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Abstract: I respond to P. McLaughlin and O. Schlaudt’s critique of my analysis of the cross-cultural
origins of numbers, noting that mywork draws extensively upon number systems as ethnographically
attested around the globe, and thus is based only in part on the important Mesopotamian case study.
I place the work of Peter Damerow in its historical context, noting its genesis in Piaget’s genetic episte-
mology and the problems associated with applying Piaget’s developmental theory to societies. While
Piaget assumed numeracy involves invariant mental transformations, ongoing research in numerical
cognition has been largely unsuccessful in identifying specific brain-boundmechanisms for numerical
structure. Accordingly, I suggest the extended mind paradigm from the philosophy of mind may be
a more fruitful approach, and detail such an approach using Material Engagement Theory.

Keywords: abstraction, representation, origin and development of numbers, cuneiform, historical
epistemology, cognitive archaeology, material engagement

§1. Introduction

§1.1. Responding to McLaughlin and Schlaudt
(2023) means placing Damerow’s work on num-
bers in historical context. In the history of sci-
ence, opinion has shifted from seeing psychol-
ogy as having no role in numbers to seeing num-
bers as produced by the brain, whose form and
function are the purview of the cognitive sciences.
The psychological view also saw the brain as re-
sponsible for the numerical formatting that Piaget
called logico-mathematical structure. In adopt-
ing the psychological view, Damerow specifically
drew on Piaget’s then-influential developmental
work. However, the ground underneath the psy-
chological view has since shifted. The cogni-
tive sciences, despite closely investigating brain
form and functions over the past several decades,
have largely failed to discover how and why the
brain might create numerical content, organiza-
tion, and structure. Nor have they been able to
explain satisfactorilywhy some non-Western soci-
eties have few numbers or organize their numbers

differently when the ones in theWestern tradition
are extensive, highly elaborated, and decimal.
These failures have inspired new paradigms that
see cognition as the interaction between brain,
body, and world, and material devices as having
a role in conceptualizing numbers (Malafouris,
2013). On this account, the material devices used
to represent and manipulate numbers are the
source of their interesting properties, and differ-
ences between societies become simply a matter
of whether devices are used, which ones are used,
and how they are used (Overmann, 2023).

§2. The Historical Context of Damerow’s
Work

§2.1. As concepts go, numbers are strange and
wonderful, if not more than just a little bit
weird: They work the same way for everyone,
and whatever we discover about them and re-
gardless of whenever or wherever we discover
it, we all discover the same things (e.g., prime
numbers) and we all agree with an unusual con-
viction that they are the same things (i.e., the
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essence of mathematical proof). Around 400
BCE or so, this universality led Plato and many
philosophers and mathematicians ever since to
consider numbers and other logico-mathematical
concepts as mind-independent objects (Linnebo,
2018; Maddy, 1990). When numbers are consid-
ered objective truths tractable to empirical dis-
covery, they become independent of the human
mind, and when mind and brain are consid-
ered synonymous, it follows that the sciences that
study the brain have little to offer. The mathe-
matician Gottlob Frege put this into blunt terms
in the late nineteenth century: “die Psychologie
bilde sich nicht ein, zur Begründung der Arith-
metik irgendetwas beitragen zu können” [“psy-
chology should not imagine it can contribute any-
thing to the foundation of arithmetic”] (Frege,
1884, p. VI).

§2.2. Of course, not everyone agrees with Plato
that numbers are somehow real and we just dis-
cover and then understand them better over time,
or with Frege that psychology and the brain have
no place in discussions of what numbers are and
how we get them. Indeed, if numbers are not
external to us, then the brain is the next most
likely place to look for them, including explana-
tions of their universality and origin (Brouwer,
1981). A key question, then, is what it is about
the brain that structures numbers so strongly that
they are functionally identical and identifiable
over vast differences of circumstance, time, and
language, apart from surface variability in things
like the organizing base (e.g., decimal vs. sexa-
gesimal).

§2.3. Assuming the brain structures numbers,
Swiss psychologist Jean Piaget formed a hypoth-
esis about how the ability to think develops on-
togenetically, including thinking about and rea-
soningwith numbers (Inhelder&Piaget, 1958; Pi-
aget, 1936, 1952). Implicit to this hypothesis was a
genetic epistemology, the idea that invariant logico-
mathematical structures develop through experi-
ence (for Piaget, genetic was “a synonym for de-
velopmental”; Hopkins, 2011, p. 1). Genetic epis-
temology explained that children developed nu-
merical concepts and abilities by interacting with
objects, and they developed the same numerical
concepts and abilities despite any differences in
their experiences. The specific mechanismwas re-
flective abstraction, the idea that an individual de-
rives knowledge by contemplating his or her ex-
perience.

§2.4. Given that no two children have identical ex-

periences, reflective abstraction could produce in-
variant logico-mathematical structures only if ex-
periential differences had no effect. In Piaget’s
model, experience interacts with cognitive ten-
dencies for structure that are biologically deter-
mined and which structure numbers only in cer-
tain ways. Numbers end up with the same fi-
nal form, regardless of the content of the experi-
ences that prompt them, and this means that the
objects encountered and any actions performed
with them are epiphenomenal to the result (Ni-
colopoulou, 1997). This is plausible at first glance
because quantity is quantity, regardless of the ob-
jects that instantiate it. For example, two ob-
jects are two regardless of what the objects ac-
tually are (e.g., fingers, fish, or Ferraris). Simi-
larly, rearranging four objects into two groups of
two works the same, regardless of the objects in-
volved.

§3. Damerow’s Piagetian Model of Sociohistor-
ical Change in Number Concepts

§3.1. Some decades later, Peter Damerow, a math-
ematician and historian of science, leveraged Pi-
aget’s ideas of genetic epistemology and reflec-
tive abstraction as his basis for modeling sociohis-
torical change in mathematical concepts, includ-
ing numbers (Damerow, 1994, 2007, 2010). In
Damerow’s four-stage model, as was true in Pi-
aget’s developmental model, experience is sub-
jected to invariant mental transformations: “die
abstrakten, logisch-mathematischen Begriffe, zu
denen insbesondere auch der Zahlbegriff gehört,
. . . intern repräsentierte Invarianten von Trans-
formationen begreifen, denen die Objekte im han-
delnden Umgang mit ihnen unterworfen werden
[sind]” [“abstract, logico-mathematical concepts,
which include the concept of number in partic-
ular, ... [are] internally represented invariants
of transformations to which the objects [of ex-
perience] are subjected in dealing with them”]
(Damerow, 1994, p. 256). The “coherence of the
developed structure is the reason for the status
of logical necessity of mathematical knowledge,
since the latter is determined by the [cognitive]
system and not by the real objects [of experience]
that are assimilated—that is, interpreted in terms
of this system” (Damerow, 2010, p. 307).

§3.2. Damerow based his first two stages of so-
ciohistorical development on the ancient Near
East, the Mesopotamian numbers that are the
world’s earliest unambiguous numbers; his latter
two stages were based on the history of mathe-
matics and logic as specifically developed in the
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West by Greek and later European thinkers. In
doing so, Damerow became part of a longer in-
tellectual tradition that sought to explain not just
conceptual change within the Western tradition
over time but also differences in thinking between
societies, particularly between Western and non-
Western societies (e.g., Lévy-Bruhl, 1910, 1922,
1927).

§3.3. While multiple points of disagreement be-
tween history and ontogenesis have since been
recognized (e.g., Bjorklund, 1997; Franco &
Colinvaux-de-Dominguez, 1992; Siegel, 1982),
“one of the basic assumptions” of genetic episte-
mology was the idea that historical change in the
mathematical thinking of societies “parallels” the
ontogenetic development of mathematical think-
ing in individuals (Sfard, 2008, p. 17). That is,
when Piaget’s stages of ontogenetic maturation in
numbers are applied to societies, the adults in so-
cieties with few numbers are assumed to conceive
of numbers in the sameway children do. This has
had the unfortunate result of classifying some so-
cieties as childish and others as adult, and indeed,
Damerow’s model positions Mesopotamia as the
early childhood of an adult Western mathemati-
cal tradition, rather than one of its roots or intel-
lectual influences.

§3.4. When they are compared side by side (Ta-

ble 1), Damerow’s four stages of historical devel-
opment track directly with Piaget’s four stages of
ontogeneticmaturation. While there is a tendency
to downplay the parallels in the way McLaughlin
and Schlaudt (2023) have done, Damerow seems
to have been aware of a general squeamishness
regarding their implications, remarking that “the
responsibility for the conclusions drawn and es-
pecially for any misinterpretations of our results
in light of questions pertaining to developmen-
tal psychology rests solely with me” (Damerow,
2010, p. 304). Notably, while McLaughlin and
Schlaudt are technically correct that aword search
of Damerow’s (2010) anthology fails to bring up
the term “concrete number,” it is not too much
of a stretch to see the number concepts associ-
ated with Piaget’s concrete stages—and thus with
Damerow’s corresponding stages, given their par-
allels with Piaget’s model as shown in Table 1—as
definitionally concrete. The idea that some num-
bers are “concrete” (or attached to whatever it
is they enumerate) and others are “abstract” (or
not so attached) is generally attributed to the
ancient Greeks. Aristotle, for example, distin-
guished countable and counting numbers; the for-
mer were connected to the things they counted,
while the latter were not (Katz, 2023; Klein,
1992).

