, there is some duality between these two
settings concerning the made assumptions. This duality is particularly strong
when the chosen loss function is the self-information loss function (sometimes
also called log-loss function)

(2) Ud x) = —log, d(x),

19 Another argument of this kind with emphasis on computability has been produced by Put-
nam [1963] in order to criticize Carnap’s inductive logic. Putnam showed that no computable
prediction algorithm will work on all computable sequences (cf. also the discussion in [Kelly,
2004b)).
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where d is a probability distribution on X and = € X. Beside some techni-
cal advantages of this function, it also establishes a relation between prediction
and coding, as log, d(x) gives the ideal (binary) code length of x with respect to
the probability distribution d.?° For details on the duality between probabilistic
and deterministic setting under the self-information loss function see [Merhav and
Feder, 1998], which also gives a general overview of sequence prediction results.

In the probabilistic setting, good prediction performance need not be measured
by a loss function. If the learner’s decision is a probability distribution on X that
shall approximate the real underlying distribution, there are various requirements
the learner’s probability distribution should have in order to be regarded as good.
Dawid’s prequential analysis [Dawid, 1984; Dawid and Vovk, 1999] deals with these
questions of testing statistical models. Interestingly, this question again is closely
related to the self-information loss function (see [Merhav and Feder, 1998]).

In the following, we pick two particularly interesting topics, on the one hand
Solomonoff’s theory of induction in the probabilistic setting, and on the other
hand, prediction with expert advice in the deterministic setting.

Solomonoff’s Theory of Induction

We have already met the idea that learning is related to compression (see the
part on Occam algorithms above), which leads to the application of information
theoretic ideas to learning. Ray Solomonoff’s theory of induction [Solomonoff,
1964a; Solomonoff, 1964b] reduces prediction to data compression. The idea is
summarized in the following postulate, which is evidently an implementation of
Occam’s razor that identifies simplicity with compressability.

POSTULATE 28. Given a (finite) sequence o over an alphabet X, predict the
z € X that minimizes the difference between the length of the shortest program
that outputs oz (i.e. the sequence o followed by ) and the length of the shortest
program that outputs 0.2t

There seems to be a fundamental problem with this postulate, as it looks as if
it depended on the chosen programming language. However, as was shown inde-
pendently by Solomonoff [1964a], Kolmogorov [1965], and Chaitin [1969], asymp-
totically the length of two equivalent computer programs in different universal
programming languages differs by at most an additive constant (stemming from
the length of a compiler that translates one language into the other). Under this
invariance theorem it makes sense to consider the length K (o) of the shortest
program that outputs a sequence o, which is basically the Kolmogorov complezity

20That is, if one wants to encode words over the alphabet X where the probability of a
letter x € X is d(x), then an optimal binary encoding (to keep the average word length as
small as possible) will assign the letter = a code of length about log, d(z), see [Shannon, 1948]
and [Rissanen, 1976].

21 Actually, one may also predict more than a single element, so that in general z may be a
(finite) sequence over X as well.
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of the sequence.?? It can be shown that prediction under Postulate 28, which
chooses z so that K(cx) — K(0) is minimized, works well in the limit for a large
majority of sequences, provided that the sequence is binary (i.e. X = {0,1}) and
the underlying distribution generating the sequence satisfies some benign technical
assumptions.

THEOREM 29 [Vitanyi and Li, 2000]. Let P be a distribution on the set {0,1}>°
of all possible infinite sequences over {0, 1} that generates an infinite sequence w.
Assume that P is a recursive measure** and that w is a P-random®® sequence.
Then the x that maximizes P(x|o) minimizes K (ox) — K(o) with P-probability
converging to 1, as the length of o tends to infinity.

Solomonoff was not only interested in prediction. His motivation was to deter-
mine the degree of confirmation®® that a sequence o is followed by x. Thus, the
aim is to obtain a respective probability distribution on all possible continuations
of the sequence o. Solomonoff uses a Bayesian approach to achieve this. For the
general problem of choosing a suitable prior probability distribution, a universal
distribution U (which is also closely related to the notion of Kolmogorov complex-
ity) is defined which prefers simple continuations of o and exhibits some favorable
properties [Solomonoff, 1978].27 In particular, the universal distribution converges
fast to the real underlying probability distribution (under similar assumptions as
in Theorem 29).

THEOREM 30 Gaécs [Li and Vitdnyi, 1997]. Given that P is a positive recursive
measure over {0,1}°° that generates a P-random binary infinite sequence,

with P-probability 1, when the length of o tends to infinity.

Moreover, the sum over the expected squared errors is basically bounded by

22 Actually there are various (Kolmogorov) complexity variants that coincide up to an additive
constant (that depends on the sequence o). For the sake of simplicity we are not going to
distinguish them here. See Section 4.5 of [Li and Vitanyi, 1997] for details.

23Note that the assumption made in this setting is different from the PAC learning setting.
Whereas in PAC learning it is assumed that each single example is drawn according to a fixed
distribution, here the distribution is over all possible infinite sequences, which is actually more
general.

24This is a modest assumption on the computability of the distribution function, see Chapter 4
of [Li and Vitanyi, 1997].

25A sequence o = 0103... is P-random if sup,,U(c1...0pn)/P(o1...0n) < 00, where U is
the universal prior distribution (cf. below). In the set of all infinite sequences, the P-random
sequences have P-measure 1, that is, almost all considered sequences will be P-random, see
Section 4.5 of [Li and Vitanyi, 1997].

26 A student of Carnap, he explicitly refers to Carnap’s [1950]. For more about Carnap’s role
see [Solomonoff, 1997].

27Tt has been argued [Kelly, 2004a] that Solomonoff’s theory of induction only provides a
circular argument for Occam’s razor, as the chosen prior already prefers short descriptions.
However, this neglects that the prior distribution itself is a good predictor as the subsequent
results show.
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the Kolmogorov complexity K (-) of the underlying distribution [Li and Vitényi,
1997].28

THEOREM 31 [Solomonoff, 1978]. If P is a recursive measure over {0,1}°° that
generates a binary sequence, then

2 K(P)In2
> Y PO - POl)” < S

n |o|l=n—1

where |o| denotes the length of the sequence o.

Unfortunately, neither Kolmogorov complexity nor the universal prior distribu-
tion are computable [Li and Vitdnyi, 1997]. Thus, while Solomonoff’s framework of
algorithmic probability may offer a theoretical solution to the problem of induction,
it cannot be directly applied to practical problems. However, on the other hand
there are some principal theoretical limitations on the computability of prediction
algorithms, cf. e.g. [Putnam, 1963]? and [V'yugin, 1998].3° In fact, it has been
argued that there is a strong analogy between uncomputability and the problem
of induction [Kelly, 2004c].

Another problem is that the mentioned constant of the invariance theorem in
general will be quite large so that for short sequences the theoretical results are
worthless, while the approach may not work well in practice. In spite (or maybe
because of) these two deficiencies, Solomonoff’s research has ignited a lot of re-
search that on the one hand improved over theoretical results [Li and Vitanyi, 1997;
Hutter, 2001; Hutter, 2004; Hutter, 2007], while on the other hand, many practical
approaches can be considered as approximations to his uncomputable algorithm.
In particular, the MDL approach mentioned in Section 1.2 (see Postulate 9) em-
anated from Solomonoff’s work. For a closer comparison of the two frameworks
see Chapter 17 of [Griinwald, 2007].

Prediction with Expert Advice

In the deterministic setting where the underlying sequence that shall be predicted
is considered to be fixed, it will be necessary to compete with the best hypothesis
in a confined hypothesis space, as it is impossible to compete with perfect pre-
diction in general (similarly to the no-free-lunch theorem). On the other hand,
it is obviously futile to predict deterministically. For each deterministic predic-
tion there is a sequence where the prediction will be wrong (and more generally,
will maximize the loss function). Thus, the learner has to maintain a probability
distribution on the possible predictions. Note that this probability distribution is
used for randomization. Unlike that, in the probabilistic setting, the learner often
uses a probability distribution to approximate the real underlying distribution.

28For the definition of the Kolmogorov complexity of a distribution we refer to Chapter 4 of [Li
and Vitényi, 1997].

29Cf. footnote 19.

