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a b s t r a c t

Category-based induction is an inferential mechanism that uses knowledge of conceptual relations in
order to estimate how likely is for a property to be projected from one category to another. During the
last decades, psychologists have identified several features of this mechanism, and they have proposed
different formal models of it. In this article; we propose a new mathematical model for category-based
induction based on distances on conceptual spaces. We show how this model can predict most of the
properties of this kind of reasoning while providing a solid theoretical foundation for it. We also show
that it subsumes some of the previous models proposed in the literature and that it generates new
predictions.

© 2020 Elsevier Inc. All rights reserved.

1. Introduction

Reasoning and concept representation are two central issues
in philosophy and cognitive psychology. Surprisingly enough,
they have traditionally been understood as independent research
topics and they rarely intersect in the literature. One possible
explanation for this is that reasoning studies have been domi-
nated by a logicist approach that conceives inference as a purely
formal-syntactic processes (i.e., non-semantical), that builds on
some set of domain-general and topic-neutral rules of inference.
On that view, lexical concepts are seen as inferentially inert, that
is, not playing any crucial role in the very process of inference
and reasoning.

This view, summarized in Inhelder and Piaget’s claim that
‘‘[human] reasoning is nothing more than the propositional calcu-
lus itself’’. (Inhelder & Piaget, 1958, p. 305), led cognitive psychol-
ogists to consider deductive reasoning as the paradigm of rational
inference. In deductive reasoning, drawing a conclusion from a
set of premises does not require the agent to exploit seman-
tic knowledge about the premises. Deduction is informationally
conservative, the information in the conclusion is implicit in the
premises, and the agent is only required to grasp the logical form
of arguments and to know how to use logical constants to infer.

However, deductive reasoning is hardly the only or the most
important mechanism used in everyday reasoning. Navigating our
environment requires us to cope with constant uncertainty and
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partial information (Oaksford & Chater, 1998). Truth-preservation
is not the central concern, but the type of inferential processes
needed are those allowing us to make risky predictions about new
stimuli exploiting background knowledge and expectations.

Induction is one of these processes. Induction and deduction
deal with semantic information in very different ways (Johnson-
Laird, 2010). The conclusion of an inductive inference adds se-
mantic information that is not present in the premises. If we infer
that all ravens are black from a set of premises about individual
ravens, we are inferring under uncertainty, and adding informa-
tion that is not present in the premises. In this sense, inductive
reasoning is not ‘‘formal’’, that is, merely based on the syntactic
structure of the premises (see Thagard, 1988, pp. 27–29).

Understanding induction, therefore, requires explaining how
background knowledge is exploited in reasoning. One way of
doing this (following Gärdenfors, 2000; Thagard, 1984) is to see
inference as an activity that is not strictly linguistic-based, but
that combines information codified at the symbolic-propositional
level, with information encoded at the conceptual level (see Gär-
denfors & Stephens, 2018).

During the last decades, psychologists have been studying a
kind of cognitive phenomenon that is directly related to this
last point. In the pioneering article ‘‘Inductive judgments about
natural categories’’, Rips (1975) analyzed a particular type of
inductive reasoning that exploits information about individual
categories (and about relations among categories) for estimating
the probability of property projection among them. For instance,
the inference ‘‘Dogs have sesamoid bones; thus wolves have
sesamoid bones’’ relies on the conceptual similarities among the
categories DOG and WOLF, and not on the logical form of the
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argument or some other propositionally codified property. Such
processes, called category-based inferences (CBI), are fundamental
to our cognitive lives. On the one hand, they are crucial for dealing
with uncertainty: they allow us to reason about some unknown
input X by exploiting information stored in our conceptual system
about things that resemble X. On the other hand, as Feeney (2017,
p. 167) observes, they are a clear example of how concepts make
our cognition efficient.

Understanding how CBI works, and especially which proper-
ties of our conceptual systems it exploits, can shed light on the
general problem about the role of concepts in inferences. In this
article, we discuss the general features of CBI, and we propose
conceptual spaces (Gärdenfors, 2000, 2014) as an explanatory
framework. Conceptual spaces is a theory about the structure and
organization of conceptual knowledge. We will propose a model
of CBI that builds on distances in conceptual spaces and show that
the model can explain most of the empirical results concerning
CBI.

The article is organized as follows. Section 2 presents a basic
taxonomy of category-based inductions and reviews the central
phenomena associated with them. Section 3 introduces some
of the theoretical and technical aspects of conceptual spaces.
Section 4 presents our model and explains how the theory of
conceptual spaces provides a natural way of modeling the cen-
tral properties of CBI based on the capacity of the theory for
representing similarity and typicality relations among categories.
Section 5 compares our model to some of the previous expla-
nations, and Section 6 briefly considers some methodological
aspects of the approach we defend.

2. Category-based induction

2.1. The general structure of category-based inferences

Rips’ (1975) seminal paper intended to understand the strate-
gies that agents use for reasoning under uncertainty about prop-
erty projection among biological kinds (such as HAWK, BIRD,
EAGLE, etc.). He showed that agents exploit structural properties
of categories for estimating the plausibility of property projection.
In particular, Rips saw that similarity among categories and the
degree of typicality of premise-categories were guiding principles
of this kind of reasoning.

Most studies on CBI follow Rips’ analysis (for example, Carey,
1985; Heit, 2000; Osherson, Smith, Wilkie, López, & Shafir, 1990;
Sloman, 1993). They all assume that inductive reasoning is a
process that exploits information at the conceptual level, and not
at the propositional level. From a methodological perspective,
these studies analyze the inferential dispositions of cognitive
agents by studying how people judge the strength of different
types of (categorical) inductive arguments. Various phenomena
concerning CBI have been identified during the last decades (see
Feeney, 2017; Hayes, Heit, & Swendsen, 2010 for reviews). We
next explain a basic taxonomy of CBI in order to present the
phenomena that characterize CBI.

Category-based inferences are structured as arguments with
one or more premises of the form ‘X are S’ (for example, ‘Dogs
have sesamoid bones,’ and ‘Bears love onions’) and one conclusion
of the same type. We sometimes abbreviate an inference of the
form ‘X have property S; thus Y have property S’ as X → Y.
One argument for this abbreviation is that, in almost all studies,
subjects typically have little or no knowledge about the property
S and therefore it does not influence the strength of the argument.

CBI can be classified in two major ways: according to their
number of premises, and according to whether the conclusion is
at the same conceptual level as the premises or in some superor-
dinate category. When the premise(s) and conclusion categories

Table 1
Basic taxonomy of category-based inferences.

Single premises Multiple premises

Specific (1) Foxes have property S
Wolves have property S

(2) Penguins have property S
Pigeons have property S
Ostriches have property S
Sparrows have property S

General (3) Robins have property S
Birds have property S

(4) Polar bears have property S
Grizzly bears have property S
Bears have property S

are at the same conceptual level, the argument is called specific;
when the argument involves a generalization (a ‘‘jump’’ to a
superordinate conceptual level), then it is called general. For in-
stance, arguments with the (categorical) form ROBIN → CROW or
TABLE → CHAIR are specific, while arguments that generalize to
a superordinate category, like ROBIN → BIRD, ROBIN → ANIMAL
or TABLE → FURNITURE, are general. Both specific and general
arguments can be composed of one or multiple premises (see
Table 1). .

In what follows, we will review the main properties of CBI
as described by the empirical literature. The idea is that these
phenomena say something about what kind of categorical or
conceptual relations people exploit when judging category-based
inductive arguments.

2.2. Premise–conclusion similarity

The primary categorical relation guiding category-based infer-
ences is similarity. Similarity has been considered as a crucial
criterion for induction since at least Hume (1999, p. 20). Quine
famously argued (1969, 1974) that similarity might be a fun-
damental psychological principle in a wide range of cognitive
phenomena, like learning, concept formation, and reasoning. In
psychology, the notion of similarity has proved to be fruitful since
the 70 s. Since the pioneering work of Shepard (1974) and Tversky
(1977), formal models of similarity were developed for explaining
concept formation, categorization, and even induction. And since
Rosch’s (1973) work on prototypes, similarity was developed as
the central criterion for explaining category structure.

Not surprisingly, the empirical literature has shown that the
most robust criterion used in CBI is similarity among categories
(Carey, 1985; López, Gelman, Gutheil, & Smith, 1992; Osherson
et al., 1990; Rips, 1975). This can be formulated as that our
expectations regarding property projection among two categories
X and Y is a positive function of their similarity. For instance,
arguments like ‘‘Ostriches are S, then emus are S’’ are generally
seen as stronger than arguments like ‘‘Ostriches are S, then blue
jays are S’’, since sim(OSTRICH, EMU) > sim(OSTRICH, BLUEJAY),
where sim(X,Y) denotes a measure of the similarity between the
categories X and Y.