Table 1: Comparison of Piaget’s ontogenetic stages with Damerow’s historical stages

Ontogenetic development (Piaget, 1952; also
see Nunes & Bryant, 2009)

Historical development of numbers in the an-
cient Near East [ANE] and beyond (Damerow,
2007, pp. 47–48)1

Stage 1, Sensorimotor stage (from birth to year
2): In this stage, children experience the world
through sensation and movement. Infants are
able to appreciate quantity and object perma-
nence.

Stage 0, Pre-arithmetical quantification (ANE be-
fore 10,000 BCE): “No arithmetic activities. All
judgments about quantities are based on direct
comparisons of amounts and sizes. Communi-
cation and transmission only by transmittable
techniques of comparison and by comparative
expressions of language.”

Stage 2, Preoperational stage (years 2–7): In this
stage, children begin to use words and pic-
tures to represent objects (emergence of sym-
bolic thought). Thinking is very concrete and
lacks logic. Initial understanding of one-to-one
correspondence.

Stage 1, Proto-arithmetic (ANE 10,000–3000 BCE):
“Quantities are precisely identified by one-to-
one correspondences. Communication and
transmissionwith the aid of conventional count-
ing sequences and tallying systems.” [The 1994
version says quantities are precisely identified
by “eineindeutige Zuordnungen” [unique as-
signments].
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Table 1: Comparison of Piaget’s ontogenetic stages with Damerow’s historical stages

Ontogenetic development (Piaget, 1952; also
see Nunes & Bryant, 2009)

Historical development of numbers in the an-
cient Near East [ANE] and beyond (Damerow,
2007, pp. 47–48)1

Stage 3, Concrete operational stage (years 7–11): In
this stage, children become able to think logi-
cally but only concretely so, in being restricted
to matters involving the physical manipulation
of objects. They begin using inductive logic, rea-
soning that proceeds from specific information
to a general principle. [Note: Piaget’s Stage 3
may reflect cultural developments particular to
theWest, rather than an ontogenetic stage appli-
cable to human societies generally (Buck-Morss,
1975; Chen, 1986; Maynard, 2008; Molitor &
Hsu, 2019).]

Stage 2a, Symbol-based arithmetic with context-
dependent symbol systems (ANE, “until the inven-
tion of the sexagesimal number system” around
2000 BCE): “Quantities are structured by metro-
logical systems. Communication and transmis-
sion of these systems and of the corresponding
mental constructs through complex symbol sys-
tems and developed techniques for the transfor-
mation of symbol configurations.”

Stage 2b, Symbol-based arithmetic with context-
independent symbol systems (up to “the begin-
ning of Classical Antiquity” around 500 BCE):
“Quantities are structured by abstract numerical
systems with object-independent arithmetic op-
erations. Communication and transmission of
these systems by unified, context-independent,
but culture-specific symbol systems for the rep-
resentation of arbitrary quantities, including ab-
stract ‘rules of calculation’. Emergence of first
forms of ‘pre-Greek mathematics’ that are ab-
stract but dependent on culture-specific symbol
systems.”

Stage 4, Formal operational stage (years 12 and
older): In this stage, children become able
to think abstractly (scientific reasoning), solve
complex problems, and be aware of and under-
stand their own thoughts. They begin to rea-
son about hypothetical problems. They also be-
gin to use deductive logic, reasoning that pro-
ceeds from general principles to specific conclu-
sions. [Note: Piaget’s Stage 4 is widely viewed
as a development particular to Western culture,
rather than a universal ontogenetic stage (Buck-
Morss, 1975; Chen, 1986; Maynard, 2008; Moli-
tor & Hsu, 2019).]

Stage 3a, Concept-based arithmetic with deductions
in natural language (Classical/Late Antiquity,
MiddleAges, EarlyModern Era; “until the emer-
gence of analyticalmathematics” in the 18th cen-
tury CE): “Abstract number concept with ‘a pri-
ori’ provable properties. Communication and
transmission with the aid of a written repre-
sentation of ‘propositions’ about abstract num-
bers and their mathematical properties. Propo-
sitions are logically ordered and systematically
arranged by deductive theories according to the
model of Euclid’s Elements.”
Stage 3b, Concept-based arithmetic with formal de-
ductions (the “modern mathematical tradition
until the present”): “Formal understanding of
arithmetic structures and expansion of the num-
ber concept by constructing new arithmetical
structures. Communication and transmission
with the aid of formal language systems.”

1 The 2007 version differs in minor respects from the 1994 German version used by McLaughlin and Schlaudt
(2023); the former is used here because of its prior translation into English.

page 4 of 21 Cuneiform Digital Library Journal 2024:2



§3.5. Rather than considering the experience of
objects and any actions with them to be as thor-
oughly epiphenomenal as Piaget had, Damerow
focused on several of the technologies used to rep-
resent numbers—the tokens, numerical impres-
sions, proto-cuneiform notations, and cuneiform
numbers used between the fourth and third mil-
lennia BCE. As explained in McLaughlin and
Schlaudt’s exegesis (2023), Damerow consid-
ered numerals written on tablets to constitute
“second-order representations” in representing
tokens, which in turn were “first-order represen-
tations” of the concrete objects they enumerated
(e.g., sheep). Second-order representations were
thought to enable, for the first time, numbers to be
conceived as objects in themselves (i.e., “abstract
numbers”), rather than as numbers attached to
the objects they enumerated (i.e., “concrete num-
bers”). The mechanism transforming numbers
into objects is presumably the same one provid-
ing their invariant structure, as operating on rep-
resentations now twice removed from the original
objects of counting.

§3.6. Writing undeniably had important effects
on how numbers were conceptualized, though
explanations different from Damerow’s are cer-
tainly possible. For example (see Overmann,
2016b, 2019b, 2023), relative to the technologies
preceding it, writing was a highly concise way to

represent numbers—perhaps not so much with
the early impressions or proto-cuneiform nota-
tions that first appeared around the middle of
the fourth millennium BCE, but certainly with
the cuneiform numerals that had emerged by the
beginning of the third millennium BCE (Figure
1). Conciseness enabled not just the collection of
numerical relations into tables but also the pre-
sentation of these data for simultaneous view-
ing. Scribes recreated the tables as part of their
training and thus learned numerical relations to a
greater extent than had been possiblewith tokens.
Tables also enabled the appreciation of whole-
part relations in ways that were not possible with
tokens, where wholes disappear once they are re-
arranged into parts. In viewing volumes of si-
multaneous relational data, scribes had opportu-
nities to notice patterns and to think of numbers
in terms of their relations to a greater extent. This
too would have informed the reconceptualization
of numbers, not just as entities but as entities de-
fined by their relations with each other. Relat-
edly, tables and memorized relations gave scribes
new possibilities in calculating: They could still
manipulate tokens (or whatever form of abacus
may have developed; see Woods, 2017), or they
could look up relations in tables or recall them
from memory, shifting calculation from the ma-
nipulation of physical tokens to the manipulation
of numerical relations.

Figure 1: Comparison of representations across technologies. The number 14 is represented by a sign for
10 and four signs for 1 in (left) tokens, (middle) numerical impressions and proto-cuneiform
notations, and (right) cuneiform numerals. These technologies share form (shape and size) and
function (repetition and bundling). Damerow’s model does not explain why written numerals are
necessarily “second-order” representations when they are, for all intents and purposes, identical in
form and function to their predecessors (e.g., tokens and impressions) and were likely thought to
refer to the objects being counted in the same way their predecessors did.

§4. Issues with Damerow’s Version of Piaget’s
Model

§4.1. A few issues suggest that Damerow’s ac-

count is unlikely to be the final word. First, it
is possible to agree with Damerow that writing
changed the way numbers were conceptualized,
and yet disagree that his model explains how and
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why this occurred. For example, handwriting in-
volves specific neurological reorganizations (e.g.,
Overmann, 2016a, 2021c, 2022) that are distinct
from reflective abstraction, genetic epistemology,
and ontogeneticmaturation. Whenwewrite char-
acters by hand, we train the fusiform gyrus, a part
of the temporal lobe with an evolved function for
recognizing physical objects, to recognize written
characters as if they were physical objects (De-
haene, 2009; Dehaene & Cohen, 2007; McCandliss
et al., 2003). Being written as an integral char-
acter, rather than represented with collections of
loose clay tokens, thus had the potential to influ-
ence numbers toward being conceived of as enti-
ties or objects in their own right, rather than as
collections of objects. A similar change would
have occurred earlier in the sequence, when num-
bers changed from equivalences (“as many as the
fingers on both hands”) to collections. In other
words, the changes associated with writing by
Damerow and his apologists are predictable out-
comes of using a systematized sequence of mate-
rial forms for numbers.