30For further theoretical limitations due to Gddel’s incompleteness results see [Legg, 2006).
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Usually (cf. also the concept learning setting), the set of hypotheses will be
large in order to guarantee that there is a hypothesis that predicts the sequence
well. For more about this setting see [Merhav and Feder, 1998]. Here we will
consider the setting where the hypothesis space H is finite. The hypotheses in H
are usually referred to as experts that serve as reference forecasters. We assume
that the experts’ predictions are taken from the same decision space D the learner
chooses her prediction from. (In special cases D may equal X.) Note that as it
is not known how the experts determine their predictions, there is no assumption
about this. The learner may use these experts’ advice to determine her own
prediction. Note that in general the learner’s prediction will not coincide with one
of the expert’s prediction: all the experts may suggest a deterministic prediction,
while we have already seen that it only makes sense for the learner to predict
randomly according to some distribution. The learner’s goal is to compete with
the best expert. That is, the learner will suffer a loss of ¢(d;, x¢) at time ¢ for her
decision d; € D. Similarly, at time ¢ each expert E € H has loss £(dF, ;) for his
decision d¥. Competing with the best expert then means that the learner will try
to keep the regret with respect to the best expert

T
Ry = %ggf(df,xt)—zg(dt,ﬁﬁ

t=1

as low as possible. Surprisingly, under some mild technical assumptions, one can
show that for some learning algorithms the average regret (over time) tends to 0
for each individual sequence, when T approaches infinity.

THEOREM 32 [Auer et al., 2002; Cesa-Bianchi and Lugosi, 2006]. Assume that
the decision set D is a convex subset of R™ and consider some expert set H. Further
let £ be a loss function that takes values only in the interval [0, 1] and is convex in
the first argument,®' i.e. for each x € X, A € [0,1] and d,d' € D:

(A + (1= N, z) < M(d,z) + (1= \ed, ).

Then the regret Ry of the exponentially weighted forecasting algorithm (as specified
on pp.14 and 17 in [Cesa-Bianchi and Lugosi, 2006]) can be bounded as

T In|H|
< - i |
Ry 2\/2 In |H| + \/ 3

for each T > 0 and each individual sequence over X.

What is remarkable about this theorem is that it does not need any inductive
assumptions. The reason why the theorem holds for any sequence is that, intu-
itively speaking, by considering the loss with respect to the best expert only the
difference to this best expert matters, so that the underlying sequence in some

31The convexity condition holds e.g. for the square loss function (1) and the logarithmic loss
function (2).
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sense is not important anymore. Of course, practically the theorem only has im-
pact if there is at least one expert whose predictions are good enough to keep
the loss with respect to the underlying sequence low. Increasing the number of
experts |H| to guarantee this of course deteriorates the bound.

For more results in the expert advice setting see [Cesa-Bianchi and Lugosi, 2006]
that also deals with applications to game theory.

2 NONMONOTONIC REASONING

2.1 Introduction

In order to cope successfully with the real world, Al applications need to reproduce
patterns of everyday commonsense reasoning. As theoretical computer scientists
began to realize in the late 1970s, such patterns of inference are hard, if not
impossible, to formalize in standard first-order logic. New proof-theoretic and
semantic mechanisms were sought-after by which conclusions could be inferred in
all “normal” cases in which the premises were true, thus trying to capture the way
in which human agents fill knowledge gaps by means of default assumptions, in
particular, conditional default assumptions of an ‘if...then...” form.

EXAMPLE 33. Assume you want to describe what happens to your car when you
turn the ignition key: ‘If the ignition key is turned in my car, then the car starts.’
seems to be a proper description of the situation. But how shall we represent
this claim in a first-order language? The standard way of doing it, according to
classical A, would be in terms of universal quantification and material implication,
i.e. by means of something of the form Vt(p[t] — 9[t]), where ¢, are complex
formulas, ¢ is a variable for points of time, and — is the material conditional sign.
But what if the gas tank is empty? You better improve your description by adding
a formalization of ‘.. .and the gas tank is not empty’ to . However, the resulting
statement could still be contradicted by a potato that is clogging the tail pipe,
or by a failure of the battery, or by an extra-terrestrial blocking your engine, and
so forth. The possible exceptions to universally quantified material conditionals
are countless, heterogeneous, and unclear. Nevertheless we seem to be able to
communicate and reason rationally with the original information ‘If the ignition
key is turned in my car, then the car starts.”, and the same should be true of
intelligent computers.

How are human agents able to circumvent this problem? The key to an answer
is to understand that we do not actually take ‘If the ignition key is turned in my
car, then the car starts.” as expressing that at any point of time it is not the case
that the ignition key is turned and the car does not start — after all, what is
negated here might indeed be the case in exceptional circumstances — but rather
that normally given the ignition key is turned at a time, the car starts. Instead of
trying to enumerate a possibly indefinite class of exceptions, we tacitly or explicitly
qualify ‘If the ignition key is turned in my car, then the car starts.” as saying
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something about normal or likely circumstances, whatever these circumstances
may look like. As a consequence, the logic of such everyday if-then claims differs
from the logic of (universally quantified) material conditionals in first-order logic.
In particular, while Monotonicity (or Strengthening of the Antecedent), i.e.

o — P
eANp—

is logically valid for material — (whether in the scope of universal quantifiers
or not), the acceptance of the conditional ‘If Tweety is a bird, then [normally]
Tweety is able to fly.” does not seem to rationally necessitate the acceptance of
any of the following conditionals: ‘If Tweety is a penguin bird, then [normally]
Tweety is able to fly.”; ‘If Tweety is a dead bird, then [normally] Tweety is able
to fly.”; ‘If Tweety is a bird with his feet set in concrete, then [normally] Tweety
is able to fly.”. So computer scientists found themselves in need of expressing
formally if-then statements on the basis of which computers should be able to draw
justified inferences about everyday matters, but where these statements do not
logically obey Monotonicity; hence their speaking of ‘nonmonotonic’ conditionals
or inference. This is the subject matter of Nonmonotonic Reasoning, without
doubt one of the most vibrant areas of theoretical computer science in the last 30
years.

Nonmonotonic reasoning systems become inductive reasoners in the sense of the
Machine Learning part of this article by the following move: assume the complete
information that a database contains is the factual information

Pl Pm

together with the conditional information
g éﬂla"'aaniﬂn

where ‘=’ is a new conditional connective which expresses ‘if... then normally
...". From the conditionals that are stored in the database the reasoning system
now aims to derive some further conditionals the antecedents of which exhaust the
complete factual information in the database, i.e. conditionals of the form

For every conditional that can be derived in this way, the factual information 1 is
inferred by the system. Since the conditionals involved only express what holds in
normal circumstances, this is an inductive inference from 1, . .., @, to ¥ under the
tacit assumption that the reasoning system does not face an abnormal situation.
The antecedents of the conditionals which the system aims to derive have to consist
of the total factual information that is accessible to the system, as it would be
invalid to strengthen weaker antecedents by means of the Monotonicity rule. On
the methodological side, the main question to be answered at this point is: Which
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rules of inference may the reasoner apply in order to derive further “normality
conditionals” from its given “normality conditionals”? We are going to deal with
this question in detail further down below.

Here are some brief pointers to the literature: Although Ginsberg [1987] is
outdated as a collection of articles, it still proves to be useful if one wants to
see where Nonmonotonic Reasoning derives from historically. Brewka, Dix, and
Konolige [1997] and Makinson [2005] give excellent and detailed overviews of Non-
monotonic Reasoning. Schurz and Leitgeb [2005] is an informative compendium
of papers dealing with some of the more empirical and philosophical aspects of
Nonmonotonic Reasoning; for more references to psychological investigations into
nonmonotonic reasoning see Oaksford, Chater, and Hahn [2009]. Finally, the
Stanford Encyclopedia of Philosophy includes two nice entries on “Non-monotonic
Logic” and “Defeasible Reasoning” which can be accessed online.

2.2 Nonmonotonic Reasoning: The KLM Approach

There are, broadly speaking, two approaches of how to formalize statements such
as ‘If the ignition key is turned in my car, then the car starts.” or ‘If Tweety is a
bird, then T'weety is able to fly.” in terms of nonmonotonic conditionals: Either
exceptional circumstances are represented explicitly as those which contradict cer-
tain explicitly made claims, or they are left implicit, simply by not mentioning
them at all.

The paradigm case of the first type of formalization is default logic (see Re-
iter [1980]) in which e.g. the Tweety case is handled by a so-called default rule
which expresses: If you know that Tweety is a bird, and nothing you know is incon-
sistent with Tweety being able to fly, then you are allowed to conclude that Tweety
is able to fly. Such consistency-based approach dominated the scene in the 1980s.