2.3. Typicality

Similarity, as a criterion for category-based inferences, can
only be used for categories at the same conceptual level; but it
is not useful in arguments that generalize a property from the
category premise to the category of the conclusion. In those cases,
typicality is what guides categorical inferences.1

Roughly put, the typicality effect is the finding that individuals
respond more quickly to typical examples of a category than they
do to cases that are considered atypical. For instance, when asked
to name a bird, an individual is much more likely to respond

1 Typicality is deeply related to similarity (see Rips, 1989).
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Fig. 1. RED is a subregion of the color space.

with ‘robin’ than with ‘penguin’. The idea was proposed and
tested by Rosch (1973), and it suggests that conceptual structures
(especially natural kinds) are articulated around prototypes. In
fact, most categories seem to have a graded structure (see Barsa-
lou, 1987; Decock & Douven, 2014), which means that different
members of the category are perceived with different degrees
of typicality. For instance, cows are generally seen as very typ-
ical representatives of the MAMMAL category, while mice are
moderately typical, and whales are highly atypical members.

Typicality plays a crucial role in CBI.2 The most robust effect
found in the empirical literature is that expectations of property
projection are a positive function of premise-typicality. For in-
stance, the inference ‘‘Robins have enzyme E; thus ostriches have
enzyme E’’ is often judged as stronger than ‘‘Penguins have en-
zyme E; thus ostriches have enzyme E’’. This is due to the fact that
robins are prototypical birds and as such they better represent the
category than penguins (which are atypical). To a lesser extent,
conclusion-typicality also seems to be a factor in category-based
inferences. Hampton and Cannon (2004) have shown that argu-
ments with prototypical conclusion-categories (like CHICKEN →

ROBIN) are judged as stronger than arguments with non-typical
conclusion categories (like CHICKEN → VULTURE).

Furthermore, the typicality effect produces what is called
asymmetry, that is, the fact that switching the categories from the
premises and conclusion often changes the expectations of prop-
erty projection, according to the degree of typicality of the cate-
gory in the premise(s). For instance, arguments like ‘‘Cows have
enzyme E; thus otters have enzyme E’’ is considered stronger than
arguments like ‘‘Otters have enzyme E; thus cows have enzyme
E’’ since cows are more typical mammals than otters.

2.4. Conclusion homogeneity and premise diversity

Another important aspect is that agents assume a common
superordinate category of the premises when making inferences
or judging the strength of this kind of argument. Sometimes this
superordinate category appears explicitly in the conclusion (as

2 For a discussion on the role of prototypicality in reasoning in general, see
Cherniak (1984).

in general arguments); some other times, it is just considered
implicitly. For instance, consider the arguments in Fig. 1. In (1),
the implicit superordinate category is MAMMAL, while in (2)
it is BIRD. In (3) and (4), the superordinate category appears
explicitly in the conclusion. Four important phenomena related to
such an evoked superordinate category have been studied in the
empirical literature: homogeneity, monotonicity, nonmonotonicity,
and premise diversity.

(i) Homogeneity refers to the idea that the more abstract and
less homogeneous the category in the conclusion is, the weaker
the argument. For instance, arguments like ‘‘Robins are S and
blue jays are S; thus all birds are S’’ are judged as stronger
than ‘‘Robins are S, and blue jays are S; thus all animals are S’’.
This is not surprising at all. As we said before, when evaluating
arguments or making inferences that involve generalizations, we
deal with different degrees of uncertainty. The more abstract the
category in the conclusion, the more information we need from
the premises to cover it. Hence category-based inductions with
abstract categories (like ANIMAL or LIVING BEING) involve higher
degrees of uncertainty and are more difficult to cover by the
information from the premises.

Studies of categorization (especially in the prototype tradition)
provide some insight into this phenomenon. Categories may have
different degrees of generality (e.g. DOG, MAMMAL, ANIMAL, LIV-
ING THING), and these degrees are related to the computational
cost of using them in categorization. Categories with an inter-
mediate level of specificity are preferred in terms of cognitive
efficiency. These are called basic-level categories (DOG instead of
MAMMAL; CHAIR instead of FURNITURE), and studies have shown
that they are central for carrying out several cognitive tasks
(Mervis & Rosch, 1981). Inductive inference seems to follow the
same principle. We have a preferred level of induction (Sloman &
Lagnado, 2005, p. 106) that coincides with basic-level categories.

A possible way of explaining this is by referring to similarity
and typicality as the two main criteria for using categories. Basic
level categories are more homogeneous. As such, it is easier for
us to apply criterion of similarity among their members. Abstract
categories are more diverse and less homogeneous, so compar-
ing their members in terms of similarity is more complex (for
instance, the category ANIMAL include highly dissimilar subcat-
egories, such as ELEPHANT and STARFISH). Along the same line,
basic categories have clear prototypes, while it is complicated for
us to construct prototypes for abstract categories (see Ungerer
& Schmid, 2006, Ch. 2 for an introductory explanation). In this
sense, typicality, considered as a criterion for using categories, is
stronger in basic-level categories than in abstract ones.

(ii) Monotonicity refers to the fact that the addition of
premises, as long as their categories are included in the evoked
superordinate category, strengthen the argument (Osherson et al.,
1990). For instance, an argument of the form (ROBIN & HAWK)
→ BIRD is weaker that an argument of the form (ROBIN &
HAWK & PIGEON) → BIRD. However, if we add to the premises a
category that is not from the evoked superordinate category, then
the argument becomes weaker. This is called nonmonotonicity
(iii). For instance, an argument with the categories (PEACOCK &
CROW) → BIRD (or (PEACOCK & CROW) → PIGEON) is stronger
than an argument that goes from (PEACOCK & CROW & RABBIT)
→ ANIMAL (or (PEACOCK & CROW & RABBIT) → PIGEON).

(iv) Finally, there is the diversity phenomenon (Feeney & Heit,
2007; Osherson et al., 1990). Empirical studies have shown that
having diverse categories tends to promote expectations regard-
ing property projections. For instance, arguments like ‘‘Horses
have an ulnar artery and seals have an ulnar artery; thus all mam-
mals have an ulnar artery’’ are considered as stronger than the
argument ‘‘Horses have an ulnar artery, and cows have an ulnar
artery; thus all mammals have an ulnar artery’’. The less similar
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Fig. 2. Example of a Voronoi tessellation from Gärdenfors (2000).

the categories in the premises are, the stronger the argument
tends to be.

An interesting way of understanding this phenomenon builds
on the idea of ‘‘category coverage’’ (Osherson et al., 1990). As
we mentioned before, when performing or evaluating categorical
inductions, we take as a reference (implicitly or explicitly, ac-
cording to whether we deal with a specific or general argument)
some superordinate category that includes all the categories in
the premises. The strength of the argument will depend, to some
extent, upon how the categories in the premises cover this su-
perordinate category. For instance, similar categories like HORSE
and COW have less coverage of the superordinate category than
dissimilar categories like HORSE and SEAL. In this sense, coverage
can be described in terms of similarity. We will discuss this idea
further in Section 5.

Sloman (1993, pp. 253–254) pointed out that diversity has a
limit: if highly dissimilar categories are used in the premises,
this can weaken the argument instead of making it stronger.
For instance, the argument ‘‘German shepherds have sesamoid
bones and elephants have sesamoid bones; thus moles have
sesamoid bones’’ seems stronger than ‘‘German shepherds have
sesamoid bones, and blue whales have sesamoid bones; thus
moles have sesamoid bones’’. This indicates that in arguments
that include highly atypical categories in some premise (BLUE
WHALE is a highly atypical mammal), then diversity becomes
negative regarding argument strength.

In the following section, we present the basic framework for
conceptual spaces. This will allow us to explain later how we
propose to use this framework as a model of the phenomena
presented above and other aspects of CBI.

3. Conceptual spaces

3.1. Defining conceptual spaces, properties and concepts

Conceptual Spaces (CS) (Gärdenfors, 2000, 2014) is a research
program in cognitive science for modeling several cognitive phe-
nomena involving concepts and conceptual structures (semantic
processing, learning, reasoning, categorization, concept forma-
tion, etc.). Unlike the dominant computational tradition in philos-
ophy and cognitive science, CS does not assume that language (or
some language-like structure like Fodor’s ‘‘language of thought’’)
is the fundamental representational system supporting high-level
cognition. Instead, CS builds upon the fundamental hypothesis
that there exists an intermediate representational system that
encodes semantic information in spatial structure.

CS is an heir to the geometrical models of conceptual repre-
sentations inaugurated by Shepard (1987) in psychology, and a
development of the notions of ‘‘quality spaces’’ in Quine (1960),

‘‘attributes spaces’’ in Carnap (1971), and ‘‘logical spaces’’ in Stal-
naker (1981). Just like in the other geometrical models in psy-
chology, the fundamental idea behind conceptual spaces is that
concept formation and representation take place in some psycho-
logical space — in which similarity can be represented in terms
of distances determined from some metric (see Eliot, 1987).

CS builds on two fundamental notions: quality dimensions and
domains. Quality dimensions are the building blocks of conceptual
spaces. They are geometrical structures able to represent some
‘‘quality’’ of objects, for example, brightness, height, time, weight,
pitch. Each of these qualities of stimuli can be represented by
a particular geometrical structure (see Gärdenfors, 2000). For
instance, weight can be represented by a line isomorphic to the
non-negative real numbers.

Dimensions can be integral or separable. Dimensions are inte-
gral when you cannot assign to an object a value in one dimension
without assigning another value in another dimension (Maddox,
1992). For instance, it is not possible to attribute a value to
pitch of a tone without attributing one to loudness. When quality
dimensions are not integral, they are called separable.