§4.2. Second, it is unclear just when the reconcep-
tualization associated with writing would have
occurred. It was unlikely to have happened im-
mediately or all at once. Long before they were
written, numbersmay have been thought of as ob-
jects, as influenced by language (e.g., in a phrase
like “there are seven,” the number is nominal,
not adjectival). Long after writing was available,
numbers were still thought of as connected to
the things they counted, as the sexagesimal place
value system (SPVS) did not emerge until the
end of the third millennium BCE (Robson, 2008),
more than a thousand years after the advent of
writing. The SPVS was a “calculating device”
that took metrological quantities (i.e., the kind of
numbers considered “concrete” in being attached
to objects like containers of grain) and reconfig-
ured them as “independent entities that could be
manipulated without regard to absolute value or
metrological system” (i.e., the kind of numbers
considered “abstract” in not being attached to any
objects) (Robson, 2008, pp. 77–78). This suggests
the effect Damerow construed for numberswould
have occurred long after writing—and through
the SPVS, rather than writing per se or a men-
tal transformation associated with it. It should be
noted that the SPVS, rather than adding another

referential layer interposing between the numer-
als and the objects they count, intensifies the rela-
tions between numbers.

§4.3. A third issue is that the representing
technologies in question—tokens, impressions,
proto-cuneiform notations, and cuneiform nu-
merals (Figure 1)—share form (shape and size)
and function (repetition and bundling).2 They
look, mean, and behave in exactly the same way;
they are just produced differently, so Damerow’s
model is unclear as to why they would neces-
sarily be understood differently or constitute dif-
ferent orders of representation. If it is the use
of the representing technology away from the
objects being enumerated, then perhaps tokens
or precursors like tallies or fingers would qual-
ify. If instead it is the representation of tokens
or the use of tablets, then impressions on tablets
should qualify, though McLaughlin and Schlaudt
explicitly rule this out. If instead each new ma-
terial form disconnects a representation from its
antecedent, then perhaps each new impression
or proto-cuneiform notation—even those made
on the same tablet—could trigger the disconnec-
tion effect by being temporally and spatially dis-
tinct from those preceding it. If none of these
are considered to have an effect, then the model
should explain why not. If it is writing and only
writing, then the model should specify whether
the transition from first- to second-order occurs
with the first proto-cuneiform or cuneiform no-
tation, or only sometime later with reflective ab-
straction, and it should also say what happens
if that reflective abstraction does not occur. On
the other hand, the model, at least as articulated
by Piaget, considers different experiences to pro-
duce invariant transformations, so it is also un-
clearwhy anymaterial forms or actionswith them
should have an effect on conceptual structure.
The cause of the purported transition between
first- and second-order representations thus re-
mains indeterminant (admittedly, this indetermi-
nacy is problematic only if conceptual change is
seen as involving multiple orders of representa-
tion; it disappears once conceptual change is seen
as involving change in a single order).

§4.4. A fourth issue is Damerow’s equation
of second-order numerical representations with
written numerals. This assumes a sharp, sudden
distinction in numerical conceptualization based

2 Minor differences related to substance and manufacture (e.g., tokens are convex, impressions made with to-
kens concave; notational forms were made with a stylus) are not considered significant for the purpose of this
analysis.
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on whether or not societies have writing, effec-
tively replacing the abstract-concrete distinction
with the similar one drawnbetween oral andwrit-
ten cultures (e.g., Goody, 1977; Goody & Watt,
1963; see Chamberlin, 2004 for criticisms). A
distinction that is sharp and sudden is not nec-
essarily warranted, as societies without writing
are certainly able to explicate relations between
numbers in a way that facilitates their calculat-
ing with them (Overmann, 2021a). For exam-
ple, Inkan, West African, and Polynesian num-
bers were added and subtracted through their ex-
plicit relations, even though these numerical tra-
ditions did not incorporate writing prior to Euro-
pean contact (Florio, 2009; Overmann, 2020; Ver-
ran, 2000).3 Granted, fewer explicit numerical re-
lationswould have been available to these reckon-
ers, compared to those of the ancient Near East,
where writing eventually made volumes of ex-
plicit relations possible. But the absence of writ-
ing does not entail the absence of all explicit re-
lations or the ability to manipulate numbers us-
ing them, nor does its presence mean an immedi-
ate and inexplicable transition to a full set of nu-
merical relations with knowledge-based calcula-
tion.

§4.5. Fifth, the technologies that would have
preceded tokens—fingers and tallies—are not ad-
dressed in the 1994 version of Damerow’s model,
though he would later acknowledge that tal-
lies had a role in one-to-one correspondence
(Damerow, 2007, p. 35). This omission repre-
sents a general trend in the literature, which of-
ten treats tokens as if they were the first tech-
nology used for numbers in the ancient Near
East. Yet cross-culturally, the fingers have this
role, as terms for five and ten “are usually based
on ‘hand’” (Epps et al., 2012, p. 67). Indeed,
the earliest number systems of Mesopotamia sug-
gest the fingers were used in counting: the Sume-
rian words for six, seven, and nine were com-
pounds of five plus the appropriate smaller num-
ber (Blažek, 1999; Edzard, 1980, 2005). Akka-
dian numbers were decimal, as is common for
Semitic languages; Elamite numbers included a
unique decimal system for tokens and early no-

tations (Englund, 2004; Friberg, 2019; Kitchen et
al., 2009; Lipínski, 2001). For tallies, archaeolog-
ical evidence suggests they may have been used
in the late Paleolithic (e.g., Reese, 2002), and tex-
tual evidence shows tallies were used through-
out the Bronze Age (e.g., Henkelman & Folmer,
2016; “Translation of ‘The Debate between Grain
and Sheep,’” 2005). Despite their omission from
Damerow’s model, these technologies demon-
strably influenced the structure of Mesopotamian
numbers. For example, the sub-base of 10 in the
sexagesimal number system most likely reflected
counting to tenwith the fingers.

§4.6. Sixth, the Piagetian model lacks explana-
tory power. The problem is not that it hypothe-
sizes multiple orders of representations, as multi-
level constructs are not uncommon in the cog-
nitive sciences. One is Theory of Mind (ToM),
the ability to understand that the mental states of
others can differ from one’s own. Like Piaget’s
model for numbers, the ToM construct struggles
to explain cross-cultural differences. Variability in
how many ToM orders are represented is consid-
ered an outcome of “what children [in different
cultures] are taught about minds rather than pro-
viding any objective measure, or explanation, of
the degree to which a particular type of ToM rep-
resentation ismore difficult [or complex] than an-
other” (Conway & Bird, 2018, p. 1408). Nonethe-
less, the issue is not merely how well a multi-
level construct deals with cross-cultural variabil-
ity, but also whether it accurately describes the
cognitive phenomena of interest. Here the Piage-
tian model falls short. In ToM, “I think that you
think that she thinks X” is arguablymore complex
than “I think X”; on the other hand, it does not
make sense to see cuneiform numbers asmeaning
proto-cuneiform notations that mean impressions
that mean tokens that mean tally notches that
mean fingers that mean the things being counted.
Rather, cuneiform notations, just like all their pre-
decessors, mean the things being counted be-
cause these, not the predecessor counting tech-
nologies, are the valuable items of interest. Fur-
ther, because the Piagetian model sees concep-
tual change in numbers as mental and invari-

3 The Inka recorded their numbers with knotted strings known as khipu; the knots were analogous to the to-
kens used in Mesopotamia before the advent of writing (Overmann, 2023). The non-numerical component of
khipu remains untranslated and likely reflected a system of mnemonic prompts. In Polynesia, graphic signs
have been found on only the easternmost island, Rapa Nui. Known as the Rongorongo script, it remains un-
translated. It has not been shown to contain numerals, which is significant because numerals are generally
identifiable in otherwise untranslated scripts (e.g., Elamite [Dahl, 2018; Englund, 2004]; Linear A [Corazza et
al., 2021]). Attempts to interpret certain Rongorongo signs as phonetic numbers have been inconclusive to date
(e.g., Davletshin, 2012).
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ant, it does not merely glorify the brains thought
to form the higher numerical orders. Rather,
if conceptual change is purely mental, then the
brain-bound capacities responsible for the logico-
mathematical formatting predicted by the Piage-
tian model should be discoverable, but to date,
they have not been identified. Similarly, if con-
ceptual change is invariant—especially when the
material forms involved are deemed epiphenom-
enal—the Piagetian model cannot explain why
numerical concepts take different forms cross-
culturally.