According to the other approach — which goes back to Shoham [1987], but
which is exemplified most famously by the KLM approach, i.e. Kraus, Lehmann,
and Magidor [1990], which really took off in the 1990s — the conditional ‘If Tweety
is a bird, then Tweety is able to fly.” is left unchanged syntactically, but the ‘if’-
‘then’ connective that it contains is understood as: In the most normal or preferred
circumstances in which Tweety is a bird, it is the case that Tweety is able to fly.
In the following, we will concentrate exclusively on the second, preferential ap-
proach, which turned out to be the dominant one as far as the logical aspects of
nonmonotonic reasoning are concerned. Although the KLM account was antic-
ipated by theories in philosophical logic, philosophy of language, and inductive
logic — as we will highlight in the later sections — it is still widely unknown
outside of computer science. So summarizing its main achievements proves to be
useful even though the original sources (mainly, KLM [1990] and Lehmann and
Magidor [1992]) are themselves clear, self-contained and extensive. The KLM ap-
proach also led to new logical treatments of inference in neural networks, which
we will discuss briefly as well.



Mechanizing Induction 741

Conditional Theories (Nonmonotonic Inference Relations)

We are now going to deal with various systems of nonmonotonic reasoning which
have been introduced by KLM [1990]. In contrast with KLM, we will not present
these systems in terms of so-called inference or consequence relations, i.e. as binary
relations |~ on a propositional language £ (cf. Makinson [1994] and [1989]), but
rather, more syntactically minded, as conditional theories, i.e. as sets of condition-
als closed under rules of nonmonotonic reasoning. So instead of saying that o |~ 3,
we will say that a = 8 € TH_, where 7 H_ is a theory of conditionals, and = is
a new conditional connective which we will use to express nonmonotonic condition-
als. In this way, it will be easier to compare the logical systems of nonmonotonic
reasoning with systems of conditional logic studied in other areas. Furthermore,
calling the relations |~ consequence relations typically leads to confusion on the
side of philosophers: These are not meant to be relations of logical consequence;
rather they have a similar methodological status as theories, i.e. they are meant
to support plausible inferences within some intended domain of application. But
mainly this is all just a matter of presentation; conditional theories in our sense
can still be viewed as being nothing but inference relations.

L will always be some language of propositional logic that is based on finitely
many propositional variables, with connectives =, A, V, —, <>, T (for tautology),
and L (for contradiction). L= will be the set of all formulas of the form a =
for a, 8 € L, with = being the new nonmonotonic conditional sign. Note that £_,
does not allow for nestings of nonmonotonic conditionals nor for the application
of propositional operators to nonmonotonic conditionals.

Finally, whenever we will refer to a theory 7H_, (rather than 7H_, ), we mean a
deductively closed set of formulas in £; each such set is going to entail deductively
a set of material conditionals. We will always consider our conditional theories
TH- of “soft” or “defeasible” conditionals, such as bird = fly, as extending
“hard” material conditionals, such as penguin — bird, which are entailed by some
given theory 7'H_,; the corresponding notion of ‘extending’ is made precise by the
rules of Left Equivalence and Right Weakening stated below. We will leave the
question open at this point whether the formulas of £ ought to be regarded as
open formulas or rather as sentences, and whether formulas of the forms a — (3
and o = 3 ought to be regarded as tacitly quantified in some way or not. We will
return to this point later.

In our presentation of systems of nonmonotonic logic, we will follow the (more
detailed) presentation given by Leitgeb [2004], part III.

DEFINITION 34.

1. A conditional C-theory extending 7H_, is a set 7H_ C L_ with the prop-
erty that for all & € £ it holds that

a = o € TH= (Reflexivity)

and which is closed under the following rules:
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TH_ Fa— B, a=xy

(Left Equivalence)

B=~
(b) TH_. Fj;’g» Y=o (Right Weakening)
(0) a ﬁj:z’va =5 (Cautious Cut)

a=[F,a=7y
aNf=ry

(Cautious Monotonicity)

We refer to the axiom scheme and the rules above as the system C (see
KLM [1990], pp.176-180). The rules are to be understood as follows: E.g. by
Cut, if « A8 = v € TH~ (where propositional connectives such as A always
bind more strongly than =) and a = § € TH-,, then a = v € TH-..

2. A conditional C-theory 7H_, (extending whatever set 7H_,) is consistent
it T=1¢TH.

3. A conditional CL-theory TH~ extending 7H_, is a conditional C-theory
extending 7 H_,, which is also closed under the following rule:

Q) = Q1,01 = g, ..., 051 = O, 0 = Qg (Loop)
Qp = Qlypr
(r, v’ are arbitrary members of {0,...,j}).

We refer to C+Loop as the system CL (see KLM [1990], pp.187).

4. A conditional P-theory TH- extending 7H_. is a conditional CL-theory
extending 7 H_., which is closed under the additional rule:
a=7B8=y

aVp=ry (Or)

We refer to CL+Or as the system P (see KLM [1990], pp.189-190; there it
is also shown that Loop can actually be derived from the other rules in P).

5. A conditional R-theory TH- extending 7H_. is a conditional P-theory ex-
tending 7H_,, which has the following property (this is a so-called non-Horn
condition: see Makinson [1994], Section 4.1, for further details):

Ifa=~v€TH-,and a = - ¢ TH-, then a A § = v € TH- (Rational
Monotonicity).

We refer to P+Rational Monotonicity as the system R (see Lehmann and
Magidor [1992], pp.16-48).

Each of these rules is meant to apply for arbitrary «, 3, v, g, o1, ..., aj € L.
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REMARK 35.

e It is easy to see that a conditional C-theory 7 H_ is consistent iff 7H_ is
non-trivial, i.e. 7H= # L (use Right Weakening and Cautious Monotonic-
ity).

e If a conditional C-theory 7 H_, extending 7 H_, is consistent, then also 7H_,
is consistent, i.e. 7H_, ¥ L (use Reflexivity and Right Weakening).

Cumulativity, i.e. Cautious Cut and Cautious Monotonicity taken together, has
been suggested by Gabbay [1984] as a valid closure property of plausible reasoning.
The stronger system P, which extends cumulativity by a rule for disjunction, has
become the standard system of nonmonotonic logic and can be proved sound and
complete with respect to many different semantics of nonmonotonic logic (some of
them are collected in Gabbay, Hogger, and Robinson [1994]; see also Géirdenfors
and Makinson [1994], Chapter 4.3 in Fuhrmann [1997], Benferhat, Dubois, and
Prade [1997], Benferhat, Saffiotti, and Smets [2000], Goldszmidt and Pearl [1996],
Pearl and Goldszmidt [1997], Halpern [2001b]). We are going to deal with the most
influential semantics for the logical systems introduced above — the preferential
semantics of KLM [1990] — below.

Derivable Rules

LEMMA 36. (KLM [1990], pp.179-180) The following rules are derivable in C,
i.e. if the premises of the following rules are members of a conditional C-theory
TH-, then one can prove that the same holds for their conclusions:

a=f,a=7y

a= BNy (And)
a=0,0=a,a=" .
2. Equivalence
T (Eq )
3. 2= B=9).a=5 (Modus Ponens in the Consequent)
o=y
y aVp=aa=7y
' aVvp=ry
TH_ . Fa—p .
5. P (Supra-Classicality)

LEMMA 37. (KLM [1990], p.191) The following rules are derivable in P:

aNpB=y

L =G>

(5)
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2 aNf=vy,aN-0=7y (D)
o=y
By means of any of the semantics for these systems of nonmonotonic logic,
it is easy to prove that neither Contraposition nor Transitivity nor Monotonic-
ity (for =) is derivable in any of them. The following examples from everyday
reasoning show that this is exactly as it ought to be:

EXAMPLE 38.

If a is a human, then normally a is not a diabetic. v'

- - - - t iti
If a is a diabetic, then normally a is not human. 777 (Contraposition)

If a is from Munich, then normally a is a German. v’
e If a is a German, then normally a is not from Munich.v’ (Transitiv-
If @ is from Munich, then normally a is not from Munich. 77?7

ity)

If a is a bird, then normally «a is able to fly. v/

If a is a penguin bird, then normally a is able to fly. 777 (Monotonicity)

Derivability of Conditionals from Conditional Knowledge Bases

The notion of derivability of a conditional from a set of conditionals (in Al terms:
from a conditional knowledge base) is defined in analogy with derivability for for-
mulas of classical propositional logic, with the exception of the system R.

DEFINITION 39. Let KB, C L_:
1. A C-derivation (rel. to TH_,) of ¢ = 1 from K B_, is a finite sequence

<a1:>ﬂla"'aak:>ﬂk>

where oy, = ¢, O, = ¢, and for all i € {1,...,k} at least one of the following
conditions is satisfied:

® (; = /31 S KB:>.
e «; = (3; is an instance of Reflexivity.

e «; = (; is the conclusion of one of the rules of C, such that the con-
ditional premises of that rule are among {1 = f1,...,0;—1 = Bi—1},
and in the case of Left Equivalence and Right Weakening the derivabil-
ity conditions concerning 7 H_, are satisfied.