A set of integral dimensions that are separable from all other
dimensions is called a domain. The classic example of a domain
is the color spindle. It is composed of three integral dimensions
hue, saturation, and brightness. The geometrical representation of
hue is the color circle. Saturation or intensity is represented as
an interval of the real line, while brightness varies from white to
black and is thus a linear dimension with endpoints. These three
integral dimensions together, one with a circular structure and
two with a linear structure, make up the color space (see Fig. 2).3

Domains serve to represent different qualities of objects
through their geometrical and topological properties. A central
such property is distance, that allows us to represent similarity
among different properties: The closer they are in space, the more
similar they are.4 For instance, within the color space, predicates
like RED, BLUE or ORANGE correspond to regions of the domain.
And the relationships among them correspond to their position in
the color spindle. For instance, the distances in the color domain
allow us to represent why ORANGE and RED are more similar
than RED and GREEN.

The domains of a conceptual space are related in various ways
since the properties of the objects modeled in the spaces co-vary.
For example, in the fruit domain, the ripeness and color dimen-
sions co-vary, as well as size and weight. These co-variations are
crucial for inferential procedures that exploit conceptual proper-
ties.

A conceptual space is a collection of one or more domains
with a distance function (metric) that represents properties, con-
cepts, and their (similarity) relationships. The distance function
can vary, but the most common one is the Euclidean distance
function, which makes conceptual spaces Euclidean spaces (Jo-
hannesson, 2003). Objects are seen as instances of concepts and
are mapped into points of the space, and concepts are represented
as regions. Similarity among concepts and objects can then be
easily estimated since it is a monotonically decreasing function
of their distance within the space (Shepard, 1987).

A concept is generally defined as a region of some concep-
tual space. But within single domains, concepts are called prop-
erties. According to Gärdenfors (2000), natural properties are
characterized by the following criterion:

3 It is worthwhile to mention that the figures in this article have only an
illustrative purpose. They do not come from actual data about the conceptual
spaces they are supposed to represent.
4 It should be noted that not all spaces have a metric. For example, some

dimensions only have an ordering structure.
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Criterion P: A natural property is a convex region in some
domain.

Convexity exploits the geometric properties of quality dimen-
sions. A region is convex when for every pair of points x and
y in the region, all points between them are also in the region
(see Fig. 2). In this way, criterion P assumes that the notion of
betweenness is meaningful for the relevant domain.

Gärdenfors (2000) conjectures that color terms, being natu-
ral properties, have to respect the structure of the conceptual
space in which they are grounded across different languages. That
means that it would not be possible for any language to have
one single word for the extension of two colors like RED and
GREEN since they are disjoint in the color conceptual space. This
conjecture has been confirmed for 110 different languages by
Jäger (2010).

Within this framework, concepts are represented as regions
of some set of interweaved domains. Gärdenfors (2000) defines
concepts according to the following criterion:

Criterion C: A concept is represented as a set of convex regions
in a number of domains, together with information about how
the regions in different domains are correlated.

Fruit categories are good examples of natural concepts. For in-
stance, the concept APPLE comprises regions in domains like
color, shape, taste, texture, nutrition, and smell. The APPLE con-
cept has a strong positive correlation between sweetness in the
taste domain and sugar content in the nutrition domain, and a
weaker positive correlation between redness and sweetness.

In this article we assume that for each of the domains that
belong to a concept, there exists a distances measure. However,
it is also assumed that these measures can be weighted together
to create an overall measure for the space. As we will see in
Section 3.3 this weighting is, in general, context dependent. In
most of the experiments on categorical induction, however, the
properties studied are presented without any specific context,
which makes it reasonable to assume that the similarity judg-
ments of the subjects can be used to estimate a common space
and a metric that can be used in testing the model we propose.

3.2. Prototypically and conceptual spaces

One important advantage of the conceptual spaces framework
is that it can represent prototypes of concepts. In that sense, it
fits very well with the prototype theory of categorization (Gär-
denfors, 2000; Lakoff, 1987; Mervis & Rosch, 1981; Rosch, 1975,
1978).

Criteria P and C allow for a natural way of representing the
prototype effects. Within convex regions, one can take some
specific point (or set of points) as the prototype of a category.5 As
a result, and using the built-in metric of the space, one can get
a measure of typicality of any member of the category by esti-
mating its distance with the prototype. For example, focal colors
are generally considered in cognitive science and linguistics as
prototypes of the color space (Douven & Gärdenfors, 2019; Rosch,
1971).

Assuming the prototypical structure of concepts does not re-
quire that there is an actual object that represents the prototype.
Describing concepts as convex regions of a conceptual space
allows us to represent the complete space of possible objects
that would fall under the concept. In particular, a prototype may
be represented as a partial vector, where only the values of the

5 It should be noted that this does not necessarily lead to being central in
the regions they are assigned.

dimensions that are most relevant for the concept have been de-
termined. For example, the general shape of the prototypical bird
would be included in the vector, but its color or age presumably
would not.

It is possible to argue in the converse direction, too, and
show that, if prototype theory is adopted, then the representation
of concepts as convex regions is to be expected. To obtain a
prototypically structured conceptual space, we start from a set
of prototypes p1, . . . , pn of the categories to be represented (for
example, different bird species). These are the central points
in the categories they represent. If it is then assumed that for
every point p in the space one can measure the distance from
p to each of the pi’s and stipulate that p belongs to the same
category as the closest prototype pi, then it can be shown that
this rule will generate a partitioning of the space that consists of
convex areas (convexity is here defined in terms of an assumed
distance measure). This is the so-called Voronoi tessellation, a
two-dimensional example of which is illustrated in Fig. 3. Thus,
assuming that a metric is defined on the subspace that is subject
to categorization, a set of prototypes will by this method generate
a unique partitioning of the subspace into convex regions.

Because of the role that prototypes have within this theoretical
framework, typicality is an independent variable. As Gärdenfors
shows, this particular spatial configuration of the space has sev-
eral advantages in terms of the economy of cognitive processing
(ibid, pp. 123–126).

3.3. Context, domain salience, and dynamic conceptual spaces

An important phenomenon that any theory of concepts must
account for is that psychological similarity is a variable measure
that is dependent on the context (Goodman, 1972). In particular,
as noticed by Nosofsky (1986), conceptual similarity is modulated
by attention to specific domains of the compared concepts. For
instance, apples are seen (generally) as more similar to tomatoes
than to dates. However, in the context of choosing dessert, in
which ‘‘sweetness’’ is a salient feature, it is expected for this
similarity judgment to change.

The contexts in which concepts are used are crucial in the
modulation of the similarity measure. Context-effects have been
extensively studied in the psychological literature (see Goldstone,
Medin, & Halberstadt, 1997; Keßler, Raubal, & Janowicz, 2007),
and geometrical models of similarity have been often criticized
because of their limitations at the moment of accounting for
them (Decock & Douven, 2011; Tversky, 1977 for a review).
The conceptual spaces model, however, does not suffer these
shortcomings (Johannesson, 2003). In this theory, the context-
sensitive character of psychological similarity is accounted for in
terms of a weighted distance measure. For instance, within the
context of a Euclidean metric, the distance measure will include
attention-weights wi that modify the salience of dimension i in
the conceptual space

d(x, y) =

√∑
i

wi(xi + yi)2

When a larger value is given to a weight wi the conceptual
space is magnified along that dimension, which means that di-
mension i will become more important when determining the
similarity between categories (Gärdenfors, 2000, p. 20). As we
will see later in the article, this weighted-distance function will
have a central role for accounting for the role of context in CBI,
and in particular, for dealing with the influence on non-blank
properties.

In summary, conceptual spaces, thanks to their particular geo-
metrical and topological structures, allow us to represent similar-
ity and typicality, which are two main properties that character-
ize concepts and conceptual systems. Modeling CBI by conceptual
spaces makes use of these two properties.
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Fig. 3. ‘‘Bird space’’ representing the positions of the different bird categories
relative to a prototype.

3.4. Inference and conceptual spaces

As we mentioned earlier, the formalist view of reasoning based
on logic and probability has dominated philosophy and cogni-
tive science (Mercier & Sperber, 2017). In general, this approach
assumes that reasoning is based on propositions, and can be
described by some set of topic-neutral and domain-general rules.
As a consequence, concept structures are immediately dismissed
as inferentially irrelevant.

However, this view has been criticized because of its psy-
chological implausibility (see Johnson-Laird, 2010; Oaksford &
Chater, 1991) and most cognitive scientists assume that concepts
play a constitutive role in inferential processes (Carey, 2009;
Evans, 1989).

We believe that conceptual spaces can offer insights into the
role of conceptual knowledge in reasoning. In this framework, in-
ference is not conceived as a process that takes place (exclusively)
at the propositional level, but one that supposes the interaction
between the conceptual and the symbolic levels (Gärdenfors,
1997). In particular, inference exploits properties of the con-
ceptual structure, and since conceptual structure is represented
geometrically, inference can be understood as exploiting different
geometrical properties of concepts.