§4.7. And finally, a developmental model—any
developmental model, not just Piaget’s—is not an
ideal framework for understanding sociohistori-
cal conceptual change. A developmental model
explains how and why children, as they mature
into adults, become better able to understand
things, think rationally, and make decisions. In
other words, children become increasingly capa-
ble of mastering the knowledge made available
to them by their society and environment, an im-
portant mechanism in the transmission of that
knowledge. It is important to note that what chil-
dren increasingly master is existing knowledge,
and when that knowledge does not already ex-
ist, a developmental model lacks a ready mecha-
nism for conceptual change involving new knowl-
edge. The problem is compounded in a model
like Piaget’s, where invariant mental transforma-
tions occasioned by epiphenomenal experiences
seemingly exclude the possibility of creating new
knowledge altogether (this is not a problem if
numbers are considered things that exist inde-
pendently of the mind, a la Plato; in this case,
conceptual change merely signals a better under-
standing of those independently existing things).
If genetic epistemology and reflective abstrac-
tion are to be the mechanisms for creating new
knowledge, their activity must also be able to ex-
plain cross-cultural variability—why some soci-
eties have few numbers and others highly elabo-
rated traditions—without implying that some so-
cieties simply think better than others.

§4.8. In following Piaget in seeing numbers as
mentally produced, contemporary researchers as-
sume that brain-bound mechanisms underlie, in-
fluence, and/or create numerical and mathemat-
ical structure (Nieder, 2017a, 2017b). Nonethe-
less, the process whereby symbolic numbers are
realized remains a mystery in their eyes (Núñez,
2017a, 2017b). Certainly, they have not suc-
cessfully managed to define or isolate the kind

of innate logico-mathematical predispositions hy-
pothesized by Piaget, with two possible excep-
tions. One is the ability to perceive quantity that
humans share with other species, often mislead-
ingly called the number sense (Dehaene, 2011).
The other is the mental number line, linear struc-
turing that may be a cultural effect that emerges
from, for example, exposure to a system of writ-
ing, rather than an innate tendency for struc-
ture (Aiello et al., 2012; Núñez, 2011; Pitt et al.,
2018; Stoianov et al., 2008). Researchers have
also largely failed to identify how and why hu-
man cognitive predispositions for numbers dif-
fer from those of other animals, as they plausi-
bly must, given the dramatic differences between
human and non-human species in their mate-
rial and linguistic expressions of numbers. In
fact, comparative researchers often take the op-
posite tack, seeing the mental structures produc-
ing numbers as shared with humans to the ex-
tent that honeybees understand zero (Howard et
al., 2018; Nieder, 2016) and chimpanzees have
a concept of rational numbers (Clarke & Beck,
2021). Beyond the difficulty of verifying that ani-
mals understand such concepts in a way that can
be compared meaningfully to those of humans
is the need to explain why such concepts would
emerge in animals spontaneously and without
the involvement ofmaterial culture and language.
Certainly, for humans, concepts like zero and ra-
tional numbers represent conceptual efforts and
refinements spanning centuries to millennia, and
they do not just include but absolutely depend on
material and linguistic support.

§5. The Shifting Ground: beyond the
brain

§5.1. If psychology has a role in understanding
numerical concepts but cannot explain numerical
structure or elaboration through the brain alone,
theories that are not brain-centric are the next log-
ical place to turn. In this category is the embodied
model of Lakoff and Núñez (2000), which com-
bines mental conceptualization (the “conceptual
blending” of Fauconnier & Turner, 1998, 2002)
with the experience of objects to propose—as Pi-
aget once did—that number concepts are mental
outcomes of experiences with quantity as it oc-
curs in collections of physical objects in the world.
And like Piaget, the embodied model does not
see the material forms used to represent and ma-
nipulate numbers as having any role in numer-
ical conceptualization. The representational de-
vices remain epiphenomenal in the sameway that
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Piaget considered them to be; they are consid-
ered merely the passive recipients of the mentally
formed content that is deliberately externalized
to them at some subsequent point in time. [See
Overmann, 2023 for a longer critique of the em-
bodied model.]

§5.2. Another model that is not brain-centric
is the Material Engagement Theory of Lambros
Malafouris (2010, 2013). This model has three
major commitments: first, cognition is extended
(that is, the mind includes not just the brain and
body but also material objects); second, materi-
ality has agency (what things are informs and in-
fluences what we can do with them); and third,
signification is enactive (things acquire meaning
when and because we interact with them). As
applied to numbers, the foundational insight is
the idea that material forms make perceptible
quantity tangible and tractable to manipulation
and sharing (Malafouris, 2010, 2013; also see dis-
cussion in Coolidge & Overmann, 2012). As
developed by Overmann (2019b, 2023), the ex-
tended model has expanded to include the mate-
rial forms used cross-culturally to represent and
manipulate numbers—exemplars of small quan-
tities, the fingers, technologies like tallies that ac-
cumulate, technologies like tokens that accumu-
late and group, and written numerals. These ma-

terial forms are seen as interacting with brains,
bodies, and behaviors to produce numerical con-
tent, organization, and structure. This perspec-
tive is unique, for it is the only model of numeri-
cal origins to consider thematerial devices used to
represent and manipulate numbers as contribut-
ing substantially to their conceptualization, rather
than being epiphenomenal or passive receptacles
for externalized mental content.

§5.3. To examine concept formation and change
(Figure 2), the extended model starts with the
same model of conceptualization (Fauconnier &
Turner, 1998, 2002) used in the embodied model
(Lakoff & Núñez, 2000). The mental inputs sim-
ilarly include knowledge, habits, expectations,
perceptions, etc. However, conceptualization is
then anchored and stabilized by adding amaterial
domain as an input (Hutchins, 2005; Malafouris,
2013). The addedmaterial input provides amech-
anism for the properties of the devices used for
numbers to contribute to their conceptualization
(Overmann, 2016b). Mental abilities andmaterial
qualities connect and merge within an enactive
space, the locus created by the interaction of the
brain, body, and material forms (as distinct from
processing that occurs strictly inside the brain, as
in the original model).

Figure 2: Materially anchored conceptualization as used in the extended model. Where the embodied
model includes only mental inputs (Lakoff & Núñez, 2000), the extended model includes a material
anchor (Hutchins, 2005), shown here as Input2. Image adapted and redrawn from Malafouris (2013,
Fig. 5.2, p. 101).
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§5.4. Interaction between the inputs includes pro-
cesses such as noticing, attending, recognizing,
and selecting, as governed by attention and as in-
terpreted through previous knowledge; outputs
inherit some of their structure from the inputs,
and novel structure can emerge from the interac-
tion of the inputs (Malafouris, 2013). In essence,
when we interact with a material form, our psy-
chological, physiological, and behavioral capac-
ities influence what we can do with it and how
we respond to it, just as its substance permits or
inhibits particular behaviors and elicits specific
psychological responses; this interaction then in-
forms the resultant concepts. As originally con-
ceived, thematerially anchoredmodel (Hutchins,
2005) is agnostic regarding what happens inside
the brain; it instead focuses on the interaction be-
tween brain, body, and world and how the differ-
ent capabilities and limitations they represent in-
fluence conceptual outcomes. In comparison, the
extendedmodel draws upon standard psycholog-
ical constructs (e.g., perception, categorizing, ab-
stracting, sequencing, object and pattern recogni-
tion, working memory, learning, training effects,
biases) to explain how and why the brain inter-
acts with the body and material forms in the way
it does in numbers cross-culturally.

§5.5. Material anchoring is important for more
reasons than just shifting the focus from brain-
bound processing to the engagement of objects
(the arena also highlighted by Damerow and Pi-
aget). Material anchoring also provides a mech-
anism whereby material forms can influence con-
ceptual outcomes, whether they are counted with
numbers or are used to represent them. An ex-
ample of the former is found in Polynesia, where
an innovative method of counting-by-sorting in-
volved singles, pairs, or groups of four or eight
as the unit of counting, as determined by ob-
ject size and weight, creating multiple object-
specified counting sequences; counting differenti-
ated by object size andweightmay have once sim-
ilarly influenced the Mesopotamian counting se-
quences toward object-specified counting (Over-
mann, 2020). An example of the latter is the hand,
the first coherent structure used cross-culturally
in counting; this explains why decimal organiza-
tion is themost prevalent structure found in num-
ber systems across the globe. Ten-ness, however,
is not foreordained; rather, it is merely a conse-
quence of having five fingers per hand (the norm
for the human species) and then choosing them
as the elements of counting. If the segments of
the fingers or the spaces between them are cho-

sen instead, numbers like fourteen and twelve (de-
pending onwhether or not the thumb is included)
or four and eight (depending on the use of one or
both hands) result. What the hand is and how
it is used determine the structural outcome as
quinary/decimal (5/10), quaternary/octal (4/8),
or duodecimal/quadrodecimal (12/14) (Over-
mann, 2021b). This structuring also means the
numerical outcomes cannot accurately be de-
scribed as invariant mental transformations in-
volving epiphenomenal material forms.