2. KB_, l—gH* p =1 (p=1is C-derivable rel. to TH_, from KB.)
iff there is a C-derivation of ¢ = v rel. to TH_, from KB.
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3. Ded "= (KB.) = {go =1 ' KBo FL™ o= w}
(the conditional C-closure of KB_, rel. to TH_,).
4. p = 1 is C-provable (rel. to TH_) iff @ }—gHﬂ © = 1.
Analogous concepts can be introduced for the systems CL and P.
REMARK 40.
1. As in the case of deductive derivability, it follows that
(a) KB C Dedl"—(KB=).
(b) If KB C KB, then Ded}"~(KB=) C Ded%"~(KB.).
(c) Dedl™= (Dedl™ = (KB=)) = Ded "~ (K B-).
2. TH- is a conditional C-theory extending 7 H_, iff
DedZ"=(TH=) = TH-.
Since Dedl™ = (Ded "~ (KB-)) = Ded%™~ (KB-), Ded.™~(KB.) is a
conditional C-theory extending 7H_, for arbitrary K B.. In particular,

DedgHﬂ (@) (the set of formulas which are C-provable rel. to TH_,) is a
conditional C-theory extending 7H_,.

3. DedgH* (K B-,) is the smallest conditional C-theory extending 7H_, which
contains K B_,.

EXAMPLE 41. Assume K B_ to consist of
1. bird = fly,
2. penguin = —fly.
Suppose 7H_, contains
3. penguin — bird.
By an application of Supra-Classicality to 3, one can derive
4. penguin = bird.
Applying Cautious Monotonicity to 4 and 2 yields
5. penguin A bird = —fly.

This can be interpreted as follows: Since by conditional 3 the penguin information
is at least as specific as a mere bird information, conditional 2 overrides condi-
tional 1: penguin birds are derived to be unable to fly.

In the case of R, derivability has to be defined differently due to the presence
of a non-Horn rule, i.e. Rational Monotonicity:
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DEFINITION 42.

1. KB- I—?"* ¢ = ¥ (¢ = ¢ is R-derivable rel. to TH_, from KB.)
iff ¢ = ¢ is a member of ({7H= | TH= O KB.,TH- is a cond.
R-theory extend. 7H_}.

2. Ded '~ (KB.) = {gp = ’KB=> FIR= o = w}
(the conditional R-closure of KB rel. to TH_.).

3. p = 1 is R-provable (rel. to TH_,) iff & I—;;H” = .

DedgHH satisfies the same closure conditions as stated above. In particular,
note that the deductive closure operator of each of these systems of nonmonotonic
logic is monotonic (see 1b in Remark 40 above); so these logics are nonmono-
tonic only in the sense that they are logical systems for conditionals which are not
monotonic with respect to their antecedents, i.e. which do not obey Monotonicity
as a logically valid rule. In other words: the term ‘nonmonotonic reasoning’ is
ambiguous — it can either refer to ‘inference by means of nonmonotonic condi-
tionals’ (this is what we have considered so far) or to ‘nonmonotonic deductive
closure/entailment’ (this is what we will deal with in Subsection 2.2 below) or to
both.

Obviously, the system C is weaker than CL in terms of derivability, and the
system CL is weaker than P, where the weaker-than relations in question are non-
reversable. More surprisingly, P and R are equally strong in terms of derivability:

THEOREM 43. (See Lehmann and Magidor [1992], pp.24f, for the semantic ver-
sion of this result.)
KB FE"= a= g iff KB= FE~ a = 6.

With respect to provability, i.e. derivability from the empty knowledge base, all
of the systems dealt with above turn out to be equally strong and in fact just as
strong as classical logic (if = is replaced by —).

Preferential Semantics

Next we follow KLM [1990] and Lehmann and Magidor [1992] by introducing
preferential or ranked models for conditional theories, where the intended inter-
pretation of the preference relations or rankings that are part of such models is
in terms of “degrees of normality”. (Such ranked models are also closely related
to Spohn’s [1987] so-called ordinal conditional functions or ranking functions.)
For each of these types of models, we presuppose a non-empty set W of possible
worlds which we consider to be given antecedently and we think of as represent-
ing an agent’s “hard” knowledge. Each world w € W is assumed to stand in a
standard satisfaction relation with respect to the formulas of L.
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DEFINITION 44.

1.

10.

A cumulative model M is a triple (5,1, <) with

(a) a non-empty set S of so-called “states”,

(b) alabeling I : S — 2W \ {@} of states,

(¢) a normality “order”, or preference relation, < C S x S between states;
if 51 < s9, we say that s; is more normal than s
(note that < is not necessarily a strict order relation);

(d) such that, 91 satisfies the Smoothness Condition (see below).

Factual formulas o € £ are made true by states s € S in the following way:
sEaiff Vwel(s): wk o

(in such a case we also say that s is an a-state).
For every o € Llet a ={s€ S|s E a}.
For every o € L: s € & is manimal in & iff —3s" € a: s’ < s.

The Smoothness Condition: Every state that makes « true is either itself
most normal among the states which make « true, or there is a more normal
state that makes a true and which is also most normal among the states
that make « true; i.e.:

Vo € L, Vs € &: s is minimal in & or 3’ < s, such that s’ is minimal in &.
Relative to a cumulative model 9t = (5,1, <), we can define:
MEa=0

iff Vs € S: if s is minimal in &, then s E
(i.e.: the most normal states among those that make « true also make
true, or: normal « are 3).

Let THo (M) ={a=3MEa=F}:
TH- (M) is the conditional theory corresponding to M.

a = [ is cumulatively valid iff

for every cumulative model 9: M = a = 5.

Let 91 be a cumulative model:
M E KB, iff for every a = (§ € KB_, it holds that M F a = 3.

We say that
KB F.a=0
(K B- cumulatively entails o = (3) iff
for every cumulative model 91: if M E KB_., then MF a = (.
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The additional types of models we will study are:
DEFINITION 45.

1. A cumulative-ordered model 9 is a cumulative model (5,1, <), such that

< is a strict partial order, i.e. irreflexive and transitive.

2. A preferential model M is a cumulative-ordered model (S, [, <), such that
Vs € S: I(s) is a singleton, i.e. I(s) = {w} for some w € W.

3. A ranked model M is a preferential model (S, [, <), where

for some k € N there is a surjective mapping rk : S — {0,...,k}, such that
for all 51,80 € S: 81 < 89 iff rk(s1) < rk(sz2)

(rk(s) is called the ‘rank’ of s under rk).

Here is a diagram of what a typical ranked model looks like:

«

>
min(q) 5‘
-

This model consists of three layers of worlds of equal rank. Within the set of
a-states, the minimal ones are singled out, as they are taken to minimize “ab-
normality”; if these minimal a-states are all (G-states, then o = [ is considered
satisfied by the model.

For each of these classes of models, the corresponding notions of satisfaction,
determined conditional theories, validity (cumulative-ordered-valid, preferentially
valid, rank-valid), and entailment (F.,, Fp, F,, i.e. cumulative-ordered-entails,
preferentially entails, rank-entails) can be introduced in analogy with the case
of cumulative models. The definition of ranked models in Lehmann and Magi-
dor [1992] is actually more complex than ours, but our definition is equivalent for
the case of a finite set W of worlds, and it is certainly more handy.

Obviously, the various kinds of entailment defined above come with strictly
increasing strength, except for (see Lehmann and Magidor [1992]):

THEOREM 46.
K B_, preferentially entails « = [ iff KB~ rank-entails o = [3.

As for validity, all notions of validity corresponding to the classes of models
defined above coincide; indeed, they coincide with validity for material conditionals
a— f.

REMARK 47. {a =€ L. |a — € TH_ (W)} is a conditional theory of any
of the defined types.

KLM [1990] and Lehmann and Magidor [1992] show the following soundness
and completeness properties of systems of nonmonotonic logic with respect to
preferential semantics:
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THEOREM 48.

1. (KLM [1990], pp.184-185)
TH- C L. is a consistent conditional C-theory extending TH_, iff
there is a cumulative model 9 based on the set W of worlds satisfying TH_,,
such that TH- = TH= ().

2. (KLM [1990], p.189)
TH- C L. is a consistent conditional CL-theory extending TH_, iff
there is a cumulative-ordered model MM based on the set W of worlds satisfying
TH-_,, such that TH- = TH= (IN).

3. (KLM [1990], p.196)
TH- C L. is a consistent conditional P-theory extending TH_. iff
there is a preferential model MM based on the set W of worlds satisfying TH_,,
such that TH= = TH= ().

4. (Lehmann and Magidor [1992], pp.21-23)
TH- C L_ is a consistent conditional R-theory extending TH_, iff

there is a ranked model M based on the set W of worlds satisfying TH_,,
such that TH- = TH= (ON).