As a simple example, consider the inference ‘‘the car is red;
thus the car is not green’’. This inference is intuitively valid (not
formally) for any subject who grasps the basic color concepts.
In conceptual spaces, having that concept involves being able
to represent an object in the RED region of the color spindle
(Fig. 2), something which immediately implies that the object is
not located in the other regions of the spindle (GREEN, YELLOW,
etc.).

Furthermore, Gärdenfors (2000, 2008) showed that conceptual
spaces are useful for modeling the non-monotonic character of
rational inference, and inferences associated with the metaphor-
ical use of language. And recently, Schockaert and Prade (2013)
used conceptual spaces to model interpolative reasoning. We next
turn to use conceptual spaces in our model of CBI.

4. Category-based inferences modeled in conceptual spaces

4.1. Inferences and expectations

CBI has been analyzed from different perspectives, depending
on what kind of categorical relation it is assumed to explicate.
Class-inclusion (Inhelder & Piaget, 1964), shared features (Slo-
man, 1998), and similarity (Osherson et al., 1990), have been the
most explored ones in the literature. However, reasoning about
categories seems to be a complex mechanism that involves com-
bining all these relations and probably other more sophisticated

heuristics. It is a challenge to present a model that can account
for all of them. In this section, we propose a general model based
on conceptual spaces that, among other things, offers a natural
(and relatively simple) way of explaining similarity and typicality
which are the two main categorical relations that are central to
CBI.

For our model, we will talk about expectations of property
projection among categories instead of argument strength. As
Gärdenfors has argued (1991, 1994), expectations play a crucial
role in everyday reasoning. For instance, the sentence ‘‘John got
a new pet’’ comes associated with a large set of expectations
related to the lexical concepts in the sentence. After hearing that
sentence, I would expect John’s new pet to be prototypical, that is
a dog, or a cat, or (less likely) a bird. But if I later hear the sentence
‘‘John’s new pet is grazing in the garden’’, I would then discard
the aforementioned expectations and infer that John’s new pet is
probably some pet-size grazing animal. It has been argued that
much of nonmonotonic reasoning can be modeled in terms of
a semantic framework based on expectations (Gärdenfors, 1994;
Gärdenfors & Makinson, 1994). In relation to CBI, the idea is
that the agent’s inferential dispositions are determined – to a
large extent – by her expectations about regularities in the world,
which are codified in the agent’s background knowledge.

In our modeling of CBI, we use the expression ExpS(X → Y )Z
to stand for the expectation that the property S is projected from
category X to category Y, with Z as the lowest-level superordinate
category that contains both X and Y. We will start our analysis by
focusing on the simplest case of category-based inference: single
premises/specific arguments. For this kind of inductive inference,
we want ExpS(X → Y )Z to satisfy the following criteria:

1. It is positively correlated with sim(X, Y).
2. It is positively correlated with sim(X, PZ), where PZ is the

prototype of Z.
3. It is positively correlated with sim(Y, PZ)

The rationale for the first condition is that the more similar the
categories X and Y are, the more expected will it be that Y has
property S if X has it. Regarding condition (2), the intuition is that
the more prototypical X is, the more expected it is that another
category Y has property S, given that X has it. Condition (3) is
motivated by Hampton and Cannon’ (2004) conclusion-typicality:
the more prototypical Y is the more expected it is that Y has
property S, if X has it.

4.2. A simple model

To illustrate the basic idea of our approach with a simple
model, let us, for the time being, assume that X and Y are small
regions so that we can identify them with points in a conceptual
space. Then, given a conceptual space representing the categories
X, Y, and Z and a distance function d of the space, we can account
for the three conditions above by the following equation:

ExpS(X → Y )Z = (d (X, Y ) · d(X, PZ )a · d(Y , PZ )b)−1 (1)

where a and b are positive constants such that a > b. This
assumption expresses that premise typicality contributes more
to expectations than conclusion-typicality since, according to the
literature, the former is a more prevalent phenomenon than the
latter. The values of both a and b must be empirically deter-
mined from data about CBI judgments. We return to this point
in Section 6.

Now, following Shepard’s (1987) universal law of generaliza-
tion, which claims that similarity is an exponentially decreasing
function of distance, we can take the logarithm of (1) and obtain:

logExpS(X → Y )Z = sim(X, Y ) + a · sim(X, PZ ) + b · sim(Y , PZ ) (2)
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By convention, for any two categories X and Y, 0 ≤ sim(X, Y) ≤ 1
and sim(X, Y) = 1 if and only if X = Y.

Now, Eq. (2) captures the basic idea that for single-premise
specific arguments the expectations of property projection among
categories are determined by a weighted sum of three factors:
premise–conclusion similarity, premise-typicality, and conclusion-
typicality.

Eq. (1), applied to a set of prototypes for categories, captures
similarity, premise and conclusion typicality and asymmetry ef-
fects in CBI. For instance, when considering the sentence ‘‘emus
have property S’’, people expect more that ostriches also have
property S than that penguins have it. This is due to the sim-
ilarity effect since sim(EMU, OSTRICH) > sim(EMU, PENGUIN).
If we construct a ‘‘bird space’’ through some set of prototypes,
this inequality would be immediately represented by the relative
positions in the space of the two pairs ⟨EMU, OSTRICH⟩, and
⟨EMU, PENGUIN⟩ (see Fig. 4). And it can be measured via the dis-
tance function of the space. Since sim(EMU, OSTRICH) > sim(EMU,
PENGUIN), if follows from (1) that ExpS(EMU → OSTRICH)BIRD >
ExpS(EMU → PENGUIN)BIRD.

As we mentioned, this model also predicts asymmetry and
premise and conclusion-typicality. For instance, ExpS(ROBIN →

EMU)BIRD > ExpS(EMU → ROBIN)BIRD since sim(ROBIN, PBIRD)
> sim(EMU, PBIRD) and a > b. Regarding conclusion-typicality
assume, following the bird space in Fig. 4, that sim(OSTRICH,
VULTURE) ≈ sim(OSTRICH, ROBIN) and that sim(OSTRICH, PBIRD)
≈ sim(VULTURE, PBIRD). Then ExpS(OSTRICH → ROBIN)BIRD >
ExpS(OSTRICH → VULTURE)BIRD since sim(ROBIN, PBIRD) is signifi-
cantly larger than sim(VULTURE, PBIRD).

4.3. A more general model

In general, concepts are represented as regions of conceptual
spaces, not points. We now turn to a more general model to
account for this. Our idea then is that the volumes of the regions
that represent concepts in some conceptual space (areas in the
case of a 2-dimensional space), can be taken as predictors of
expectations, that is, argument strength in CBI.6 The volume of
a concept in a conceptual space depends on the metric that is
assigned to the space and it is defined in a standard way. The
volume depends on the variability of properties (‘‘values’’) that
can be given to an object falling under that concept in each
domain. For instance, it is expected that the concept DOG has
a larger volume than the concept TIGER, since dogs can be of
several different colors, shapes and, sizes, while tigers have less
variability in these domains. The immediate consequence of this
is that the more heterogeneous the concept is, the larger its
volume will be in a conceptual space.

Coming back to expectations, we assume that ExpS(X → Y )Z
is positively correlated with the volume V(X) of X and nega-
tively correlated to the volume V(Y) of Y. The positive correlation
is due to the fact that the larger V(X), the more it ‘‘covers’’
– or is more representative of – the superordinate category Z.
For example, ExpS (BEAR → WOLF)MAMMAL should be larger than
ExpS (POLARBEAR → WOLF)MAMMAL (see Fig. 4).

The negative correlation holds because the smaller the region
Y is, the more likely it is for Y to have property S in the inductive
argument. If X and Y cover overlapping regions of the space, then
the relative sizes of their non-overlapping regions X – Y and Y –
X, that is, V(X – Y)/V(Y – X) should be considered. Building on (1),
and considering the above ideas we propose the following:

ExpS(X → Y )Z = (d(PX , PY )
V (X−Y )
V (Y−X) · d(PX , PZ )a · d(PY , PZ )b)−1 (3)

6 An alternative idea is to introduce explicitly distances between regions as
a function of distances between their points (see for example Niiniluoto, 1987).
It would be a matter of empirical testing to determine which model would give
the best results.

Fig. 4. ‘‘Mammal space’’ representing the difference in volume of BEAR, POLAR
BEAR and WOLF.

Again, taking the logarithm and considering the relation between
distance and similarity, we obtain)

logExpS(X → Y )Z =
V (X − Y )

V (Y − X)
sim(PX , PY ) + a · sim(PX , PZ )

+ b · sim(PY , PZ ) (4)

In cases when X and Y are disjoint regions, which are the most
typical ones, the quotient reduces to V(X)/V(Y). And in cases when
X and Y are represented by small non-overlapping regions, we
can take V(X)/V(Y) = 1 and then Eqs. (3) and (4), respectively,
will have (1) and (2) as limiting cases.