§6. The Extended Model

§6.1. Neither the cognitive sciences—nor philos-
ophy, for that matter—understand what a “con-
cept” really is. In fact, how physical phenom-
ena like neurons, electrical impulses, neurotrans-
mitters, and synaptic responses yield conceptual
meaning remains a central mystery in studying
the brain. While the physical level of interac-
tion can be described (e.g., how cells communi-
catewith each other through action potentials and
neurotransmitters; which parts of the brain are in-
volved and how they are connected), the concep-
tual level of interest cannot be. Because of this,
researchers craft functional models that describe
how conceptualization might work, suppositions
grounded in the available observational and ex-
perimental data. The model offered by Damerow
and Piaget is one such model; the materially an-
chored conceptualization developed by Hutchins
and incorporated by Malafouris is another. The
availability of competing models is not necessar-
ily undesirable: models differ according to their
focus and what they include (and exclude) to
achieve that focus. When models focus on the
same thing, the criteria for deciding between them
should include howwell they fit the available data
and the assumptions they must make to do so.
The first criterion governs the reliability and va-
lidity of the model with respect to the construct it
is intended to elucidate; the second is the idea that
fewer assumptions are better (the principle of par-
simony, sometimes called Occam’s razor).

§6.2. Damerow’s model envisions a process in
which experiences with material objects stimu-
late invariant mental transformations that create
logico-mathematical structure. The transforma-
tion associated with writing is seen as causing
a higher-order mental representation to develop,
comprising a mental advance, if not a mental ad-
vantage, for the societies that have writing. Im-
plicit to the model is the nineteenth-century no-
tion that societies mature in their thinking in a
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way comparable to how children mature in their
thinking as they grow up. As the conceptual
transformations are deemed mental and invari-
ant, the material devices used for numbers are
effectively rendered epiphenomenal (or mostly
epiphenomenal). The model also struggles to
explain how new knowledge is created, or why
numerical structure and elaboration vary cross-
culturally. These issues were discussed at length
in previous sections.

§6.3. In comparison, the extended model sees
material objects as a critical input to conceptual-
ization, and numerical concepts as varying and
changing according to their mental and material
inputs (Figure 2). Numerical realization and elab-
oration are outcomes of changes in the content
of the material input (i.e., the devices used for
numbers) and themental responses to them (e.g.,
noticing, pattern recognition). Noticing some-
thing or recognizing a pattern is vastly differ-
ent from the kind of invariant mental transfor-
mation proposed in Damerow’s Piagetian model.

These processes are anchored cross-culturally by
a common starting point (i.e., the ability to per-
ceive small quantities, the ready availability of
five-fingered hands, etc.), and they are system-
atized cross-culturally by the predictable capabil-
ities and limitations of the devices used. New
knowledge is created through the incorporation
and use of new devices, as these add new prop-
erties to the interaction and occasion new behav-
ioral and psychological responses in the users.
The addition of any new device does not immedi-
ately change the way numbers are conceived; dif-
ferences may be behavioral at first, with concep-
tual explication following at a later date (perhaps
much later, and possibly not at all, as the Egyp-
tians andRomans apparently never explicated the
zero implicit to the abacus design). As newmate-
rial forms are added (and new properties gained
thereby), concepts becomedistributed overmulti-
ple material forms, with the result that numerical
concepts become seemingly independent of any
particular form of representation.

Table 2: Types and chronology of material devices used in numbers

Numerical device Descriptions, limitations, solutions, andpersistent structure

Distributed exemplars
• Two: eyes; arms; deer footprint
• Three: tripod; bird claws; bird

footprint; rubber seed; pronged
fishing arrow

• Four: spotted animal skin;
brother (to three)

• Description: Commonly encountered natural and cul-
tural objects whose quantity is appreciable, reliable, and
expressible iconically (e.g., by means of a display of the
fingers or a phrase describing an exemplar) or indexically
(with a gesture toward an exemplar or a phrase drawing
attention to it).

• Limitation: Expressible quantities are typically limited
to the subitizing range, and the methods of expressing
them are ephemeral. Exemplars do not comprise a con-
tiguous (single) device, so they do not significantly influ-
ence numbers toward organization or structure.

• Solution: A material device (e.g., fingers) that can make
quantity percepts tangible and manipulable, transcend
the subitizing range, and influence numbers toward or-
ganization and structure.

• Persisting structure: Forms and features of numerical
language that conform to the limits of quantity percep-
tion or have etymological roots in material objects with
subitizable quantity.
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Table 2: Types and chronology of material devices used in numbers

Numerical device Descriptions, limitations, solutions, andpersistent structure

The hand
• Fingers (bent, flexed, tapped,

etc.)
• Finger segments or joints
• Spaces between fingers

• Description: The hand is the first contiguous device used
for numerical representation because of the neurological
interconnection between the parts of the brain that appre-
ciate quantity and “know” the fingers and because the
hands are readily available, visually salient, and easily
used for expression. The fingers are used either directly
to instantiate and display quantity or indirectly to gesture
at an exemplar of quantity.

• Limitation: As amaterial device, the fingers provide little
persistence and have limited capacity.

• Solution: Devices capable of doing what fingers do (e.g.,
accumulate with linearity and order) but which also ad-
dress their lack of persistence and capacity.

• Persisting structure: Discreteness, linearity, stable order,
ten-ness.

Devices that accumulate
• Notched tallies
• Knotted strings
• Torn leaves
• Marks on surfaces
• Pebbles or corn
• The human body
• Collaborative finger-counting

• Description: One-dimensional devices accumulate to
amounts that exceed the fingers’ capacity. They also per-
sist longer than the fingers, with duration governed by
durability of the substance used: Bone persists longer
than wood, fiber longer than leaves, etc.

• Limitation: Quantities higher than about three or four are
increasingly indistinguishable (a limit inherent in the per-
ceptual system for quantity), necessitating that items be
matched to known exemplars or recounted.

• Solution: Devices capable of doing what one-
dimensional devices do (e.g., accumulate with capacity
and persistence) but which also address the problem of
visual indistinguishability through grouping.

• Persisting structure: Accumulation, capacity, persis-
tence; public in away that bodies tend not to be; harnesses
the power ofmaterial objects to accumulate anddistribute
cognitive effort.
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Table 2: Types and chronology of material devices used in numbers

Numerical device Descriptions, limitations, solutions, andpersistent structure

Devices that accumulate and group
• Counting boards and calculi

(jettons)
• Mesopotamian tokens
• Abacus
• Inka khipu
• Collaborative strategies
• Sorting strategies

• Description: Two-dimensional devices accumulate like
one-dimensional devices do, but they also bundle the
accumulated elements, either as appreciable quantities
(one to three or four) or as amounts conforming to a well-
exemplified quantity (e.g., often five or ten, the number of
fingers on the hands).

• Limitation: Loose elements lack integrity of form and
are indistinguishable in higher (non-subitizable) quanti-
ties. The first may prompt enclosure, which contains but
removes access to the elements; the second may inspire
replacement by conventional forms understood as bun-
dled values, which reduces the number of elements but
requires the user to learn the bundling conventions. Khi-
pus lack manipulability, so they cannot be used as a tech-
nology for calculation.

• Solution: Devices capable of what two-dimensional de-
vices do (e.g., group) but which add integrity of form.
For manipulable forms, a fixed technology for recording
is added (e.g., inMesopotamia, bullae and then notations
were used with tokens). For fixed forms, a manipulable
form for calculation is added (e.g., in the Inka system,
counting boards and yupana were used with khipus).

• Persisting structure: Grouping (exponential structure),
relations, manipulability.

Notations
• Handwritten notations

• Description: Notations accumulate and group like two-
dimensional devices but add integrity of form. They are
concise, increasing the density of simultaneously view-
able elements and enabling relational data to be recorded
at volumes far exceeding those possible with earlier tech-
nologies. If they are handwritten with sufficient repeti-
tion, learned relational data and the neurological reorga-
nizations associated with literacy will influence numbers
toward being reconceptualized as relational entities.

• Limitation: Notations are fixed, so calculating must be
performed manually (e.g., with an abacus) until it can be
supplemented with algorithms involving mental knowl-
edge and judgements (e.g., long division performed us-
ing paper and pencil).

• Persisting structure: Conciseness, entitivity, conceptual-
ization of numbers as a system of relational entities.