THEOREM 49. Let TH_, be the set of formulas satisfied by every world in the
given set W of worlds.
It holds:

1. KBo F[" a= B iff KBS F.a= 6.
2. KB FLM= a = 3 iff KB= Fop a = 6.
3. KB FL"= a= B iff KB. k,a = 3.

4. KB FIM= o = 8 (iff KB FI"= a = 8) iff
KB_ k. a= 8.

Nonmonotonic Deductive Closure/Entailment

As we have seen in Subsection 2.2, deductive closure in nonmonotonic logic as
understood above is actually monotonic, and by the results in the last subsec-
tion the same is true of the relations of logical entailment introduced above, i.e.:
if KB, F a = pand KB.. C KBL., then also KB, F o = ( (with F be-
ing one of these entailment relations). However, there are also some strengthen-
ings of logical entailment which are even nonmonotonic in the entailment sense:
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E.g. Lehmann’s and Magidor’s [1992] rational closure operator (which is virtually
identical to Pearl’s [1990] so-called system Z) strengthens entailment by demand-
ing truth preservation not in every ranked model in which a given conditional
knowledge base is satisfied but only in those ranked models which maximize cau-
tiousness and normality, in a sense that is made precise in Lehmann and Magi-
dor [1992]. Goldszmidt, Morris, and Pearl [1993] maximum entropy approach and
Lehmann’s [1995] lexicographic entailment are further methods of nonmonotonic
closure.

Some Complexity Considerations

While some of the consistency-based approaches to nonmonotonic reasoning, ac-
cording to which exceptions to conditional defaults are stated explicitly (recall
the introductory part of Subsection 2.2), do have nice implementations in terms
of PROLOG or logic programs, nonmonotonic reasoning in the preferential KLLM
style is implemented in very much the same manner as standard systems of modal
logic, and most of the complexity considerations concerning the latter (see stan-
dard textbooks on modal logic) carry over to the former.

Let ¢ be the conjunction of all entries in a (finite) factual knowledge base. It is to
be decided whether ¢ = 9 is entailed by the conditional knowledge base in one of
the senses explained. One can show that this decision problem is co-NP-complete
for preferential entailment and hence just as hard as the unsatisfiability decision
problem for propositional logic (see Lehmann and Magidor [1992], p.16). However,
as Lehmann and Magidor prove as well, the decision problem is polynomial in
the case of Horn assertions. Lehmann and Magidor [1992], p.41, show that the
decision procedure for rational closure is essentially as complex as the satisfiability
problem for propositional logic. An excellent overview of such results can be found
in Eiter and Lukasiewicz [2000]. One of the lessons to be drawn from these results
is this: While progress in Nonmonotonic Reasoning has added to the expressive
power of symbolic knowledge representation, it has not increased accordingly the
inferential power of symbolic reasoning mechanisms by finding ways of improving
their computational efficiency significantly.

The Interpretation of Conditionals Reconsidered

Computer scientists rarely address the question of what the exact interpretation
of default conditionals of the form ¢ = 1) ought to be. In particular, the following
two sets of locutions are often not distinguished properly: on the one hand,

o if p then normally
o if p then it is very likely that
and, on the other,

e normal @ are 1
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e by far most of the ¢ are ¥

In the first set, ¢ and v are to be replaced by sentences such as ‘Tweety is a bird.’
and ‘Tweety is able to fly.”, whereas in the second set ¢ and v are to be substi-
tuted by generics such as "birds’ and ‘flyers’ (or, in a more formalized context, by
open formulas such as ‘@ is a bird.” and ‘@ is able to fly.”). In the first set, = is a
sentential operator, while in the second set it is actually a generalized quantifier.
(See van Benthem [1984] for more on this correspondence between conditionals
and quantifiers; see Peters and Westerstahl [2006] for an extensive treatment of
generalized quantifiers.) As far as preferential semantics is concerned, the set W
of “possible worlds” is not so much a set of possible worlds in the second case
but rather a universe of “possible objects” which are ordered by the normality
of their occurrence. Accordingly, if a member of the first set were intended to
express something probabilistic, then the probability measure in question should
be a subjective probability measure by which rational degrees of belief are at-
tributed to propositions, whereas in the case of the members of the second set,
the corresponding probability measure should be a statistical one by which (limit)
percentages are attributed to properties. For both sets of interpretation, the sys-
tems of nonmonotonic logic studied above are valid, but the application of these
systems to actual reasoning tasks is still sensitive to the intended interpretation

of p = .

2.3 DBridges

Now we are turning to formalisms and theories which are, in a sense to be ex-
plained, closely related to Nonmonotonic Reasoning.

The Bridge to the Logic of Counterfactuals

Amongst conditionals in natural language, usually the following distinction is made
(this famous example is due to Ernest Adams):

1. If Oswald had not killed Kennedy, then someone else would have.
2. If Oswald did not kill Kennedy, then someone else did.

Sentence 2 is accepted by almost everyone, whilst we do not seem to know whether
sentence 1 is true. This invites the following classification: A conditional such as
sentence 2 is called indicative, a conditional like sentence 1 is called subjunctive.
In conversation, the antecedents of subjunctive conditionals are often assumed or
presupposed to be false: in such cases, one speaks of these subjunctive condition-
als as counterfactuals. Subjunctive and indicative conditionals may have the same
antecedents and consequents while differing only in their conditional connectives,
i.e. their ‘if’-‘then’ occurrences have different meanings. What both occurrences
of ‘if’-‘then’ in these examples have in common, however, is that they are non-
monotonic: E.g. the indicative ‘If it rains, I will give you an umbrella.” does
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not seem to logically imply “If it rains and I am in prison, I will give you an
umbrella.’, nor does the subjunctive ‘If it rained, I would give you an umbrella.’
seem to logically imply “If it rained and I were in prison, I would give you an
umbrella.”. Accordingly, add e.g. ‘...and Kennedy in fact survived all attacks on
his life.” to the antecedent of ‘If Oswald did not kill Kennedy, then someone else
did.” and the resulting conditional does not seem acceptable anymore. Therefore,
philosophical logicians started to investigate new logical systems in which Mono-
tonicity or Strengthening of the Antecedent is not logically valid. For a nice and
recent introduction into this topic, presented from the viewpoint of the philosophy
of language, see Bennett [2003).

We will consider the logic of indicative conditionals in our subsection on Proba-
bilistic Logic below, but for now we are going to focus on subjunctive conditionals.
D. Lewis [1973a], [1973b] famously introduced a semantics for subjunctive condi-
tionals which we will state more or less precisely (compare Stalnaker’s related se-
mantics in Stalnaker [1991]). Reconsider ‘If Oswald had not killed Kennedy, then
someone else would have.”: according to Lewis, this counterfactual says something
— in this case: something false — about the world: If the world had been such
that Oswald had not killed Kennedy, but otherwise it would have been as similar
as possible to what our actual world is like, then someone else would have killed
Kennedy in that world. However, if we consider all the possible worlds in which
Oswald did not kill Kennedy, and if we focus just on those worlds among them
which are maximally similar to our actual world, then it seems we only end up
with worlds in which no one killed Kennedy at all — that is exactly why we tend
to think that ‘If Oswald had not killed Kennedy, then someone else would have’ is
false.

Now let us make this intuition about subjunctive conditionals formally precise.
Lewis’ semantics does so by introducing the following “ingredients”:

e We focus on a language £ that is closed under the following syntactic rules:

— If Aisin £, then —A is in L.

If Aisin £ and B is in £, then (AV B) is in L.

If Aisin £ and B is in £, then (A A B) is in L.

If Aisin £ and B is in £, then (A — B) is in L.
If Aisin £ and B is in £, then (A > B) is in L.

(The last clause is for subjunctive conditionals.)
e We choose a non-empty set W, which we call the set of possible worlds.

e We assume that we can “measure” the closeness or similarity of worlds to
any world w in W. Formally, this can be done by assuming that for every
world w there is a sphere system &,, of “spheres” around w, i.e. a class &,,
of subsets of W, such that the following two conditions are satisfied:
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— {w} is a sphere in &,
— if X and Y are spheres in &,,, then either X is a subset of Y or Y is a
subset of X.
(Lewis considers further conditions on systems of spheres, but we restrict

ourselves just to the most relevant ones.)

So, a sphere system &,, around w looks like this:

®

Intuitively, such a sphere system is meant to express:
— If X is a sphere in &, and w’ is a member of X, then w’ is closer or
more similar to w than all those worlds in W that are not in X.