Just as (3), this new equation predicts premise-similarity,
premise and conclusion-typicality, and asymmetry. To see an ex-
ample of how it works, consider the conclusion-typicality effect.
As mentioned in Section 2.3, some experiments show a robust
effect of conclusion typicality in CBI (Hampton & Cannon, 2004).
For instance, an argument with categories KOALA → GUINEA
PIG should be seen as weaker than an argument like KOALA →

TIGER, since TIGER is a more typical mammal than GUINEA PIG.
Assume, for the sake of argument that sim(KOALA, GUINEA PIG)
≈ sim(KOALA, TIGER), and that V(GUINEA PIG) ≈ V(TIGER). Then,
using (4) we will have that

V (KOALA)

V (GUINEA PIG)
.sim (PKOALA, PGUINEA PIG)+a · sim (PKOALA, PMAMMAL)

+ b · sim (PGUINEAPIG, PMAMMAL)

<
V (KOALA)

V (TIGER)
· sim (PKOALA, PTIGER) + a · sim (PKOALA, PMAMMAL)

+ b · sim (PGUINEAPIG, PMAMMAL)

since

b · sim (PGUINEAPIG, PMAMMAL) < b · sim (PTIGER, PMAMMAL) .

Then it follows that

ExpS(KOALA → GUINEAPIG)MAMMAL < ExpS(KOALA→TIGER)MAMMAL

(see Fig. 5).7
Note that (4) is not defined when Y ⊂ X, since in that case Y –

X = ∅. However, in this case the expectation of property projec-
tion is maximal, and we can define it to be some arbitrary high

7 It is possible that a concept with greater volume is less typical than a
concept with a smaller volume. For example, FISH may have a greater volume
than CAT, but being less typical as a PET. However, in Eq. (3), the expectation
value is not only determined by the volume of a concept but also its typicality.
So even though FISH may have a larger volume than CAT, the greater typicality
of CAT will counterweigh this.
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Fig. 5. – Mammal space for categories KOALA, TIGER and GUINEA PIG.

value.8 For general judgments, for example ExpS(VULTURE →

BIRD)BIRD, we have Y = Z and X ⊂ Y, and since sim(BIRD, BIRD) =

1, (4) will consequently take the following form:

logExpS(X → Z)Z = a · sim (PX , PZ ) + b (5)

This coheres with the idea that single premise/general arguments
depend, mostly, on premise-typicality relations, that is, on the
idea that agents represent a category with a certain degree of
typicality in the context of a more abstract superordinate cate-
gory. This is not a minor point. In our model, we assume that
agents cannot compare categories from different conceptual lev-
els directly in terms of similarity (like comparing COLLIE with
MAMMAL). Instead, the categorical relation that works in these
cases is typicality, which comes by default for all categories in
a conceptual space, given that conceptual spaces are constructed
and articulated around prototypes. As we will explain later, we
consider that this is an advantage over the two classical models of
CBI, which have more difficulties representing typicality relations
among categories.

Now, Sloman (1993) observes that subjects exhibit an ‘inclu-
sion fallacy’ since the argument ‘‘Robins have property S; thus
birds have property S’’ is judged to be stronger than ‘‘Robins
have property S; thus ostriches have property S’’ despite the fact
that ostriches form a subset of birds. Our model can explain this
phenomenon. To see how, note that (since V(ROBIN – BIRD) = ∅),

logExpS(ROBIN → BIRD)BIRD = a · sim (PROBIN , PBIRD) + b,

and that

logExpS(ROBIN → OSTRICH)BIRD

=
V (ROBIN)

V (OSTRICH)
.sim(PROBIN , POSTRICH ) + a.sim (PROBIN , PBIRD)

+ b.sim (POSTRICH , PBIRD) .

Then

logExpS(ROBIN → BIRD)BIRD > logExpS(ROBIN → OSTRICH)BIRD

as long as

(a · sim (PROBIN , PBIRD) − a.sim (PROBIN , PBIRD))

+ (b − sim (POSTRICH , PBIRD))>
V (ROBIN)

V (OSTRICH)
.sim(PROBIN , POSTRICH ),

8 A reason for this assignment is that if Y is a region that partially overlaps
X and then shrinks to become a subset of X, then V(Y – X) will be smaller
and smaller, which means that ExpS (X → Y ) z will approach infinity. From a
psychological perspective, we hypothesize that these cases require agents using
an inferential mechanism based on class-inclusion, like property-inheritance. If
Y ⊂ X, members of Y inherit all properties of X, thus ExpS (X → Y ) z is maximal.

Fig. 6. Animal space including the subspace BIRD.

which would typically be the case since sim (POSTRICH , PBIRD) is
small. This shows that our model, unlike the similarity-coverage
model (Osherson et al., 1990), also predicts results that are not
valid under all conditions, but only under certain circumstances.

Our model can also predict the conclusion-specificity phe-
nomenon (Osherson et al., 1990, p. 187), which says that people
tend to judge arguments with more specific categories as stronger
than argument with more abstract categories. For instance, an
argument like CROW → BIRD will be judged as stronger than an
argument of the form CROW → ANIMAL. This is easily explained
by our model because the more abstract the conclusion category
is, the bigger its volume in the conceptual space, and the further
the prototype of this category will be from the prototype of the
premise-category. Considering the above example, we have that

logExpS(CROW → BIRD)BIRD = a · sim (PCROW , PBIRD) + b

and that

logExpS(CROW → ANIMAL)ANIMAL = a · sim (PCROW , PANIMAL) + b.

Since

d (PCROW , PANIMAL) > d (PCROW , PBIRD) ,

then

a.sim (PCROW , PBIRD) > a.sim (PCROW , PANIMAL) .

Making

a.sim (PCROW , PBIRD) > sim (PCROW , PANIMAL) ,

it follows that

ExpS(CROW → BIRD)BIRD > ExpS(CROW → ANIMAL)ANIMAL

(see Fig. 6).

4.4. Arguments with multiple premises

In single-premise arguments the focus is on the relation be-
tween the premise and the conclusion categories; but when deal-
ing with multiple premises, we must also account for premise–
premise categorical relations. The main phenomenon to model in
these cases is diversity, i.e., the more different are the categories
in the premises, the stronger the argument. For instance, the
argument (i) ‘‘Jaguars and leopards have property P; thus otters
have property P’’, is weaker than the argument (ii) ‘‘Jaguars and
elephants have property P; thus otters have property P’’. That is
because the categories JAGUAR and LEOPARD are similar and they
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provide less ‘‘coverage’’ of the superordinate category MAMMAL
than JAGUAR and ELEPHANT.

The diversity phenomenon suggests that argument strength is
a negative function of premise–premise similarity. One possible
way of modeling this would be to compute the pairwise similar-
ity of category premises, but this would represent a significant
increase in the computational complexity of the process, in par-
ticular when we have arguments with more than two premises.
Our proposal tries to avoid this by considering all the categories
of the premises as part of one large inclusive set. In a sense, the
premise categories can be seen as ‘‘exemplars’’ of a more general
category. More precisely, we can model n-premises arguments
by considering the convex hull of the categories X1, X2,. . . , Xn in
the premises. A convex hull of a set S – denoted by C(S) – is the
smallest convex region containing all elements in S (see Devadoss
& O’Rourke, 2011 for a detailed explanation).

Convex hulls are also convex regions of n-dimensional spaces
with the same geometrical properties as regions in conceptual
spaces. The size of their volumes is positively correlated to the
number of convex regions they include, as well as to the distances
among these regions. For instance, in a conceptual space in which
all the categories have similar volumes, the volume of the hull of
two contiguous regions is going to be smaller than the volume
of two non-contiguous regions of the space.9 This is precisely the
kind of property of interest to represent the diversity phenomena.
For example, if we consider the argument described above, in
an animal space the categories JAGUAR and LEOPARD would be
represented by contiguous (or very close) regions in the space,
while JAGUAR and ELEPHANT would be far from each other. As
a consequence, the volume of C(JAGUAR∪LEOPARD) would be
smaller than the volume of C(JAGUAR∪ELEPHANT), and then it
would provide less coverage of the MAMMAL category (see Fig. 7).

However, one problem of this approach is that we do not have
a ‘‘natural’’ prototype – like PX in (3) – for the premise anymore.
Our solution is to consider an ‘‘artificial’’ prototype PC, at the
centroid of the convex hull C(X1∪ X2 ∪, . . . ,∪ Xn).10 For convex
hulls, we can then reformulate (4) for multiple premises in the
following way:

logExpS(X1, . . . , Xn → Y )Z =
V (C(X1 ∪ X2, ∪, . . . ,∪Xn) − Y )
V (Y − C(X1 ∪ X2, . . . ,∪Xn))

· sim(PC , PY ) + a · sim(PC , PZ ) + b

· sim(PY , PZ ) (6)

To see how this formula predicts diversity, consider the exam-
ple at the beginning of this section. According to (6),

ExpS(JAGUAR, LEOPARD → OTTER)MAMMAL

=
V (C (JAGUAR ∪ LEOPARD))

V (OTTER)
· sim(PC , POTTER)

+ a.sim(PC , PMAMMAL) + b.sim(POTTER, PMAMMAL).

This is smaller than

ExpS(JAGUAR, ELEPHANT → OTTER)MAMMAL

9 For cases in which this condition does not hold, it is possible that the
volume of the hull of two large contiguous regions is larger than the hull of
two distant small regions. An empirical study of this fact could be a way of
testing the fruitfulness of the notion of volume of a category for the analysis of
CBI.
10 This assumption is not meant to be psychologically realistic. Prototypes are
hardly centroids of the convex regions that represent them, even for natural
categories (see Douven, 2019). However, according to the empirical literature,
the typicality effect holds for multiple-premise arguments as a compound
measure of the degree of typicality of some of the categories in the premises.
Considering the lack of robust evidence about how these degrees of typicality
interact, we introduced the centrality of the artificial prototype as a formal
idealization that seems to respond well to the classical examples.