Note: Versions of this table were previously published in Overmann (2018, 2019a, 2019b, 2023).

§6.4. The extended model (Table 2) starts with
the ability to perceive quantity, as well as ma-
terial forms whose quantity is perceptible and
manipulable. The ability to perceive quantity is
demonstrated by human infants at very young

ages (Izard et al., 2009; Xu et al., 2005), it works
the same whether societies have few numbers or
highly elaborated ones (Henrich et al., 2010), and
it is evolutionarily ancient, phylogenetically dis-
tributed in mammals, birds, fish, reptiles, am-
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phibians, and perhaps even insects (as reviewed
in Coolidge & Overmann, 2012). These qualities
position it as a likely starting point for explaining
the properties and evolutionary origin of num-
bers. Numbers emerge as the recognition that per-
ceptible quantities are shared between sets of ob-
jects,4 as typically expressed with the fingers or
by means of a quantity exemplar (e.g., the eyes or
arms for two). Numbers become elaborated when
societies incorporate newdevices to represent and
manipulate them, as new devices add new prop-
erties. Societies select new devices on the basis of
the capacities they share with previous forms and
their ability to resolve the limitations of previous
forms in some way.

§6.5. Beyond avoiding the thorny cross-cultural
issues that perplex the Piagetian approach, the ex-
tendedmodel also provides a reasonwhy the cog-
nitive sciences are not finding the source of nu-
merical structuring inside the brain: simply, they
are looking in the wrong place. The structure ac-
cumulates from the set of devices used to repre-
sent and manipulate numbers, rather than being
generated mentally. While the brain continues to
be a critical node in the cognitive system for num-
bers, it is relieved of the responsibility for gener-
ating all of the structuring that numbers acquire
as they elaborate. Its role has been reduced to the
things the brain is really good at doing, like rec-
ognizing patterns and forgetting details.

§6.6. The central idea of the extended model
can be summed up as follows: All humans and
all human societies are essentially identical in
their neurological, morphological, and behavioral
makeup, as we all have the same human brain,
body, and behavioral capacities. In numbers, hu-
mans share the same ability to perceive quantity,
the same quantity of fingers, the same neurolog-
ical wiring in the brain5 and the same percep-
tual salience for the hands6 that predispose us to

use the fingers in counting, and the same behav-
ioral tendencies. These factors provide a basis for
initial structure and a starting point for the rel-
ative cross-cultural uniformity that characterizes
number concepts. Variability between cultural
systems then becomes a matter of whether ma-
terial devices are used to represent and manipu-
late numbers, which ones are used, and how they
are used.7 The recruitment of newmaterial forms
is motivated by a society’s need for numbers, as
driven by increases in complexity that emerges
from larger population size, more frequent inter-
group contact, or both, and as systematized by the
capabilities and limitations of the devices used.
The claim is not that the concept of number is
isomorphic to any particular material form, but
rather, that material forms and their precursors
directly influence how numbers are conceived,
and how numbers are conceived, in turn, influ-
ences how the material forms used to represent
and manipulate them are understood and used.
This role is generally recognized with respect to
written numerals (Schlimm, 2018); the extended
model merely expands it to include their precur-
sors.

§6.7. Simply, numbers start with the perceptual
experience of quantity. Recognitions of shared
quantities are represented gesturally with the fin-
gers and verbally with quantity exemplars. Since
quantity exemplars are distributed, the fingers are
perishable, and both have finite capacity, a soci-
etymay bemotivated at some point to incorporate
a device like a tally that does what these forms
do but adds persistence and the ability to accu-
mulate to higher numbers. Since the quantity we
can perceive visually is limited to about three or
four, at some point the indistinguishability of an
accumulation on a tally is a limitation that is ad-
dressed by adding a manipulable technology like
tokens (or pebbles, kernels, beans, etc.). Hand-

4 The definition comes from the work of Bertrand Russell (1920): the quantity of a set is a property of that set,
not a number; quantity shared by sets is a number.

5 The perceptual system for quantity is neurologically interconnectedwith the ability to “know” the fingers (“fin-
ger gnosia”) to an extent that the latter predicts mathematical ability (Marinthe et al., 2001; Penner-Wilger et
al., 2007; Reeve & Humberstone, 2011).

6 Interestingly, congenitally blind people do not count on their fingers (Crollen et al., 2011; Marlair et al., 2024),
which suggests that the visual experience of one’s own hand, rather than some internal mental capacity, un-
derlies its recruitment and use as a material form for numbers (Overmann, 2023).

7 Most numerical researchers, to the extent they treat the material forms used to represent and manipulate num-
bers, segregate the different technologies, treating separately the fingers as embodied, written numerals as
symbolic, and physical devices like tallies and tokens as material. Damerow, to the extent he mentions material
devices, follows this same general pattern. In comparison, the extended model includes all these devices as
united by their material substance and as individuated by their differences.
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writing is associated with specific neurological
and behavioral reorganizations that help influ-
ence numbers toward being conceived as objects
in themselves, rather than collections of objects
(Overmann, 2022). Handwriting also adds sub-
stantial conciseness; this quality enables numeri-
cal data to be collected at unprecedented volumes
and presented for simultaneous viewing (e.g., ta-
bles ofmultiplication) and influences numbers to-
ward being conceived in terms of relations and
calculation toward the manipulation of relational
knowledge.

§6.8. The ability to perceive quantity remains an
influence throughout the entire elaborational tra-
jectory of any cultural system of numbers. Its in-
fluence starts with the initial expression of num-
bers, as gestures recreating quantity and terms
describing exemplars are limited to subitizable
quantities, or the small quantities that fall within
the subitizing range of one to about three or four.
This perceptual limitation motivates the use of
the hand to realize the first quantities beyond
the subitizing range, which, as a result, are typ-
ically five and ten. The influence of the percep-
tual system for quantity remains detectable even
when numbers are highly elaborated. It is why,
for example, quantities higher than about three
or four notches as accumulated on a tally are
indistinguishable, a circumstance that motivates
the recruitment of devices like tokens that can
be grouped and rearranged (Overmann, 2016b,
2018a). It is why written numerical elements are
rearranged into appreciable (subitizable) groups
of elements, as seen in cuneiform and Egyptian
numerals; it is why written forms involving a sin-
gle group of subitizable elements (e.g., the Roman
numerals I, II, III; Chinese numerals , , ;
and Western cursive forms 1, 2, 3) tend to be con-
served (Overmann, 2021c).

§6.9. If a timeline for the Western numerical tra-
dition and its Mesopotamian and Egyptian roots
were to be formulated using the extended model,
the result would generally resemble the timeline
offered byDamerow (Table 1, rightmost column).
On the other hand, if thematerial devices used for
numbers are the mechanism of their realization

and elaboration, we are unlikely to see their true
beginnings, since distributed exemplars, finger-
counting, and tallies made of perishable materi-
als tend not to leave any archaeological trace of
themselves behind. At the other end of elabo-
ration, writing emerged in Mesopotamia in the
mid-fourth millennium BCE and had been elab-
orated as systems of literacy and mathematics
by 2000 BCE (Overmann, 2022; Robson, 2008).
This means that beyond writing, conceptual ad-
vances in mathematics cannot be described as
outcomes of adding new material devices with
new properties, or behavioral and neurological
adaptations to their use. Rather, later concep-
tual advances are matters of refining and extend-
ing the concepts realized through the sequence
of material devices, as aided by new material ex-
pressions (e.g., concise, semasiographic signs for
arithmetic: + – × ÷ = [Schulte, 2015]; equations
and variables).

§6.10. Speaking of the conceptual advances that
have occurred in the several thousand years since
numbers supposedly became abstract in the an-
cient Near East, we need to keep in mind the
vastly different circumstances we face today in
learning Western numbers and mathematical op-
erations. Western numbers have become highly
elaborated, not just with signs, equations, and
variables, but with numbers that are transfinite
and even imaginary. They are not just notation-
ally mediated, but their forms are ciphered, so
the quantity they mean is no longer expressed
with the number of their elements (e.g., 4 instead
of ).8 How we acquire these complex con-
cepts is plausibly quite different from the way
their antecedents would have been acquired by
Bronze Age scribes, Neolithic farmers, or Pale-
olithic hunter-gatherers. For the most part, an-
cient peoplesmerely learned to use the tools avail-
able to them for recording and calculating with
numbers, within social contexts that influenced
the use of numbers as a technology for managing
complexity (less for hunter-gatherers, more for
urban scribes). This suggests that today’s expe-
rience of the kind of mental insights that occur in
learning long division or calculus may not be the

8 Ciphered notations like 4 never developed in the cuneiform writing system, but they did next door in Egypt as
the demotic notations that emerged in the last centuries of the cuneiform lifespan (Chrisomalis, 2010; Geller,
1997). Non-ciphered notations like , which express quantity through the number of their elements, visually
aid the performance of arithmetic; a modern example is the Kaktovik numerals developed to represent the vi-
gesimal Inuit numbers (Tillinghast-Raby, 2023). Ciphered numerals remove this visual support, so arithmetic
must depend instead on memorized numerical relations or the use of a calculating device.