— If v’ is not a member of any sphere around w — formally: w’ is not a
member of the union |J &,, of all spheres around w — then w’ is not
possible relative to w.

e Finally, we consider a mapping V' that maps each formula A in £ and each
world w in W to a truth value in {0,1} according to the following semantic
rules:

— V(=A,w) =1if and only if V(A4,w) = 0.

V(AV B,w) =1if and only if V(A,w) =1 or V(A,w) = 1.

V(AAB,w)=1if and only if V(A,w) =1 and V(A,w) = 1.

V(A — B,w)=11if and only if V(A,w) =0 or V(4,w) = 1.

— The truth condition for subjunctive conditionals:

V(A > B,w) = 1if and only if either of the following two conditions is
satisfied:

« There is no A-world in |J &, i.e. for all worlds w’ in | &,,: V(A,w') =

: e
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* There is a sphere X in &,, such that (i) for at least one world w’
in X it holds that V(A,w’) = 1, and (ii) for all worlds v’ in X it
holds that: V(A — B,w') = 1.

w

B

e Summing up: We call (W, (S, )wew, V) a (Lewis-)spheres model for sub-
junctive conditionals if and only if all of the conditions above are satisfied.
(By means of ‘(&)wew’ we denote the family of sphere systems for worlds
w in W within a given spheres model.)

e We call a formula ¢ in L logically true (according to the spheres semantics) if
and only if ¢ is true at every world in every spheres model. Accordingly, an
argument P, ..., P, ... C'is called logically valid — equivalently: C follows
logically from Py, ..., P, — if and only if (P A... A P,) — C is logically
true.

Given further constraints on such models, the truth condition for subjunctive
conditionals can be simplified:

o (W, (Gy)wew, V) satisfies the Limit Assumption if and only if

for every world w in W, and for every A in £ for which | J&,, contains at
least one A-world, it holds that there is a least sphere X in &,, that includes
a world w’ for which V(A,w’) =1 is the case.

(‘Least’ implies that every sphere that is a proper subset of X does not
contain any A-world at all.)

o If (W, (S, )wew, V) satisfies the Limit Assumption, then Lewis’ truth con-
dition for A > B reduces to:

V(A > B,w) = 1 if and only if either of the following two conditions is
satisfied:

— There is no A-world in |J &, i.e. for all w’ in |J&,: V(4,w") =0.

— If Xjeqst 1s the least A-permitting sphere, i.e. the least sphere X in &,,
for which it is the case that for some world w’ in X it holds that
V(A,w") =1, then for all worlds w’ in Xje,s; it is the case that V(A —
B,w') =1.

(In words: B holds at all closest A-worlds.)

Obviously, Lewis’ sphere systems with the Limit Assumption are very similar to
ranked models with their Smoothness Assumption that we have discussed above,
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and indeed one can be viewed as a notational variant of the other (modulo some
minor differences such as the existence of a unique “most normal” world in Lewis’
semantics). Accordingly, the satisfaction clause for counterfactuals A > B in the
one case mimics the satisfaction clause for nonmonotonic conditionals « = f in
the other.

Lewis [1973a], [1973b] showed the following soundness and completeness result:

THEOREM 50. The system VC of conditional logic (see below) is sound and com-
plete with respect to the spheres semantics for subjunctive conditionals.

e Rules of VC:
1. Modus Ponens (for —)
2. Deduction within subjunctive conditionals: for any n > 1

F(BiN...AB,)—=C
F((A>Bi)A...AN(A>B,))— (A>C0C)

3. Interchange of logical equivalents

e Axioms of VC:

—

. Truth-functional tautologies

.A>A

(mA>A) - (B> A)

. (A>-B)V((AANB)>C) < (A>(B— ()
C1 Weak Centering: (A > B) — (A — B)

C2 Centering: (AN B) — (A > B)

‘V’ stands for ‘Variably strict’, which reflects that one can think of subjunctive
conditionals as strict conditionals (A — B), but with variably strict degrees of
necessity; ‘C’ is short for the ‘Centering axioms’ C1 and C2 (or semantically for
assuming that {w} is a sphere in &,,).

Unsurprisingly, if the logical consequence relation is restricted to counterfactuals
of the form A > B with A and B not containing >, i.e. if only the so-called
“flat” fragment of Lewis’ logic for counterfactuals is considered, the system P
of nonmonotonic logic re-emerges. So, on the formal level, the main difference
between the logic of counterfactuals and nonmonotonic logic turns out to be a
syntactical one: while the former allows for nestings of conditionals and also for
the application of propositional connectives to conditionals, the latter does not.
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The Bridge to Belief Revision

AGM [1985] — short for: Alchourrén, Girdenfors, Makinson — and Girden-
fors [1988] have developed a now well-established theory of belief revision, i.e. a
theory which states and justifies rationality constraints on how agents ought to
revise their beliefs in the light of new information. In this theory a belief state
of an agent is considered as a set of formulas, i.e. the set of formulas the agent
believes to be true. Furthermore, agents are assumed to be rational in the sense
that their belief sets are deductively closed. So we have:

e Belief set G: a deductively closed set of formulas

Now an agent is taken to receive some new evidence, where evidence is regarded
as being given by a formula again:

e Evidence A: a formula

Formally, the agent’s revision of her belief set G on the basis of her new evidence A
is supposed to lead to a new belief set that is denoted by ‘G x A”:

e Revised belief set G x A: a deductively closed set of formulas

The corresponding function *, which maps a pair of a formula and a set of formulas
to a further set of formulas, is called the “revision operator”.

How is this revision process considered to take place? In principle, there are
two possible cases to consider:

o (Consistency Case) If A is consistent with G, then it is rational for the agent
to simply add A to G, whence G x A will presumably be simply G U {A}
together with all of its logical consequences.

e (Inconsistency Case) If A is inconsistent with G, then in order to revise G
by A the agent has to give up some of her beliefs; she does so rationally, or
so Quine, Géardenfors, and others have argued, if she follows a principle of
minimal mutilation, i.e. she gives up as few of her old beliefs as possible.

This guiding idea does not necessarily determine G % A uniquely, but it yields
rational constraints on the belief revision operator * which can be stated as axioms.
Such axioms have indeed been suggested in the theory of belief revision, and
they have been studied systematically in the last two decades; they are usually
referred to as the ‘AGM axioms’. We will not state these axioms here, since their
standard presentation is too far removed from nonmonotonic inference relations
or conditionals: for more information see the references given above (moreover,
Hansson [1999] is a recent textbook on belief revision). But even independently
of the exact details of the axiomatic treatment of belief revision, it is clear that
belief revision operators may be expected not to be monotonic in view of the
Inconsistency case from above: if A logically implies B, then G % A is by no means
guaranteed to be logically stronger than, i.e. a superset of G * B.
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As Grove [1988] has shown, belief revision operators can be characterized se-
mantically by a sphere semantics that is “almost” like Lewis’ sphere semantics
for subjunctive conditionals and which is more or less identical to the ranked
model semantics for nonmonotonic conditionals. Without going into the formal
details, this is the main idea: Whereas in Lewis’ semantics the innermost sphere
of a sphere system around a world w contains exactly one world, namely w (Cen-
tering), Grove’s sphere systems are not “around” particular worlds at all, and
consequently the innermost sphere of a sphere system might contain more than
one world. Indeed, the set of formulas which are true in all worlds of the innermost
sphere is regarded as the “original” unrevised belief set G in a sphere system:

E)

Intuitively, such a sphere system is meant to express:

G

e If X is a sphere and w’ is a member of X, then w’ is more plausible to be
a candidate for being the actual world than all those worlds that are not
in X. The spheres themselves correspond to epistemic “fallback positions”
that are supposed to kick in if new evidence contradicts the current belief
set G.

e If w’ is not a member of any sphere, then w’ is not regarded epistemically
possible.

Alternatively, one can use a graphical representation along the lines of ranked
models: Instead of proper spheres, one has layers or ranks again; the lowest layer
corresponds to the innermost sphere, while taking the union of the lowest layer
with the second layer from below corresponds to the next larger sphere, and so
forth. G is the set of formulas that are true in all worlds which are members of
the lowest layer; G * A is the set of formulas which are satisfied by all those worlds
that have minimal rank among the worlds that satisfy A:

A
S
Gr A

G-

For every such sphere system G in Grove’s sense, i.e. every class & of subsets
of W satisfying Lewis’ assumptions on spheres except for the “centeredness on
worlds” assumption, a corresponding belief revision operator g can be defined
in much the same way as the truth conditions for subjunctive conditionals are
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determined in Lewis’ semantics and as the satisfaction conditions for nonmonotonic
conditionals are stated in preferential semantics:
B € G xs A if and only if either of the following two conditions is satisfied:

e There is no A-world in the union | J& of spheres in &, i.e. for all worlds w’
in [J&: A is false in w'.

e There is a sphere X in &, such that (i) for at least one world w’ in X it holds
that A is true in w’, and (ii) for all worlds w’ in X it holds that: A — B is
true in w’.