Fig. 7. Mammal space illustrating that the volume of (ELEPHANT∪JAGUAR) is
larger than the volume of (JAGUAR∪LEOPARD).

=
V (C (JAGUAR ∪ ELEPHANT))

V (OTTER)
· sim(PC∗, POTTER)

+ a · sim(PC∗, PMAMMAL) + b · sim(POTTER, PMAMMAL),

since V(C(JAGUAR∪ELEPHANT)) > V(C(JAGUAR∪LEOPARD)),
which makes
V (C (JAGUAR ∪ ELEPHANT))

V (OTTER)
· sim (PC∗, POTTER)

>
V (C (JAGUAR ∪ LEOPARD))

V (OTTER)
· sim (PC , POTTER) ,

when sim (PC∗, POTTER) ≥ sim (PC , POTTER).
The result also follows in the case in which sim (PC∗, POTTER) <

sim (PC , POTTER), when the difference between V (C(JAGUAR ∪ELEPHANT))
V (OTTER)

and V (C(JAGUAR ∪LEOPARD))

V (otter) is enough to make V (C(JAGUAR ∪ELEPHANT))
V (OTTER) ·

sim (PC∗, POTTER) >
V (C(JAGUAR ∪LEOPARD))

V (OTTER) · sim (PC , POTTER). Again,
this is a conclusion that is not always valid, but depends on the
relations between the categories involved.

If Y is a subregion of C(X1∪ X2 ∪, . . . ,∪ Xn), then Y – C(X1∪

X2 ∪, . . . ,∪ Xn) = ∅, so (6) is undefined. For the same reasons
as before, we can set this to some maximal value. For example,
if BUZZARD belongs to the convex hull of EAGLE, KITE, and
HARRIER, it would follow that ExpS(EAGLE, KITE,HARRIER →

BUZZARD)BIRD would be maximal. This is the first example of a
prediction that emerges from our model. It is an interesting em-
pirical problem, whether this would correspond to the judgment
of real subjects. As far as we are aware, this phenomenon has not
been tested.

If Eq. (6) is applied to multiple premise general arguments then
C(X1 ∪ X2∪, . . . ,∪Xn) − Y = ∅, since C(X1, X2, . . . , Xn) ⊂ Y. Then,
(6) reduces to

logExpS(X1, . . . , Xn → Y )Z = a · sim (PC , PZ ) + b · sim (PY , PZ ) (7)

Note that when Y = Z, sim (PY , PZ ) = 1 and (7) reduces to

logExpS(X1, . . . , Xn → Z)Z = a · sim (PC , PZ ) + b (7′)

A problem with this expression is that is does not account for
the diversity of X1, X2,. . . , Xn, but only the prototype PC. One way
of solving this problem is to let the constant a depend on the
proportion of Z that is covered by X1, X2, . . . , Xn, that is, V(C(X1,
X2, . . . , Xn))/V(Z). However, since empirical evidence for this case
seems to be lacking, we will not pursue this theme here.

Let us now see how this model can deal with monotonicity. As
we mentioned before, the monotonicity effect states that adding
premises to a CBI argument increases expectations of property
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projection when the new premise-categories are also included
in the original evoked superordinate category of the argument.
For instance, adding a premise with the category PIG to the
argument (FOX, WOLF)→ MAMMAL is going to strengthen it .
Note that adding a premise-category to an argument will increase
the volume of the convex hull of the premises. And in most cases,
the volume of that set is negatively correlated to the distance
between PC and PY , that is, the more V(C(X1, X2,. . . , Xn)) approxi-
mates V(Y), the closest PC is to PY. Then, for the above arguments
we have that if PC is the centroid of C(FOX ∪ WOLF) and PC∗ is the
centroid of C(FOX ∪ WOLF ∪ PIG), since V(C(FOX ∪ WOLF ∪ PIG))
> V(C(FOX ∪ WOLF)) then sim (PC∗, PMAMMAL) > sim (PC , PMAMMAL),
and as a consequence ExpS(FOX,WOLF , PIG → MAMMAL)MAMMAL
> ExpS(FOX,WOLF → MAMMAL)MAMMAL.

This model can also predict Sloman’s (1993) observation that
diversity has a limit. To analyze his example (mentioned in Sec-
tion 2.4), note thatsim (PC , PMOLE), where PC is the prototype of
GERMAN C(SHEPHERD ∪ ELEPHANT), is considerably larger than
sim (PC∗, PMOLE), where PC∗ is the prototype of C(SHEPHERD ∪

BLUE WHALE). Similarly sim (PC , PMAMMAL) > sim (PC∗, PMAMMAL).
Then it typically follows that(

V (C (GERMAN SHEPHERD ∪ ELEPHANT))
V (MOLE)

.sim (PC , PMOLE)

+a · sim (PC , PMAMMAL) + b · sim (PMOLE, PMAMMAL))

>

(
V (C (GERMAN SHEPHERD ∪ BLUE WHALE))

V (MOLE)
.sim (PC∗, PMOLE) + a · sim (PC∗, PMAMMAL)

+b · sim (PMOLE, PMAMMAL)) .

Next, suppose that we add to some premise-set a new premise
with a category that is not included in Z. What will happen
is that the new modified argument will have a different (and
more abstract) evoked superordinate category Z* such that Y
⊂ Z* with Z ⊂ Z*. According to the empirical literature, sub-
jects should perceive the new argument as weaker than the
original one, making CBI nonmonotonic. Remember the example
of nonmonotonicity that we gave in Section 2.4: the argument
(PEACOCK & CROW)→BIRD is stronger than the argument (PEA-
COCK & CROW & RABBIT)→BIRD (see Fig. 6). According to our
analysis, adding the premise RABBIT change the evoked super-
ordinate category (Z) from BIRD to ANIMAL. Then, our model
correctly predicts that logExpS(CROW , PEACOCK → BIRD)BIRD >
logExpS(CROW , PEACOCK , RABBIT→BIRD)ANIMAL since

a.sim (PC , PBIRD) + b > a.sim (PC∗, PANIMAL) + b · sim (PBIRD, PANIMAL)

a.sim (PC , PBIRD) > a.sim (PC∗, PANIMAL) and b.sim (PBIRD, PANIMAL)

< b.

4.5. Knowledge effects and nonblank properties

The model presented so far only focuses on two types of
semantic relations among premise and conclusion categories,
namely similarity and typicality. However, newer experimental
results on CBI have shown that there are other cognitive mech-
anisms that also influence inductive judgments. Beyond similar-
ity and typicality relations, different kinds of knowledge about
premise and conclusion categories (Coley & Vasilyeva, 2010;
Shafto, Coley, & Vitkin, 2007) or different reasoning heuristics
(Rehder, 2006) might shape inductive inferences. For instance,
there is evidence that knowledge about thematic relations of the
categories involved in the arguments (Coley, Shafto, Stepanova,
& Baraff, 2005), as well as expertise in some domain related to
the topic of the arguments (Proffitt, Medin, & Coley, 2000), can
play an important role in the agent’s expectations of property

projection. Furthermore, in most cases of CBI, people also use
knowledge (or make hypotheses) about the property projected
for estimating the strength of the argument. In any case, a
full model of CBI should account for the effects of background
knowledge and consider nonblank properties. We believe that the
conceptual spaces approach is rich enough to deal with the most
studied knowledge effects involved in CBI concerning non-blank
properties. In what follows we briefly explain how our model can
be developed in this direction.

An influential criticism of the similarity-based models of CBI
was presented by Heit and Rubinstein (1994). They showed that
it is not possible to account for some knowledge effects that
influence inductive inferences using only a single similarity mea-
sure. In particular, they showed that in category-based arguments
with nonblank properties, the agents’ knowledge about the prop-
erty S that was projected modulated the similarity measure that
was used for comparing the categories in the premise and con-
clusion. For instance, they showed that arguments of the form
CHICKEN→HAWK are judged as stronger than arguments of the
form TIGER→HAWK when the property projected is anatomical
(such as ‘‘has a liver with two chambers’’). But the opposite holds
when the property projected is behavioral (such as ‘‘prefer to feed
at night’’).

For explaining this phenomenon, we propose an extension of
our model that includes a similarity measure that puts larger
weights on the categories involved in the projected properties.
This focus would be determined by the dimensions of the non-
blank property in the arguments. When the agent has little
knowledge of the property S that is projected (which is by defi-
nition the case for a blank property), she will compare categories
using a general similarity measure. However, if the agent has
more precise knowledge about S (at least about what kind of
property S is), it is expected for her to use a similarity measure
that gives more weight to the dimensions related to S.