9 Introspection is the method of studying psychological processes through the systematic self-observation and
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best model for the mental component of ancient
numeracy. In fact, it is rather introspectionistic9 of
modern researchers to think it would be.

§7. The Way Ahead

§7.1. For decades, the cognitive sciences have
recognized that Piaget’s theories are limited,
both by the methodology he used (observing
his own upper-class, educated European chil-
dren and basing his conclusions about all chil-
dren on them) and the generalizability of his re-
sults (not well, particularly for children in non-
European cultures). Today, Piaget’s theories in-
spire the mandate for instructional and testing
methods to be developmentally and culturally ap-
propriate. Their application cross-culturally, let
alone to entire societies, has become highly sen-
sitized, if not anathema (Bloch, 2012). It is thus
somewhat curious to find that they persist, and
not just in the history of science. Arguably, the
cognitive sciences have not yet moved on from
them sufficiently, given the continued assumption
that logico-mathematical formatting is an entirely
brain-bound process.

§7.2. Where do we go from here? For Assyriol-
ogists interested in sociohistorical change in nu-
merical cognition and in leveraging the interest-
ing Mesopotamian number system to understand
it, there is now a choice of models. Damerow’s
Piagetian approach can be retained in the way
McLaughlin and Schlaudt (2023) have recom-
mended; the alternative is one of the newer mod-
els that address its shortfalls and draw on re-
cent research in the cognitive sciences and the
philosophy of mind. Synthesizing the two ap-
proaches, while a laudable goal, is more easily ac-
complished in theory than in practice, for the dif-
ferences between the two models may well be ir-
reconcilable. Models that look beyond the brain
may differ too fundamentally to incorporate (or
be incorporated into) brain-centric models. Ulti-
mately, time and analytical output will determine

which models survive and in which form(s), rec-
ognizing that no single one is likely to provide the
final word on every subject.

§7.3. Mesopotamia has perhaps the most impor-
tant number system in history. Its numbers are
the earliest that are unambiguous tomodern eyes,
since neither notches on Palaeolithic bones nor
clay objects unaffiliatedwith bullae can be conclu-
sively identified as having represented numbers.
Its extensive archaeological and textual evidence
also demonstrate a clear chronology in the tech-
nologies used for numbers, a critical element for
understanding how numbers become elaborated.
Nonetheless, using the Mesopotamian numbers
as a case study for numerical cognition means it
is time to relinquish some of the now-outdated
ideas they have accumulated over the years: see-
ing these numbers as inherently different from
those of other cultural traditions because of their
multiple counting sequences, thinking of tokens
as representing particularly rudimentary num-
bers (e.g., Schmandt-Besserat, 1974, 1977, 1978,
1981, 1982, 1992a, 1992b), and seeing writing as
enabling a sudden, second-order leap in their
intellectual development (e.g., Damerow, 1988,
1994, 1996a, 1996b, 2007, 2010, 2012; Malafouris,
2010). Our familiaritywith themodels of the past,
like our rightful veneration of their influential au-
thors, should not blind us to the very real need for
change.

§8. Acknowledgments

§8.1. I appreciate McLaughlin and Schlaudt’s
(2023) critique of my work (Overmann, 2018b,
2019b, 2021a), as it provided me with an op-
portunity to reflect and respond more deeply to
Damerow’s model of sociohistorical change in
numbers. Tom Wynn, Corijn van Mazijk, and
Fred Coolidge offered useful comments on early
drafts of themanuscript. Two anonymous peer re-
viewers provided invaluable insights that helped
me clarify my argument.

self-report of thoughts, perceptions, and feelings; its profound subjectivity makes it inherently unreliable and
significantly ungeneralizable.

page 16 of 21 Cuneiform Digital Library Journal 2024:2



BIBLIOGRAPHY

Aiello, M. et al. (2012). “No Inherent Left and Right Side in Human ’Mental Number Line’: Evidence
from right brain damage”. Brain: A Journal of Neurology 135.8, 2492–2505.

Bjorklund, D. F. (1997). “In Search of a Metatheory for Cognitive Development (or, Piaget is dead and
I don’t feel so good myself)”. Child Development 68.1, 144–148.

Blažek, V. (1999). Numerals: Comparative etymological analyses and their implications: Saharan, Nubian,
Egyptian, Berber, Kartvelian, Uralic, Altaic and Indo-European languages. Masarykova Univerzita.

Bloch, M. (2012). Anthropology and the Cognitive Challenge. Cambridge University Press.

Brouwer, L. E. J. (1981). Brouwer’s Cambridge Lectures on Intuitionism. Ed. by D. van Dalen. Cambridge
University Press.

Buck-Morss, S. (1975). “Socio-Economic Bias in Piaget’s Theory and its Implications for Cross-Culture
Studies”. Human Development 18.1–2, 35–49.

Chamberlin, J. E. (2004). If This is Your Land, Where Are Your Stories? Finding Common Ground. Vintage
Canada.

Chen, J.-Q. (1986). “A Selected Cross-Cultural Study of Piaget’s Stage Theory of Cognitive Develop-
ment”. PhD thesis. University of Northern Iowa.

Chrisomalis, S. (2010). Numerical Notation: A comparative history. Cambridge University Press.

Clarke, S. and J. Beck (2021). “The Number Sense Represents (Rational) Numbers”. Behavioral and
Brain Sciences 44, 1–57.

Conway, J. R. and G. Bird (2018). “Conceptualizing Degrees of Theory of Mind”. Proceedings of the
National Academy of Sciences of the United States of America 115.7, 1408–1410.

Coolidge, F. L. andK. A. Overmann (2012). “Numerosity, Abstraction, and the Emergence of Symbolic
Thinking”. Current Anthropology 53.2, 204–225.

Corazza, M. et al. (2021). “The Mathematical Values of Fraction Signs in the Linear A Script: A com-
putational, statistical and typological approach”. Journal of Archaeological Science 125, 105214.

Crollen, V. et al. (2011). “TheRole of Vision in theDevelopment of Finger-Number Interactions: Finger-
counting and finger-montring in blind children”. Journal of Experimental Child Psychology 109.4, 525–
539.

Dahl, J. L. (2018). “The Proto-Elamite Writing System”. In: The Elamite world. Ed. by J. Álvarez-Mon,
G. Pietro Basello, and Y. Wicks. Routledge, 383–396.

Damerow, P. (1988). “Individual Development and Cultural Evolution of Arithmetical Thinking”. In:
Ontogeny, phylogeny, and historical development: The Tel Aviv annual workshop in human development. Ed.
by S. Strauss. Vol. 2. Ablex Publishing Corporation, 125–152.

– (1994). “Vorüberlegungen zu einer historischen Epistemologie der Zahlbegriffsentwicklung”. In:
Der Prozeß der Geistesgeschichte. Studien zur ontogenetischen und historischen Entwicklung des Geistes.
Ed. by G. Dux and U. Wenzel. Suhrkamp, 248–322.

– (1996a). “Number as a Second-Order Concept”. Science in Context 9.2, 139–149.
– (1996b). “Prehistory and Cognitive Development”. In: Invited lecture at the twenty-fifth annual sym-
posium of the Jean Piaget Society Berkeley, June 1 – June 3, 1995. Max Planck Institute for the History of
Science, 1–37.

– (2007). “The Material Culture of Calculation: A theoretical framework for a historical epistemol-
ogy for the concept of number”. In: Mathematisation and Demathematisation: Social, philosophical and
educational ramifications. Ed. by U. Gellert and E. Jablonka. Sense Publishers, 19–56.

Cuneiform Digital Library Journal 2024:2 page 17 of 21



Damerow, P. (2012). “The Origins of Writing and Arithmetic”. In: The globalization of knowledge in his-
tory. Ed. by J. Renn. Max Planck Research Library for the History and Development of Knowledge,
153–173.

Davletshin, A. (2012). “Numerals and Phonetic Complements in the ’Kohau Rongorongo’ Script of
Easter Island”. Journal of the Polynesian Society 121.3, 243–274.

Dehaene, S. (2009). Reading in the Brain: The new science of how we read. Penguin.
– (2011). The Number Sense: How the mind creates mathematics. Revised. Oxford University Press.

Dehaene, S. and L. Cohen (2007). “Cultural Recycling of Cortical Maps”. Neuron 56.2, 384–398.

Edzard, D. O. (1980). “Sumerisch 1 bis 10 in Ebla”. Studi Eblaiti III.5-8, 121–127.
– (2005). “Sumerian One to One Hundred Twenty Revisited”. In: An experienced scribe who neglects

nothing: Ancient Near Eastern studies in honor of Jacob Klein. Ed. by Y. Sefati et al. CDL Press, 98–107.