Grove [1988] proved the following theorem:
THEOREM 51.

e For every sphere system & in Grove’s sense (with W being the set of all
truth value assignments over L), the corresponding operator g is a belief
revision operator, i.e. it satisfies the AGM azioms.

e For every belief revision operator x satisfying the AGM axioms, there is a
sphere system & in Grove’s sense (with W being the set of all truth value
assignments over L), such that for all A, B € L:

BeG+Aiff BEGxe A

Clearly, the semantics of belief revision operators, Lewis’ semantics of subjunc-
tive conditionals, and ranked model semantics of nonmonotonic logic share a lot
of formal structure. Accordingly, there are translation results from belief revision
into nonmonotonic logic (as well as Lewis’ logic) and vice versa; see e.g. Géardenfors
and Makinson [1994]. Expressions of the form

BeGxA
are mapped thereby to expressions of the form
a=0eTH-

However, the intended philosophical interpretations of these logical frameworks
differ of course: In particular, counterfactuals are meant to express something
ontic, belief revision operators are meant to be epistemic, and nonmonotonic con-
ditionals are best regarded open to both understandings.

The Bridge to Probabilistic Logic

Since the nonmonotonicity phenomenon was already well known in probability
theory — a conditional probability P(Y|X) being high does not entail the condi-
tional probability P(Y|X N Z) being high — it is not surprising that some of the
modern accounts of nonmonotonic conditionals turn out to rely on a probabilistic
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semantics. Let us go back to Adams’ example of an indicative conditional, i.e. ‘If
Oswald did not kill Kennedy, then someone else did.”. According to Adams [1975],
asserting such an indicative conditional aims at expressing that one’s subjective
conditional probability of ‘Someone other than Oswald killed Kennedy.” given
that ‘Oswald did not kill Kennedy.” is high. Adams famously developed a non-
truth-conditional semantics along these lines, which we will sketch below. A more
recent introduction to this type of probabilistic logic is given by Adams [1998];
Pearl [1988] nicely builds on, and extends, Adams’ original theory.

Let £ be the language of propositional logic. We state a probabilistic semantics
for two types of formulas: (i) formulas A, B,C,D,E, F,... of L, (ii) formulas of
the form B = C, where B and C are members of £ (so we disregard again both
nestings of conditionals and propositional constructions from conditionals). The
formulas in (ii) are meant to represent indicative conditionals.

By a probability measure on £ we mean the following;:

DEFINITION 52. A probability measure on L is a function P with the following
properties:

1. P: L —[0,1], i.e.: P maps each sentence in £ to a real number z, such that
0<x<1.

2. For all A, B € L: If A is logically equivalent to B, then P(A) = P(B).

3. Forall A,Be L: If ANBE L, then P(AV B) = P(A) + P(B). That is: If
two sentences are inconsistent with each other, then the probability of their
disjunction equals the sum of their probabilities.

4. For all A € L: If A is logically true, then P(A) = 1.

(The axioms are not meant to be independent of each other.)

Additionally, conditional probabilities can be introduced by means of the so-
called “Ratio Formula”:

e For all A € £ with P(A) > 0,

P(BAA)
P(B|A) = —————
(BIA) = =55
where the ‘P’ on the left hand side denotes the conditional probability measure

that belongs to, or corresponds to, the unconditional probability measure that is
denoted by ‘P’ on the right hand side.

Now we consider arguments of either of the following two forms:
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A1 Al

A, A,

B, = () B, = ()

B, = C, B, = C,

D E=F

According to Adams’ semantics, such arguments are called probabilistically valid

if and only if for all infinite sequences Py, P, Ps, . .. of subjective probability mea-
sures on L the following is the case:
If If
Pi(4y) tends to 1 for 7 — oo, Pi(4y) tends to 1 for 4 — oo,
P(An) tends to 1 for i — oo, P;(An) tends to 1 for i — oo,
P;(C1|B1)  tends to 1 for i — oo, P;(C1|B1) tends to 1 for i — oo,
P;(C,|By) tends to 1 for i — oo, P;(C,|By) tends to 1 for i — oo,
then then
P;(D) tends to 1 for i — oo P,(F|E) tends to 1 for i — oo

where if P;(¢) = 0 then P;(¢|y) is regarded to be equal to 1.

REMARK 53. It is possible to omit this last extra clause if conditional proba-
bility measures — so-called Popper functions — are used from the start, rather
than having conditional probabilities determined by absolute probabilities through
the standard ratio formula. More about this may be found in McGee [1994],
Héjek [2003], and Halpern [2001a].

So put in a slogan: An argument is valid according to Adams’ probabilistic
semantics if and only if the more certain the premises, the more certain the con-
clusion.

Adams [1975] showed the following soundness and completeness result:

THEOREM 54. The following list of rules is sound and complete with respect to
probabilistic validity:
e In case A logically implies B:

A= 5 (Supraclassicality)

e In case A is logically equivalent with A’:

A= B ) )
A =B (Left Logical Equivalence)
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-
° %A (Trivial Antecedent 1)
where T 1s any propositional tautology
A

= (Trivial Antecedent 2)

where T is any propositional tautology

A= B
o A= C (Cautious Monotonicity)
AANB=C

A= B
e AANB=C (Cautious Cut)
A=C

A=C
. B = C (Disjunction)
AVB=C

These rules are to be understood in the way that if one has derived the premises
of any of these rules from a set of factual or conditional assumptions, then one
may also derive the conclusion of that rule from the same set of assumptions.

Once again, one can show that neither Contraposition nor Transitivity nor
Monotonicity is probabilistically valid. Indeed, Adams’ logic of indicative con-
ditionals is nothing else but the system P of nonmonotonic logic that has been
discussed above. This probabilistic style of doing nonmonotonic reasoning has be-
come quite prominent in the meantime (see e.g. Lukasiewicz [2002]) and connects
Nonmonotonic Reasoning to an area that is sometimes referred to as ‘Uncertain
Reasoning’ (see Paris [1994] for an excellent introduction into all formal aspects
of uncertain reasoning).

As Adams himself has observed (see also Snow [1999]), an equivalent proba-
bilistic semantics can be given in terms of so-called “probabilistic orders of magni-
tude” which replace the qualitative degrees of normality in preferential semantics.
(See Schurz [2001] for a philosophical investigation into the conceptual differences
between qualitative and statistical notions of normality.) Lehmann and Magi-
dor [1992], pp.48-53, suggest a probabilistic semantics for their system R in terms
of probability measures which allow for nonstandard real number values. See
McGee [1994], Hawthorne [1996], Bamber [2000], Halpern [2001a], Arlo-Costa and
Parikh [2005] for further probabilistic accounts of conditionals, nonmonotonic in-
ference relations, and even nonmonotonic deductive closure or entailment.

The Bridge to Neural Network Semantics

Interpreted dynamical systems — the paradigm instances of which are artificial
neural networks that come with a logical interpretation — may also be used to
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yield a semantics for nonmonotonic conditionals. Here are some relevant ref-
erences: d’Avila Garcez, Lamb, and Gabbay [2008] give a general overview of
connectionist non-classical logics, including connectionist (i.e. neural networks-
related) nonmonotonic logic, as well as lots of references to their own original
work. Balkenius [1991], Blutner [2004], and Leitgeb [2001], [2004], [2005] are im-
portant primary references. The main idea behind all of these theories is that
if classical logic is replaced by some system of nonmonotonic reasoning, then a
logical description or characterization of neural network states and processes be-
comes possible. The following exposition will introduce Leitgeb’s approach which
yields a neural network semantics for KLM-style systems; the presentation will
follow the more detailed introduction to neural network semantics for conditionals
in Leitgeb [2007].

The goal is to complement the typical description of neural networks as dynam-
ical systems by one according to which cognitive dynamical systems have beliefs,
draw inferences, and so forth. Hence, the task is to associate states and processes
of cognitive dynamical systems with formulas. Here is what we will presuppose:
We deal with discrete dynamical systems with a set S of states. On S, a partial
order < is defined, which we will interpret as an ordering of the amount of infor-
mation that is carried by states; so s < s’ will mean: s’ carries at least as much
information as s does. We will also assume that for every two states s and s’
there is a uniquely determined state sup(s,s’) which (i) carries at least as much
information as s, which also (ii) carries at least as much information as s, and
which (iii) is the state with the least amount of information among all those states
for which (i) and (ii) hold. Formally, such a state sup(s,s’) is the supremum of s
and s’ in the partial order <. Finally, an internal next-state function is defined for
the dynamical system, where this next-state function is meant to be insensitive
to possible external inputs to the system; we will introduce inputs only in the
subsequent step.