Formally this can be done by using a weighted distance func-
tion like the one introduced in Section 3.3. Eq. (1) would be re-
formulated in the following way: ExpS(X → Y )Z = d(S)(d (X, Y ) ·

d(S)(X, PZ )a · d(S)(Y , PZ )b)−1, where the function d(S)(x, y) is de-
fined as the distance between x and y when the domains rela-
tive to S are salient. In the example from Heit and Rubinstein
(1994), when the projected category refers to anatomical prop-
erties (‘‘has a liver with two chambers’’), the model will predict
that the argument CHICKEN→HAWK will be judged as stronger
than TIGER→HAWK. On the other hand, if the projected category
refers to behavioral properties (‘‘prefer to feed at night’’), then the
model will predict the converse relation — since now the weight
to the behavioral domain will make TIGER more similar to HAWK,
just as it was found in the experiments by Heit and Rubinstein.

Medin, Coley, Stroms, and Hayes (2003) showed that property
effects also show up in arguments with blank properties. In
particular, they discovered a non-diversity effect by property rein-
forcement that occurs when some salient feature shared between
the premise-categories leads the agent to produce hypotheses
about the nature of the property S that is projected (Shafto
et al., 2007). As a result, the agent will use a weighted similarity
measure that can override normal diversity effects. For instance,
according to what we saw so far, the argument ‘‘Polar bears and
antelopes have property S; thus all animals have property S’’
should be considered weaker than the argument ‘‘Polar bears and
penguins have property S; thus all animals have property S’’, since
the first premise set is less diverse than the second. However, in
this case, the fact that both polar bears and penguins inhabit cold
areas, leads agents to hypothesize that property S is related to this
shared feature. That will weaken the argument, since properties
of this kind are atypical regarding animals in general.



M. Osta-Vélez and P. Gärdenfors / Journal of Mathematical Psychology 96 (2020) 102357 11

Our interpretation of this example is that the conjunction
of POLAR and PENGUIN evokes a new (non-taxonomic) mini-
mal superordinate, namely ANIMAL IN COLD AREAS and thereby
that the property S somehow is related to this superordinate.
The superordinate ANIMAL IN COLD AREAS generates a new
way of classifying the similarity animals, that is a new dis-
tance function d*. As a result after applying Eq. (7), we ex-
pect that logExpS(POLA RBEAR, ANTELOPE → ANIMAL)ANIMAL >

logExpS(POLAR BEAR, PENGUIN → ANIMAL)ANIMAL, since a · sim
(PC , PANIMAL)+bwill be bigger than a·sim (PC∗, PANIMAL)+b, because
the distance between PC and PANIMAL will be smaller than the
distance between PC∗ and PANIMAL since ANIMAL IN COLD AREAS
is a rather small and atypical region of ANIMAL

Finally, similar ideas can be applied for explaining some of
the effects of expertise in CBI (Proffitt et al., 2000). For a non-
expert, the two inferences ‘‘Dutch elms have disease A; thus,
gingko trees have disease A’’ and ‘‘River birches have disease A;
thus, gingko trees have disease A’’ would, for lack of knowledge,
be judged to be equally strong. For a tree expert, however, the
knowledge that gingko trees are more similar to Dutch elms
when it comes to which diseases affect them would make the
first inference stronger than the second. In brief, for experts, the
distance measure d(S) in the model would be dependent on that
S relates to diseases, while this would not affect the non-experts’
judgments.

These examples of how knowledge effects can be handled
by our model show that it is able to cover a wide variety of
experimental findings from the literature.11

5. Previous models of CBI

5.1. The similarity-coverage model

The first formal model of CBI was the similarity-coverage model
(SCM), proposed by Osherson et al. (1990). In this model, argu-
ment strength in CBI is judged on the basis of two factors: (i)
premise–conclusion similarity, and (ii) the degree of coverage
that the premise’s category has regarding the lowest superordi-
nate category that includes both the category of the premise and
the category of the conclusion.

For specific arguments, argument strength depends only on
(i). If the argument has multiple-premises, the model uses a
maximum rule that estimates premise–conclusion similarly by
focusing on the premise with the most similar category to the
conclusion’s category. For instance, for an argument like ‘‘Horses
and bats have property S; thus cows have property S’’, argument
strength will be determined by Maxsim(HORSE, COW ); (BAT ,

COW ), which will return sim(HORSE, COW ).
Coverage is a more complex notion. The model assumes – as

we do – that CBI with natural categories involves ‘‘evoking’’ an
implicit superordinate category that includes all the categories in
the argument. Coverage is then a relation between the premises’
categories with that superordinate category, and it is also ex-
plained in terms of similarity. More specifically, coverage is an
average measure of several pairwise similarity judgments that

11 One area that we will not consider in this article is the influence of causal
relations between the concepts involved. Various experimental studies have
shown that causal knowledge is important in CBI, sometimes overriding standard
similarity and typicality relations (Bright & Feeney, 2014; Medin et al., 2003;
Rehder & Hastie, 2001; Shafto et al., 2007). For example, ‘‘Grass has enzyme E;
thus cows have enzyme E’’ is judged to be stronger than ‘‘Cows have enzyme E;
thus grass has enzyme E’’ since there may exist a causal link from the enzyme
of the grass to the enzyme of the cows. One possible way to use our model
also for these phenomena is that causal connections may introduce a different
kind of ‘typicality’ relations between the concepts so that the presence of the
enzyme is more typical for grass than for cows.

compare the premise’s category with members – ‘‘examples’’ –
of the superordinate category in question; and it is a negative
function of similarity among premises. For instance, consider the
following arguments:

(a) Horses have sesamoid
bones
Cows have sesamoid bones
Mammals have sesamoid
bones

(b) Horses have sesamoid
bones
Rats have sesamoid bones
Mammals have sesamoid
bones

(a) is weaker than (b) because the pair (HORSE, COW) provides
less coverage of MAMMALS than the pair (HORSE, RAT). In partic-
ular, the degree of coverage can be associated with the extension
of the set which includes all the categories similar to those of
the premises. In (a), that set is relatively small because most
categories that are similar to HORSE are also similar to COW. In
(b), however, that set is bigger, since most categories similar to
RAT are not in the set of categories that are similar to HORSE.

Coverage is also related to typicality. The SMC assumes that
typical categories are associated with larger sets of similar cat-
egories (of the same conceptual level) than atypical ones. For
instance, the argument ‘‘Horses have property S; thus mammals
have property S’’ is stronger than ‘‘Bats have property S; thus
mammals have property S’’ because the set of mammals similar
to horses is larger than the set of mammals similar to bats.

Despite being a very successful model thanks to its predic-
tive power, the SCM has various limitations. One of them is
that it does not build on a psychologically grounded notion of
similarity. For instance, the model does not include any precise
notion of similarity relations among categories. It uses similarity
as an empty notion that can be filled out with different specific
measures. As we mentioned before, it is desirable for a theory
about CBI to build on some fundamental theory of conceptual
knowledge; one that provides a basic notion of conceptual sim-
ilarity and that can be used to give a unified explanation of the
diversity of concept-based cognitive phenomena (categorization,
concept formation, language-learning, etc.). Furthermore, as ob-
served by Tenenbaum, Kemp, and Shafto (2007), the SCM lacks
a systematic mathematical foundation. This is also related to the
previous point. The formal structure of this model is not based on
any formal model of inference or categorical relation, but it was
directly designed to model the properties of CBI as described by
the empirical studies.

Our approach, while it is close to the SMC model in various
respects, does not suffer from the aforementioned problems since
both the formal and the psychological foundations of our model
come from the general theory of conceptual spaces. Furthermore,
our model can account for the same range of CBI phenomena than
the SMC model, while also predicting some results that are valid
in special cases, something that the SMC model cannot do.

5.2. The feature-based model

The other well-known model of CBI was proposed by Sloman
(1993) as an alternative to the SCM. Sloman started by criticizing
the assumption that reasoning with categories involves the nec-
essary representation of their hierarchical structure. He argued
that inclusion fallacies in reasoning form strong evidence against
that idea. As an alternative, he proposed to understand categorical
relations as based on the overlap of features. ‘‘Features’’, Sloman
claims, ‘‘represent a large number of interdependent perceptual
and abstract attributes. In general, these values may depend on
the context in which categories are presented’’ (1993, p. 237).

Sloman develops his feature-based model within a connec-
tionist framework, in which categories are represented as sets
of features described by vectors of real numbers from the [0,1]
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interval. With it, he is able to explain ten of the patterns explained
by SCM and three new ones, not treated by Osherson et al. (1990).
He also presents empirical support for the new patterns. The
central idea of this model is that argument strength is positively
correlated with the proportion of features in the conclusion cate-
gory that are also included in the premise categories. For instance,
in the simple case ‘‘All Xs are S; thus all Ys are S’’, the premise
category X, and the conclusion category Y can be represented by
two vectors F (X) and F (Y ) of feature values. The strength of the
inductive argument is determined by the following expression:
F (X)·F (Y )
|F (Y )|2

, where F (X) ·F (Y ) can be seen as a measure of the overlap
of the features of X , Y , and |F (Y )|2 a measure of the magnitude
of the conclusion category vector.12

Unlike the SCM, the feature-based approach does not have
foundational issues, since it is developed within a connectionist
framework.13 One could think that this ‘‘connectionist’’ back-
ground leaves no space to our conceptual spaces approach. How-
ever, as it has been argued before (Gärdenfors, 1997; Lieto, Chella,
& Frixione, 2017), conceptual spaces is compatible with connec-
tionist approaches.