Englund, R. K. (2004). “The State of Decipherment of Proto-Elamite”. In: The first writing: Script inven-
tion as history and process. Ed. by S. D. Houston. Cambridge University Press, 100–149.

Epps, P. et al. (2012). “On Numeral Complexity in Hunter-Gatherer Languages”. Linguistic Typology
16.1, 41–109.

Fauconnier, G. and M. Turner (1998). “Conceptual Integration Networks”. Cognitive Science 22.2, 133–
187.

– (2002). The Way We Think: Conceptual blending and the mind’s hidden complexities. Basic Books.
Florio, C. (2009). “Encuentros y desencuentros nella individuazione di una relazionematematica nella
yupana in Guaman Poma de Ayala”. In: Incontri e disincontri tra Europa e America, Atti del XXX Con-
vegno Internazionale di Americanistica Salerno, 14–15maggio e 10–12 dicembre 2008. Ed. by E. Guagliano.
Oèdipus Editore, 151–186.

Franco, C. and D. Colinvaux-de-Dominguez (1992). “Genetic Epistemology, History of Science and
Science Education”. Science & Education 1.3, 255–271.

Frege, G. (1884).Die Grundlagen der Arithmetik. Eine logisch mathematische Untersuchung über den Begriff
der Zahl. Wilhelm Koebner.

Friberg, J. (2019). “Three Thousand Years of Sexagesimal Numbers in Mesopotamian Mathematical
Texts”. Archive for History of Exact Sciences 73, 183–216.

Geller, M. J. (1997). “The Last Wedge”. Zeitschrift Für Assyriologie Und Vorderasiatische Archäologie 87.1,
43–95.

Goody, J. (1977). The Domestication of the Savage Mind. Cambridge University Press.

Goody, J. and I.Watt (1963). “The Consequences of Literacy”.Comparative Studies in Society and History
5.3, 304–345.

Henkelman, W. F. M. and M. L. Folmer (2016). “Your Tally is Full! On wooden credit records in and
after the Achaemenid Empire”. In: Silver, money, and credit: A tribute to Robartus J. van der Spek on the
occasion of his 65th birthday. Ed. by K. Kleber and R. Pirngruber. Nederlands Instituut voor het Nabije
Oosten, 133–239.

Henrich, J., S. J. Heine, and A. Norenzayan (2010). “TheWeirdest People in theWorld?” Behavioral and
Brain Sciences 33.2–3, 61–135.

Hopkins, J. R. (Dec. 2011). The Enduring Influence of Jean Piaget. Psychology Today.

Howard, S. R. et al. (2018). “Numerical Ordering of Zero in Honey Bees”. Science 360.6393, 1124–1126.
Hutchins, E. (2005). “Material Anchors for Conceptual Blends”. Journal of Pragmatics 37.10, 1555–1577.

page 18 of 21 Cuneiform Digital Library Journal 2024:2



Inhelder, B. and J. Piaget (1958). The Growth of Logical Thinking: From childhood to adolescence. Trans. by
A. Parsons and S. Milgram. New impres. Routledge & Kegan Paul.

Izard, V. et al. (2009). “Newborn Infants Perceive Abstract Numbers”. Proceedings of the National
Academy of Sciences of the United States of America 106.25, 10382–10385.

Katz, E. (2023). “Does FregeHaveAristotle’s Number?” Journal of the American Philosophical Association
9.1, 135–153.

Kitchen, A. et al. (2009). “Bayesian Phylogenetic Analysis of Semitic Languages Identifies an Early
Bronze Age Origin of Semitic in the Near East”. Proceedings of the Royal Society of London. Series B,
Biological Sciences 276.1668, 2703–2710.

Klein, J. (1992). Greek Mathematical Thought and the Origin of Algebra. Dover Publications.

Lakoff, G. and R. E. Núñez (2000).Where Mathematics Comes From: How the embodied mind brings math-
ematics into being. Basic Books.

Lévy-Bruhl, L. (1910). Les fonctions mentales dans les sociétés inférieures. Librairie Félix Alcan.

– (1922). La mentalité primitive. Librairie Félix Alcan.

– (1927). L’âme primitive. Librairie Félix Alcan.

Linnebo, Ø. (2018). “Platonism in the Philosophy of Mathematics”. In: Stanford Encyclopedia of Philos-
ophy. Ed. by E. N. Zalta. Stanford University.

Lipínski, E. (2001). “Numerals”. In: Semitic Languages: Outline of a comparative grammar. 2nd. Peeters,
288–313.

Maddy, P. (1990). Realism in Mathematics. Clarendon Press.

Malafouris, L. (2010). “Grasping the Concept of Number: How did the sapient mind move beyond
approximation?” In: The archaeology of measurement: Comprehending heaven, earth and time in ancient
societies. Ed. by C. Renfrew and I. Morley. Cambridge University Press, 35–42.

– (2013). How Things Shape the Mind: A theory of material engagement. MIT Press.

Marinthe, C., M. Fayol, and P. Barrouillet (2001). “Gnosies digitales et développement des perfor-
mances arithmétiques”. In: Troubles du calcul et dyscalculies chez l’enfant. Ed. by A. Van Hout, C. Mel-
jac, and J.-P. Fische. Masson, 239–254.

Marlair, C. et al. (2024). “Enhancing Mathematics Learning Through Finger-Counting: A study inves-
tigating tactile strategies in 2 visually impaired cases”. Applied Neuropsychology: Child, 1–13.

Maynard, A. E. (2008). “What We Thought We Knew and HowWe Came to Know It: Four decades of
cross-cultural research from a Piagetian point of view”. Human Development 51.1, 56–65.

McCandliss, B. D., L. Cohen, and S. Dehaene (2003). “The VisualWord FormArea: Expertise for read-
ing in the fusiform gyrus”. Trends in Cognitive Sciences 7.7, 293–299.

McLaughlin, P. and O. Schlaudt (2023). “The Creation of Numbers From Clay: Understanding
Damerow’s theory of material abstraction”. Cuneiform Digital Library Journal 2, 1–16.

Molitor, A. and H. Hsu (2019). “Child Development Across Cultures”. In: Cross-cultural psychology:
Contemporary themes and perspectives. Ed. by K. D. Keith. 2nd. John Wiley & Sons, 153–189.

Nicolopoulou, A. (1997). “The Invention of Writing and the Development of Numerical Concepts in
Sumeria: Some implications for developmental psychology”. In: Mind, culture, and activity: Semi-
nal papers from the laboratory of comparative human cognition. Ed. by M. Cole, Y. Engeström, and O.
Vasquez. Cambridge University Press, 205–240.

Nieder, A. (2016). “Representing Something out of Nothing: The dawning of zero”. Trends in Cognitive
Sciences 20.11, 830–842.

Cuneiform Digital Library Journal 2024:2 page 19 of 21



Nieder, A. (2017a). “Evolution of Cognitive and Neural Solutions Enabling Numerosity Judgements:
Lessons from primates and corvids”. Philosophical Transactions of the Royal Society of London. Series B,
Biological Sciences 373.1740, 20160514.

– (2017b). “Number Faculty is Rooted in our Biological Heritage”. Trends in Cognitive Sciences 21.6,
403–404.

Nunes, T. and P. Bryant (2009). Key Understandings in Mathematics Learning. Paper 2: Understanding
Whole Numbers. Tech. rep. Nuffield Foundation. url: https://www.nuffieldfoundation.org/wp-
content/uploads/2019/12/P2.pdf.

Núñez, R. E. (2011). “No InnateNumber Line in theHuman Brain”. Journal of Cross-Cultural Psychology
42.4, 651–668.

– (2017a). “Is There Really an Evolved Capacity for Number?” Trends in Cognitive Sciences 21.6, 409–
424.

– (2017b). “Number-Biological Enculturation Beyond Natural Selection”. Trends in Cognitive Sciences
21.6, 404–405.

Overmann, K. A. (2016a). “Beyond Writing: The development of literacy in the ancient Near East”.
Cambridge Archaeological Journal 26.2, 285–303.

– (2016b). “The Role of Materiality in Numerical Cognition”. Quaternary International 405, 42–51.
– (2018a). “Constructing a Concept of Number”. Journal of Numerical Cognition 4.2, 464–493.

– (2018b). “Updating the Abstract-Concrete Distinction in Ancient Near Eastern Numbers”.
Cuneiform Digital Library Journal 1, 1–22.

– (2019a). “Concepts and How They Get That Way”. Phenomenology and the Cognitive Sciences 18.1,
153–168.

– (2019b). The Material Origin of Numbers: Insights from the archaeology of the ancient Near East. Gorgias
Press.
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