In this way, we get what is called an ‘ordered discrete dynamical system’ in
Leitgeb [2005]:

DEFINITION 55. An ordered discrete dynamical system is a triple S = (S, ns, <),
such that:

1. S is a non-empty set (the set of states).
2. ns: S — S (the internal next-state function).

3. < C S x S is a partial order (the information ordering) on S,

such that for all s, s € S there is a supremum sup(s,s’) € S with respect
to <.

In case an artificial neural network is used, the information ordering on its
states, i.e. on its possible patterns of activation, can be defined according to the
following idea: the more the nodes are activated in a state, the more information
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the state carries. Accordingly, sup(s,s’) would be defined as the maximum of the
activation patterns that correspond to s and s’; in such a case one might also
speak of sup(s,s’) as the “superposition of the states s and s’”. (But note that
this is just one way of viewing neural networks as ordered systems.) The internal
dynamics of the network would be captured by the next-state mapping ns that is
determined by the pattern of edges in the network.

Next, we add external inputs which are regarded to be represented by states
s* € S and which are considered to be fixed for a sufficient amount of time. The
state transition mapping F~ can then be defined by taking both the internal next-
state mapping and the input s* into account: The next state of the system is given
by the superposition of s* with the next internal state ns(s), i.e.:

Fs(8) := sup(s™,ns(s))

The dynamics of our dynamical systems is thus determined by iteratively apply-
ing Fg« to the initial state. Fixed points sgqp of Fy« are regarded to be the
“answers” which the system gives to s*, as it is common procedure in neural net-
work computation. Note that in general there may be more than just one such
stable state for the state transition mapping Fy« that is determined by the input
s* (and by the given dynamical system), and there may also be no stable state at
all for Fi«: in the former case, there is more than just one “answer” to the input,
in the latter case there is no “answer” at all. The different stable states may be
reached by starting the computation in different initial states of the overall system.

Now formulas can be assigned to the states of an ordered discrete dynamical
system. These formulas are supposed to express the content of the information that
is represented by these states. For this purpose, we fix a propositional language L.
The assignment of formulas to states is achieved by an interpretation mapping J.
If ¢ is a formula in £, then J(¢) is the state that carries exactly the information
that is expressed by ¢, i.e. neither less nor more than what is expressed by . So
we presuppose that for every formula in £ there is a uniquely determined state
the total information of which is expressed by that formula. If expressed in terms
of belief, we can say that in the state J(p) all the system believes is that o, i.e. the
system only believes ¢ and all the propositions which are contained in ¢ from the
viewpoint of the system. (This relates to Levesque’s [1990] modal treatment of the
‘all I know’ operator.) We will not demand that every state necessarily receives an
interpretation but just that every formula in £ will be the interpretation of some
state. Furthermore, not just any assignment whatsoever of states to formulas
will be allowed, but we will additionally assume certain postulates to be satisfied
which will guarantee that J is compatible with the information ordering that was
imposed on the states of the system beforehand. An ordered discrete dynamical
system together with such an interpretation mapping is called an ‘interpreted
ordered system’ (cf. Leitgeb [2005]). This is the definition in detail:

DEFINITION 56. An interpreted ordered system is a quadruple Sy = (S, ns, <, 7J),
such that:
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1. (S,ns, <) is an ordered discrete dynamical system.

2. J: L — S (the interpretation mapping) is such that the following postulates
are satisfied:

(a) Let THy ={p € Ll|for all ¥ € L: T(p) < T(¥) }:
then it is assumed that for all v, € L: if THy F ¢ — 1, then
I() < 3(p).

(b) For all ¢,9 € L: I(p Ay) = sup(3(), I(¢)).
(c) For every ¢ € L: there is an J(ip)-stable state.
(d) There is an J(T)-stable state Ssiqp, such that J(L) £ sgqp.

We say that Sy satisfies the uniqueness condition if for every ¢ € L there is
precisely one J(p)-stable state.

E.g., postulate 2b expresses that the state that belongs to a conjunctive formula
@ A1) ought to be the supremum of the two states that are associated with the two
conjuncts ¢ and : this is the cognitive counterpart of the proposition expressed
by a conjunctive sentence being the supremum of the propositions expressed by its
two conjuncts in the partial order of logical entailment. For a detailed justification
of all the postulates, see Leitgeb [2005].

Finally, we define what it means for a nonmonotonic conditional to be satisfied
by an interpreted ordered system. We say that a system satisfies ¢ = 1 if and only
if whenever the state that is associated with ¢ is fed into the system as an input,
i.e. whenever the input represents a total belief in ¢, the system will eventually
end up believing ¢ in its “answer states”, i.e. the state that is associated with v is
contained in all the states which are stable with respect to this input. Collecting
all such conditionals ¢ = 1) which are satisfied by the system, we get what we call
the ‘conditional theory’ that corresponds to the system.

DEFINITION 57. Let Sy = (S, ns, <,J) be an interpreted ordered system:

1. 85 F ¢ = o iff for every J(p)-stable state sstap: T(¢0) < Sstab-

2. TH=(S3) ={p =¢S5 Fp =19}
(the conditional theory corresponding to Sy).

Leitgeb [2005] proves the following soundness and completeness theorem:

THEOREM 58.

o Let S5 = (S,ns, <, J) be an interpreted ordered system which satisfies the
Uniqueness Assumption:

Then TH=(S3) is a consistent conditional C-theory extending T Hy.
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o Let TH— be a consistent conditional C-theory extending a given classical
theory TH_,:

It follows that there is an interpreted ordered system Sy = (S, ns, <, J), such
that TH=(S5) = TH=, THy 2 TH_, and Sy salisfies the uniqueness
condition.

These results can be extended into various directions. In particular, some in-
terpreted ordered systems can be shown to have the property that each of their
states s may be decomposed into a set of substates s; which can be ordered in a
way such that the dynamics for each substate s; is determined by the dynamics for
the substates s1, so,. .., 5;_1 at the previous point of time. Such systems are called
‘hierarchical’ in Leitgeb [2005]. We will not go into any details, but one can prove
soundness and completeness theorems for such hierarchical interpreted systems
and the system CL. In Leitgeb [2004] further soundness and completeness theo-
rems are proved for more restricted classes of interpreted dynamical systems and
even stronger logical systems for nonmonotonic conditionals in the KLM tradition.

As it turns out, if artificial neural networks with an information ordering are
extended by an interpretation mapping along the lines explained above, then they
are special cases of interpreted ordered systems; moreover, if the underlying arti-
ficial neural network consists of layers of nodes, such that the layers are arranged
hierarchically and all connections between nodes are only from one layer to the
next one, then the corresponding interpreted ordered system is a hierarchical one.
Thus, various systems of nonmonotonic logic are sound and complete with respect
to various types of neural network semantics. However, so far these results only
cover the short-term dynamics of neural networks that is triggered by external
input and for which the topology of edges and the distribution of weights over
the edges within the network is taken to be rigid. The long-term dynamics of
networks given e.g. by supervised learning processes which operate on sequences
of input-output pairs is still beyond any logical treatment that is continuous with
KLM-style nonmonotonic reasoning. So, the inductive logic of learning, rather
than inference, within neural networks is still an open research problem (see Leit-
geb [2007] for a detailed statement of this research agenda).

The Bridge to Philosophy of Science

In traditional general philosophy of science, the nonmonotonicity phenomenon
is well-known from inductive logic and the theory of statistical explanation. In
order to cope with it, Carnap introduced his “requirement of total evidence”: an
inductive argument should only be applied by an agent if its premises comprise
the agent’s total knowledge; in the nonmonotonic reasoning context we saw this
principle at work already in the introduction to Section 2. Hempel improved
Carnap’s rule by the related “rule of maximal specificity”; for a discussion of both
rules see Stegmiiller [1969], Chapter IX; for more on Carnap and Hempel see Zabell
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[2009] and Sprenger [2009]. In the meantime, progress in Nonmonotonic Reasoning
has started to feed back into philosophy of science. E.g.: Flach [2004] argues that
the same logics that govern valid commonsense inferences can be interpreted as
logics for scientific induction, i.e. for data constituting incomplete and uncertain
evidence for empirical hypotheses. His formal account of scientific confirmation
relations is modelled after the KLM approach to nonmonotonic inference relations.
Schurz [2002] suggests to take system P of nonmonotonic logic to be the logic of
ceteris paribus laws in science, i.e. laws that are meant to hold only in normal or
standard conditions. More such bridges to philosophy of science may be expected
to emerge.
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