In general, the main ideas of Sloman’s model are not in con-
tradiction with our conceptual space approach. In fact, they could
be translated into our framework. The theory of conceptual spaces
also assumes that concepts are represented as collections of prop-
erties from different domains. The feature-overlap measure that
Sloman’s use to determine argument strength could be replaced
by a similarity measure in a conceptual space covering the di-
mensions of the feature vector.

One important advantage of the conceptual space model over
the feature-based approach concerns the representation of typi-
cality relations. In Sloman’s model, there is no specific mechanism
for accounting for typicality. Both typicality and similarity re-
lations are reduced to feature-overlap. The model can account
for typicality effects in general arguments because it assumes
that typical categories (such as APPLE) share more features with
their immediate superordinate category (FRUIT in this case) than
non-typical categories. However, this model cannot account for
independent premise-typicality effects in specific arguments. For
instance, if we have three categories A, B and C, and A is more
typical than B but both categories A and B have the same feature
overlap with C, then the model would predict the arguments A
→ C and B → C to be equally strong (Heit, 2002, p. 586). The
conceptual space approach does not have this limitation since
it is able to explicitly represent independent typicality relations
both in general and specific arguments. To give an example,
consider two arguments of the form QUINCE → PINEAPPLE and
APPLE → PINEAPPLE. The categories APPLE and QUINCE have
the same feature overlap with PINEAPPLE, but since APPLE is
a more typical fruit than QUINCE, sim (PAPPLE, PFRUIT ) is going to
be significantly larger than sim

(
PQUINCE, PFRUIT

)
, and as a con-

sequence ExpS(APPLE → PINEAPPLE)FRUIT > ExpS(QUINCE →

PINEAPPLE)FRUIT . This is a second example of a new prediction that
follows from our model. As far as we are aware, it has not been
empirically tested.

In general, the two models presented here provide different
insights into CBI. One interesting thing about our conceptual
spaces model, is that it combines the two main features of the
SMC and Sloman’s model: it is a similarity-based model that
includes a feature-based view of categories. Furthermore, our
approach has an important theoretical advantage regarding these

12 F (X) · F (Y ) is the inner product of the two vectors, defined
∑

i F (X)i · F (Y )i
and |F (Y )|2 is the inner product of F (Y ) with itself, defined as

∑
i F (Y )

2
i .

13 See Rogers and McClelland (2004) for a connectionist approach to semantic
cognition.

other two models; it inherits from the theory of conceptual
spaces an explanation of how knowledge domains are formed
and structured, and how they are grounded on perception an
action. In that way, our formal model is grounded on a systematic
psychological theory about the nature and structure of conceptual
systems. At the same time, this psychological theory comes with
a formal model of some of the main cognitive mechanisms be-
hind conceptual processes. As we mentioned before, our model
leverages this formal model and, in that sense, builds on a solid
mathematical foundation. Another difference is, as Feeney (2017,
pp. 172–173) notes, that neither SMC, nor the feature-based
model can explain the conclusion effect reported by Hampton and
Cannon (2004).

5.3. Bayesian models

Besides these two classical models of CBI, Bayesian accounts
have recently become influential in the literature. The first pro-
posal in this area was advanced by Heit (1998) and consisted of
a computational-level analysis that puts the agent’s knowledge
about properties at the center stage of the process of CBI. His idea
is that while evaluating a CBI argument, the agents estimate the
probability of property projections among categories based on
her estimation of the range of the property projected (i.e., the
set of categories for which the property is true and the set of
categories for which the property is false). For doing so, the agent
exploits prior knowledge about other familiar properties, under
the assumption that the property projected is distributed in a
similar manner.

For instance, in an argument of the form ‘‘X has property
S; thus Y has property S’’, the agent will reason from a set of
four basic hypotheses about the possible range of S: (1) S is
true of X and Y, (2) S is true of X and false of Y, (3) S is false
of X and true of Y, and (4) S is false of X and Y. The prior
probability distribution for these hypotheses may vary according
to the similarity between X and Y or other categorical relations.
Then, using the premise of the argument as evidence, the agent
will update their beliefs about the set of hypotheses and estimate
the probability of the conclusion using Bayes’ theorem.

Heit showed that his approach predicts as many properties
of CBI as Osherson’s and Sloman’s models. However, it has also
an important drawback: it does not include any mechanism for
estimating the prior distribution over the hypotheses about the
range of the property. This is mainly because, unlike the other
models (including ours), the Bayesian approach is centered on
property-relations instead of categorical-relations.

Tenenbaum et al. (2007) followed Heit’s approach and made
some important improvements regarding the above problem.
Their strategy consists of defining a set of structures with in-
formation about the agent’s knowledge of categorical relations
in different domains and knowledge about the compatibility of
different properties with these relations. These structures will
determine the prior probability that some property P may be
projected from one category X to a category Y from the same
domain. Then, these probabilities may be updated according to
standard Bayesian rules when considering specific category-based
arguments.

This approach can work with different types of knowledge
structures. Taxonomic systems of categories, causal structures,
or spatial knowledge are some of the knowledge structures that
have been studied for CBI in the Bayesian tradition. This repre-
sents an important advantage over the SCM and Sloman’s model,
which have serious troubles for dealing with forms of inductive
reasoning that do not involve natural categories.

There are, however, considerable drawbacks of Bayesian mod-
els of CBI. One is that there is no natural way to represent simi-
larity and typicality in these models. Another is that probabilistic
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reasoning is very resource-demanding when implemented com-
putationally. In our opinion, these drawbacks make the Bayesian
models psychologically unrealistic. (see Jones and Love (2011) for
a general criticism of the use of Bayesian models in cognitive
science).

6. A proposal for a new methodology

A major challenge that researchers on CBI face is to develop
quantitative tests for the available models. The framework pre-
sented in Section 4 opens up for a new methodology of inves-
tigating category-based induction. The distance measure and the
similarity and betweenness it generates will allow new and more
precise quantitative predictions. We have already mentioned the
prediction when Y is a subregion of C(X1∪ X2 ∪ · · · ∪ Xn), then
the prediction is that ExpS(X1, X2 → Y )Z should be maximal. For
regions Y, X1 and X2 say that Y lies between X1 and X2 if for every
y in Y there are points x1 and x2 in X1 and X2 respectively, such
that y is between x1 and x2. Given this definition, a special case
of the prediction above is that if Y lies between X1 and X2, then
ExpS(X1, X2 → Y )Z should be maximal. A second new predic-
tion concerns explicit representations of independent typicality
relations as was discussed in Section 5.2.

Some other predictions are related to the introduction of the
notion of volume of a category. First, our model predicts that
premise-specificity is negatively correlated to argument strength.
More formally, it is to be expected that for categories Y, X1 and X2,
if X1 ⊂ X2 then ExpS (X2 → Y ) > ExpS(X1 → Y ) because V(X2) >
V(X1). For instance, arguments of the form GERMAN SHEPHERD
→ COW (or MAMMAL) should be considered as weaker than
arguments of the form DOG → COW (or MAMMAL). Second,
our model predicts that for categories X1, X2 and Y, if it is the
case that X1, X2 are equally typical, but that V(X1) > V(X2)
thenExpS (X1 → Y ) > ExpS(X2 → Y ). These two predictions hold
ceteris paribus.

To test these types of predictions, operational procedures for
determining betweenness, similarity and distances are needed.
There are general methods for estimating psychological distances,
such as Multi-Dimensional Scaling (MDS) (see Hout, Papesh, &
Goldinger, 2013 for a review) and Principal Component Analysis
(PCA) (Abdi & Williams, 2010). For example, by asking subjects
to judge the similarities of a number of different categories, the
data can be analyzed by MDS or PCA in order to generate a
low-dimensional conceptual space with a distance measure. Once
the distance is established, similarity and betweenness can be
determined, and the predictions presented above can be tested.

As an example of the relevant type of data collection, Hampton
and Cannon (2004) asked subjects to rate the premise typical-
ity, conclusion-typicality and premise–conclusion similarity on a
seven-graded scale. This data could also have been used to esti-
mate an underlying distance measure that would have allowed
Eqs. (1) or (2) to be tested.14

7. Conclusion

Category-based induction is a cognitively central form of in-
ductive inference that has become a focus of research only during
the last decades. In this paper we have presented a mathe-
matical model of such inferences that can explain almost all of
the available empirical data. The model subsumes the earlier
similarity-coverage model by Osherson et al. (1990) and Sloman’s
(1993) feature-based model and it generates new predictions.
Furthermore, it builds on solid formal foundations and it relies
on a systematic theory of conceptual knowledge that has been

14 Also Rips (1975) uses data from MDS for analyzing CBI arguments.

proven successful in the explanation and modeling of several
concept-based cognitive phenomena.

We believe that the approach of analyzing inference in terms
of how concepts are represented in conceptual space can be
extended to other forms of reasoning such as inference based
on analogies and metaphors (Gärdenfors, 2000, 2008), interpola-
tive inference (Schockaert & Prade, 2013), and to nonmonotonic
reasoning expectations-based reasoning (Gärdenfors, 1994; Gär-
denfors & Makinson, 1994). If such a program can be worked
through, it would form a unified basis for human inference that
considerably extends the classical logicist and probabilistic ap-
proaches.
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